xref: /qemu/target/ppc/mmu-hash64.c (revision d0fb9657)
1 /*
2  *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *  Copyright (c) 2013 David Gibson, IBM Corporation
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19  */
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/error-report.h"
26 #include "qemu/qemu-print.h"
27 #include "sysemu/hw_accel.h"
28 #include "kvm_ppc.h"
29 #include "mmu-hash64.h"
30 #include "exec/log.h"
31 #include "hw/hw.h"
32 #include "internal.h"
33 #include "mmu-book3s-v3.h"
34 #include "helper_regs.h"
35 
36 /* #define DEBUG_SLB */
37 
38 #ifdef DEBUG_SLB
39 #  define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
40 #else
41 #  define LOG_SLB(...) do { } while (0)
42 #endif
43 
44 /*
45  * SLB handling
46  */
47 
48 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
49 {
50     CPUPPCState *env = &cpu->env;
51     uint64_t esid_256M, esid_1T;
52     int n;
53 
54     LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
55 
56     esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
57     esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
58 
59     for (n = 0; n < cpu->hash64_opts->slb_size; n++) {
60         ppc_slb_t *slb = &env->slb[n];
61 
62         LOG_SLB("%s: slot %d %016" PRIx64 " %016"
63                     PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
64         /*
65          * We check for 1T matches on all MMUs here - if the MMU
66          * doesn't have 1T segment support, we will have prevented 1T
67          * entries from being inserted in the slbmte code.
68          */
69         if (((slb->esid == esid_256M) &&
70              ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
71             || ((slb->esid == esid_1T) &&
72                 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
73             return slb;
74         }
75     }
76 
77     return NULL;
78 }
79 
80 void dump_slb(PowerPCCPU *cpu)
81 {
82     CPUPPCState *env = &cpu->env;
83     int i;
84     uint64_t slbe, slbv;
85 
86     cpu_synchronize_state(CPU(cpu));
87 
88     qemu_printf("SLB\tESID\t\t\tVSID\n");
89     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
90         slbe = env->slb[i].esid;
91         slbv = env->slb[i].vsid;
92         if (slbe == 0 && slbv == 0) {
93             continue;
94         }
95         qemu_printf("%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
96                     i, slbe, slbv);
97     }
98 }
99 
100 void helper_slbia(CPUPPCState *env, uint32_t ih)
101 {
102     PowerPCCPU *cpu = env_archcpu(env);
103     int starting_entry;
104     int n;
105 
106     /*
107      * slbia must always flush all TLB (which is equivalent to ERAT in ppc
108      * architecture). Matching on SLB_ESID_V is not good enough, because slbmte
109      * can overwrite a valid SLB without flushing its lookaside information.
110      *
111      * It would be possible to keep the TLB in synch with the SLB by flushing
112      * when a valid entry is overwritten by slbmte, and therefore slbia would
113      * not have to flush unless it evicts a valid SLB entry. However it is
114      * expected that slbmte is more common than slbia, and slbia is usually
115      * going to evict valid SLB entries, so that tradeoff is unlikely to be a
116      * good one.
117      *
118      * ISA v2.05 introduced IH field with values 0,1,2,6. These all invalidate
119      * the same SLB entries (everything but entry 0), but differ in what
120      * "lookaside information" is invalidated. TCG can ignore this and flush
121      * everything.
122      *
123      * ISA v3.0 introduced additional values 3,4,7, which change what SLBs are
124      * invalidated.
125      */
126 
127     env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
128 
129     starting_entry = 1; /* default for IH=0,1,2,6 */
130 
131     if (env->mmu_model == POWERPC_MMU_3_00) {
132         switch (ih) {
133         case 0x7:
134             /* invalidate no SLBs, but all lookaside information */
135             return;
136 
137         case 0x3:
138         case 0x4:
139             /* also considers SLB entry 0 */
140             starting_entry = 0;
141             break;
142 
143         case 0x5:
144             /* treat undefined values as ih==0, and warn */
145             qemu_log_mask(LOG_GUEST_ERROR,
146                           "slbia undefined IH field %u.\n", ih);
147             break;
148 
149         default:
150             /* 0,1,2,6 */
151             break;
152         }
153     }
154 
155     for (n = starting_entry; n < cpu->hash64_opts->slb_size; n++) {
156         ppc_slb_t *slb = &env->slb[n];
157 
158         if (!(slb->esid & SLB_ESID_V)) {
159             continue;
160         }
161         if (env->mmu_model == POWERPC_MMU_3_00) {
162             if (ih == 0x3 && (slb->vsid & SLB_VSID_C) == 0) {
163                 /* preserves entries with a class value of 0 */
164                 continue;
165             }
166         }
167 
168         slb->esid &= ~SLB_ESID_V;
169     }
170 }
171 
172 static void __helper_slbie(CPUPPCState *env, target_ulong addr,
173                            target_ulong global)
174 {
175     PowerPCCPU *cpu = env_archcpu(env);
176     ppc_slb_t *slb;
177 
178     slb = slb_lookup(cpu, addr);
179     if (!slb) {
180         return;
181     }
182 
183     if (slb->esid & SLB_ESID_V) {
184         slb->esid &= ~SLB_ESID_V;
185 
186         /*
187          * XXX: given the fact that segment size is 256 MB or 1TB,
188          *      and we still don't have a tlb_flush_mask(env, n, mask)
189          *      in QEMU, we just invalidate all TLBs
190          */
191         env->tlb_need_flush |=
192             (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
193     }
194 }
195 
196 void helper_slbie(CPUPPCState *env, target_ulong addr)
197 {
198     __helper_slbie(env, addr, false);
199 }
200 
201 void helper_slbieg(CPUPPCState *env, target_ulong addr)
202 {
203     __helper_slbie(env, addr, true);
204 }
205 
206 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
207                   target_ulong esid, target_ulong vsid)
208 {
209     CPUPPCState *env = &cpu->env;
210     ppc_slb_t *slb = &env->slb[slot];
211     const PPCHash64SegmentPageSizes *sps = NULL;
212     int i;
213 
214     if (slot >= cpu->hash64_opts->slb_size) {
215         return -1; /* Bad slot number */
216     }
217     if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
218         return -1; /* Reserved bits set */
219     }
220     if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
221         return -1; /* Bad segment size */
222     }
223     if ((vsid & SLB_VSID_B) && !(ppc_hash64_has(cpu, PPC_HASH64_1TSEG))) {
224         return -1; /* 1T segment on MMU that doesn't support it */
225     }
226 
227     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
228         const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
229 
230         if (!sps1->page_shift) {
231             break;
232         }
233 
234         if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
235             sps = sps1;
236             break;
237         }
238     }
239 
240     if (!sps) {
241         error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
242                      " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
243                      slot, esid, vsid);
244         return -1;
245     }
246 
247     slb->esid = esid;
248     slb->vsid = vsid;
249     slb->sps = sps;
250 
251     LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
252             " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
253             slb->esid, slb->vsid);
254 
255     return 0;
256 }
257 
258 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
259                              target_ulong *rt)
260 {
261     CPUPPCState *env = &cpu->env;
262     int slot = rb & 0xfff;
263     ppc_slb_t *slb = &env->slb[slot];
264 
265     if (slot >= cpu->hash64_opts->slb_size) {
266         return -1;
267     }
268 
269     *rt = slb->esid;
270     return 0;
271 }
272 
273 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
274                              target_ulong *rt)
275 {
276     CPUPPCState *env = &cpu->env;
277     int slot = rb & 0xfff;
278     ppc_slb_t *slb = &env->slb[slot];
279 
280     if (slot >= cpu->hash64_opts->slb_size) {
281         return -1;
282     }
283 
284     *rt = slb->vsid;
285     return 0;
286 }
287 
288 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
289                              target_ulong *rt)
290 {
291     CPUPPCState *env = &cpu->env;
292     ppc_slb_t *slb;
293 
294     if (!msr_is_64bit(env, env->msr)) {
295         rb &= 0xffffffff;
296     }
297     slb = slb_lookup(cpu, rb);
298     if (slb == NULL) {
299         *rt = (target_ulong)-1ul;
300     } else {
301         *rt = slb->vsid;
302     }
303     return 0;
304 }
305 
306 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
307 {
308     PowerPCCPU *cpu = env_archcpu(env);
309 
310     if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
311         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
312                                POWERPC_EXCP_INVAL, GETPC());
313     }
314 }
315 
316 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
317 {
318     PowerPCCPU *cpu = env_archcpu(env);
319     target_ulong rt = 0;
320 
321     if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
322         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
323                                POWERPC_EXCP_INVAL, GETPC());
324     }
325     return rt;
326 }
327 
328 target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
329 {
330     PowerPCCPU *cpu = env_archcpu(env);
331     target_ulong rt = 0;
332 
333     if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
334         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
335                                POWERPC_EXCP_INVAL, GETPC());
336     }
337     return rt;
338 }
339 
340 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
341 {
342     PowerPCCPU *cpu = env_archcpu(env);
343     target_ulong rt = 0;
344 
345     if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
346         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
347                                POWERPC_EXCP_INVAL, GETPC());
348     }
349     return rt;
350 }
351 
352 /* Check No-Execute or Guarded Storage */
353 static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
354                                               ppc_hash_pte64_t pte)
355 {
356     /* Exec permissions CANNOT take away read or write permissions */
357     return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
358             PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
359 }
360 
361 /* Check Basic Storage Protection */
362 static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
363                                ppc_slb_t *slb, ppc_hash_pte64_t pte)
364 {
365     CPUPPCState *env = &cpu->env;
366     unsigned pp, key;
367     /*
368      * Some pp bit combinations have undefined behaviour, so default
369      * to no access in those cases
370      */
371     int prot = 0;
372 
373     key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
374              : (slb->vsid & SLB_VSID_KS));
375     pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
376 
377     if (key == 0) {
378         switch (pp) {
379         case 0x0:
380         case 0x1:
381         case 0x2:
382             prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
383             break;
384 
385         case 0x3:
386         case 0x6:
387             prot = PAGE_READ | PAGE_EXEC;
388             break;
389         }
390     } else {
391         switch (pp) {
392         case 0x0:
393         case 0x6:
394             break;
395 
396         case 0x1:
397         case 0x3:
398             prot = PAGE_READ | PAGE_EXEC;
399             break;
400 
401         case 0x2:
402             prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
403             break;
404         }
405     }
406 
407     return prot;
408 }
409 
410 /* Check the instruction access permissions specified in the IAMR */
411 static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
412 {
413     CPUPPCState *env = &cpu->env;
414     int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;
415 
416     /*
417      * An instruction fetch is permitted if the IAMR bit is 0.
418      * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
419      * can only take away EXEC permissions not READ or WRITE permissions.
420      * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
421      * EXEC permissions are allowed.
422      */
423     return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
424                                PAGE_READ | PAGE_WRITE | PAGE_EXEC;
425 }
426 
427 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
428 {
429     CPUPPCState *env = &cpu->env;
430     int key, amrbits;
431     int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
432 
433     /* Only recent MMUs implement Virtual Page Class Key Protection */
434     if (!ppc_hash64_has(cpu, PPC_HASH64_AMR)) {
435         return prot;
436     }
437 
438     key = HPTE64_R_KEY(pte.pte1);
439     amrbits = (env->spr[SPR_AMR] >> 2 * (31 - key)) & 0x3;
440 
441     /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
442     /*         env->spr[SPR_AMR]); */
443 
444     /*
445      * A store is permitted if the AMR bit is 0. Remove write
446      * protection if it is set.
447      */
448     if (amrbits & 0x2) {
449         prot &= ~PAGE_WRITE;
450     }
451     /*
452      * A load is permitted if the AMR bit is 0. Remove read
453      * protection if it is set.
454      */
455     if (amrbits & 0x1) {
456         prot &= ~PAGE_READ;
457     }
458 
459     switch (env->mmu_model) {
460     /*
461      * MMU version 2.07 and later support IAMR
462      * Check if the IAMR allows the instruction access - it will return
463      * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
464      * if it does (and prot will be unchanged indicating execution support).
465      */
466     case POWERPC_MMU_2_07:
467     case POWERPC_MMU_3_00:
468         prot &= ppc_hash64_iamr_prot(cpu, key);
469         break;
470     default:
471         break;
472     }
473 
474     return prot;
475 }
476 
477 const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
478                                              hwaddr ptex, int n)
479 {
480     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
481     hwaddr base;
482     hwaddr plen = n * HASH_PTE_SIZE_64;
483     const ppc_hash_pte64_t *hptes;
484 
485     if (cpu->vhyp) {
486         PPCVirtualHypervisorClass *vhc =
487             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
488         return vhc->map_hptes(cpu->vhyp, ptex, n);
489     }
490     base = ppc_hash64_hpt_base(cpu);
491 
492     if (!base) {
493         return NULL;
494     }
495 
496     hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false,
497                               MEMTXATTRS_UNSPECIFIED);
498     if (plen < (n * HASH_PTE_SIZE_64)) {
499         hw_error("%s: Unable to map all requested HPTEs\n", __func__);
500     }
501     return hptes;
502 }
503 
504 void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
505                             hwaddr ptex, int n)
506 {
507     if (cpu->vhyp) {
508         PPCVirtualHypervisorClass *vhc =
509             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
510         vhc->unmap_hptes(cpu->vhyp, hptes, ptex, n);
511         return;
512     }
513 
514     address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
515                         false, n * HASH_PTE_SIZE_64);
516 }
517 
518 static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes *sps,
519                                 uint64_t pte0, uint64_t pte1)
520 {
521     int i;
522 
523     if (!(pte0 & HPTE64_V_LARGE)) {
524         if (sps->page_shift != 12) {
525             /* 4kiB page in a non 4kiB segment */
526             return 0;
527         }
528         /* Normal 4kiB page */
529         return 12;
530     }
531 
532     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
533         const PPCHash64PageSize *ps = &sps->enc[i];
534         uint64_t mask;
535 
536         if (!ps->page_shift) {
537             break;
538         }
539 
540         if (ps->page_shift == 12) {
541             /* L bit is set so this can't be a 4kiB page */
542             continue;
543         }
544 
545         mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
546 
547         if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
548             return ps->page_shift;
549         }
550     }
551 
552     return 0; /* Bad page size encoding */
553 }
554 
555 static void ppc64_v3_new_to_old_hpte(target_ulong *pte0, target_ulong *pte1)
556 {
557     /* Insert B into pte0 */
558     *pte0 = (*pte0 & HPTE64_V_COMMON_BITS) |
559             ((*pte1 & HPTE64_R_3_0_SSIZE_MASK) <<
560              (HPTE64_V_SSIZE_SHIFT - HPTE64_R_3_0_SSIZE_SHIFT));
561 
562     /* Remove B from pte1 */
563     *pte1 = *pte1 & ~HPTE64_R_3_0_SSIZE_MASK;
564 }
565 
566 
567 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
568                                      const PPCHash64SegmentPageSizes *sps,
569                                      target_ulong ptem,
570                                      ppc_hash_pte64_t *pte, unsigned *pshift)
571 {
572     int i;
573     const ppc_hash_pte64_t *pteg;
574     target_ulong pte0, pte1;
575     target_ulong ptex;
576 
577     ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
578     pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
579     if (!pteg) {
580         return -1;
581     }
582     for (i = 0; i < HPTES_PER_GROUP; i++) {
583         pte0 = ppc_hash64_hpte0(cpu, pteg, i);
584         /*
585          * pte0 contains the valid bit and must be read before pte1,
586          * otherwise we might see an old pte1 with a new valid bit and
587          * thus an inconsistent hpte value
588          */
589         smp_rmb();
590         pte1 = ppc_hash64_hpte1(cpu, pteg, i);
591 
592         /* Convert format if necessary */
593         if (cpu->env.mmu_model == POWERPC_MMU_3_00 && !cpu->vhyp) {
594             ppc64_v3_new_to_old_hpte(&pte0, &pte1);
595         }
596 
597         /* This compares V, B, H (secondary) and the AVPN */
598         if (HPTE64_V_COMPARE(pte0, ptem)) {
599             *pshift = hpte_page_shift(sps, pte0, pte1);
600             /*
601              * If there is no match, ignore the PTE, it could simply
602              * be for a different segment size encoding and the
603              * architecture specifies we should not match. Linux will
604              * potentially leave behind PTEs for the wrong base page
605              * size when demoting segments.
606              */
607             if (*pshift == 0) {
608                 continue;
609             }
610             /*
611              * We don't do anything with pshift yet as qemu TLB only
612              * deals with 4K pages anyway
613              */
614             pte->pte0 = pte0;
615             pte->pte1 = pte1;
616             ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
617             return ptex + i;
618         }
619     }
620     ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
621     /*
622      * We didn't find a valid entry.
623      */
624     return -1;
625 }
626 
627 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
628                                      ppc_slb_t *slb, target_ulong eaddr,
629                                      ppc_hash_pte64_t *pte, unsigned *pshift)
630 {
631     CPUPPCState *env = &cpu->env;
632     hwaddr hash, ptex;
633     uint64_t vsid, epnmask, epn, ptem;
634     const PPCHash64SegmentPageSizes *sps = slb->sps;
635 
636     /*
637      * The SLB store path should prevent any bad page size encodings
638      * getting in there, so:
639      */
640     assert(sps);
641 
642     /* If ISL is set in LPCR we need to clamp the page size to 4K */
643     if (env->spr[SPR_LPCR] & LPCR_ISL) {
644         /* We assume that when using TCG, 4k is first entry of SPS */
645         sps = &cpu->hash64_opts->sps[0];
646         assert(sps->page_shift == 12);
647     }
648 
649     epnmask = ~((1ULL << sps->page_shift) - 1);
650 
651     if (slb->vsid & SLB_VSID_B) {
652         /* 1TB segment */
653         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
654         epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
655         hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
656     } else {
657         /* 256M segment */
658         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
659         epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
660         hash = vsid ^ (epn >> sps->page_shift);
661     }
662     ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
663     ptem |= HPTE64_V_VALID;
664 
665     /* Page address translation */
666     qemu_log_mask(CPU_LOG_MMU,
667             "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
668             " hash " TARGET_FMT_plx "\n",
669             ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
670 
671     /* Primary PTEG lookup */
672     qemu_log_mask(CPU_LOG_MMU,
673             "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
674             " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
675             " hash=" TARGET_FMT_plx "\n",
676             ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
677             vsid, ptem,  hash);
678     ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
679 
680     if (ptex == -1) {
681         /* Secondary PTEG lookup */
682         ptem |= HPTE64_V_SECONDARY;
683         qemu_log_mask(CPU_LOG_MMU,
684                 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
685                 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
686                 " hash=" TARGET_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
687                 ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
688 
689         ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
690     }
691 
692     return ptex;
693 }
694 
695 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
696                                           uint64_t pte0, uint64_t pte1)
697 {
698     int i;
699 
700     if (!(pte0 & HPTE64_V_LARGE)) {
701         return 12;
702     }
703 
704     /*
705      * The encodings in env->sps need to be carefully chosen so that
706      * this gives an unambiguous result.
707      */
708     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
709         const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
710         unsigned shift;
711 
712         if (!sps->page_shift) {
713             break;
714         }
715 
716         shift = hpte_page_shift(sps, pte0, pte1);
717         if (shift) {
718             return shift;
719         }
720     }
721 
722     return 0;
723 }
724 
725 static bool ppc_hash64_use_vrma(CPUPPCState *env)
726 {
727     switch (env->mmu_model) {
728     case POWERPC_MMU_3_00:
729         /*
730          * ISAv3.0 (POWER9) always uses VRMA, the VPM0 field and RMOR
731          * register no longer exist
732          */
733         return true;
734 
735     default:
736         return !!(env->spr[SPR_LPCR] & LPCR_VPM0);
737     }
738 }
739 
740 static void ppc_hash64_set_isi(CPUState *cs, uint64_t error_code)
741 {
742     CPUPPCState *env = &POWERPC_CPU(cs)->env;
743     bool vpm;
744 
745     if (msr_ir) {
746         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
747     } else {
748         vpm = ppc_hash64_use_vrma(env);
749     }
750     if (vpm && !msr_hv) {
751         cs->exception_index = POWERPC_EXCP_HISI;
752     } else {
753         cs->exception_index = POWERPC_EXCP_ISI;
754     }
755     env->error_code = error_code;
756 }
757 
758 static void ppc_hash64_set_dsi(CPUState *cs, uint64_t dar, uint64_t dsisr)
759 {
760     CPUPPCState *env = &POWERPC_CPU(cs)->env;
761     bool vpm;
762 
763     if (msr_dr) {
764         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
765     } else {
766         vpm = ppc_hash64_use_vrma(env);
767     }
768     if (vpm && !msr_hv) {
769         cs->exception_index = POWERPC_EXCP_HDSI;
770         env->spr[SPR_HDAR] = dar;
771         env->spr[SPR_HDSISR] = dsisr;
772     } else {
773         cs->exception_index = POWERPC_EXCP_DSI;
774         env->spr[SPR_DAR] = dar;
775         env->spr[SPR_DSISR] = dsisr;
776    }
777     env->error_code = 0;
778 }
779 
780 
781 static void ppc_hash64_set_r(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
782 {
783     hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + 16;
784 
785     if (cpu->vhyp) {
786         PPCVirtualHypervisorClass *vhc =
787             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
788         vhc->hpte_set_r(cpu->vhyp, ptex, pte1);
789         return;
790     }
791     base = ppc_hash64_hpt_base(cpu);
792 
793 
794     /* The HW performs a non-atomic byte update */
795     stb_phys(CPU(cpu)->as, base + offset, ((pte1 >> 8) & 0xff) | 0x01);
796 }
797 
798 static void ppc_hash64_set_c(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
799 {
800     hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + 15;
801 
802     if (cpu->vhyp) {
803         PPCVirtualHypervisorClass *vhc =
804             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
805         vhc->hpte_set_c(cpu->vhyp, ptex, pte1);
806         return;
807     }
808     base = ppc_hash64_hpt_base(cpu);
809 
810     /* The HW performs a non-atomic byte update */
811     stb_phys(CPU(cpu)->as, base + offset, (pte1 & 0xff) | 0x80);
812 }
813 
814 static target_ulong rmls_limit(PowerPCCPU *cpu)
815 {
816     CPUPPCState *env = &cpu->env;
817     /*
818      * In theory the meanings of RMLS values are implementation
819      * dependent.  In practice, this seems to have been the set from
820      * POWER4+..POWER8, and RMLS is no longer supported in POWER9.
821      *
822      * Unsupported values mean the OS has shot itself in the
823      * foot. Return a 0-sized RMA in this case, which we expect
824      * to trigger an immediate DSI or ISI
825      */
826     static const target_ulong rma_sizes[16] = {
827         [0] = 256 * GiB,
828         [1] = 16 * GiB,
829         [2] = 1 * GiB,
830         [3] = 64 * MiB,
831         [4] = 256 * MiB,
832         [7] = 128 * MiB,
833         [8] = 32 * MiB,
834     };
835     target_ulong rmls = (env->spr[SPR_LPCR] & LPCR_RMLS) >> LPCR_RMLS_SHIFT;
836 
837     return rma_sizes[rmls];
838 }
839 
840 static int build_vrma_slbe(PowerPCCPU *cpu, ppc_slb_t *slb)
841 {
842     CPUPPCState *env = &cpu->env;
843     target_ulong lpcr = env->spr[SPR_LPCR];
844     uint32_t vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
845     target_ulong vsid = SLB_VSID_VRMA | ((vrmasd << 4) & SLB_VSID_LLP_MASK);
846     int i;
847 
848     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
849         const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
850 
851         if (!sps->page_shift) {
852             break;
853         }
854 
855         if ((vsid & SLB_VSID_LLP_MASK) == sps->slb_enc) {
856             slb->esid = SLB_ESID_V;
857             slb->vsid = vsid;
858             slb->sps = sps;
859             return 0;
860         }
861     }
862 
863     error_report("Bad page size encoding in LPCR[VRMASD]; LPCR=0x"
864                  TARGET_FMT_lx, lpcr);
865 
866     return -1;
867 }
868 
869 int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
870                                 int rwx, int mmu_idx)
871 {
872     CPUState *cs = CPU(cpu);
873     CPUPPCState *env = &cpu->env;
874     ppc_slb_t vrma_slbe;
875     ppc_slb_t *slb;
876     unsigned apshift;
877     hwaddr ptex;
878     ppc_hash_pte64_t pte;
879     int exec_prot, pp_prot, amr_prot, prot;
880     MMUAccessType access_type;
881     int need_prot;
882     hwaddr raddr;
883 
884     assert((rwx == 0) || (rwx == 1) || (rwx == 2));
885     access_type = rwx;
886 
887     /*
888      * Note on LPCR usage: 970 uses HID4, but our special variant of
889      * store_spr copies relevant fields into env->spr[SPR_LPCR].
890      * Similarly we filter unimplemented bits when storing into LPCR
891      * depending on the MMU version. This code can thus just use the
892      * LPCR "as-is".
893      */
894 
895     /* 1. Handle real mode accesses */
896     if (access_type == MMU_INST_FETCH ? !msr_ir : !msr_dr) {
897         /*
898          * Translation is supposedly "off", but in real mode the top 4
899          * effective address bits are (mostly) ignored
900          */
901         raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
902 
903         if (cpu->vhyp) {
904             /*
905              * In virtual hypervisor mode, there's nothing to do:
906              *   EA == GPA == qemu guest address
907              */
908         } else if (msr_hv || !env->has_hv_mode) {
909             /* In HV mode, add HRMOR if top EA bit is clear */
910             if (!(eaddr >> 63)) {
911                 raddr |= env->spr[SPR_HRMOR];
912             }
913         } else if (ppc_hash64_use_vrma(env)) {
914             /* Emulated VRMA mode */
915             slb = &vrma_slbe;
916             if (build_vrma_slbe(cpu, slb) != 0) {
917                 /* Invalid VRMA setup, machine check */
918                 cs->exception_index = POWERPC_EXCP_MCHECK;
919                 env->error_code = 0;
920                 return 1;
921             }
922 
923             goto skip_slb_search;
924         } else {
925             target_ulong limit = rmls_limit(cpu);
926 
927             /* Emulated old-style RMO mode, bounds check against RMLS */
928             if (raddr >= limit) {
929                 switch (access_type) {
930                 case MMU_INST_FETCH:
931                     ppc_hash64_set_isi(cs, SRR1_PROTFAULT);
932                     break;
933                 case MMU_DATA_LOAD:
934                     ppc_hash64_set_dsi(cs, eaddr, DSISR_PROTFAULT);
935                     break;
936                 case MMU_DATA_STORE:
937                     ppc_hash64_set_dsi(cs, eaddr,
938                                        DSISR_PROTFAULT | DSISR_ISSTORE);
939                     break;
940                 default:
941                     g_assert_not_reached();
942                 }
943                 return 1;
944             }
945 
946             raddr |= env->spr[SPR_RMOR];
947         }
948         tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
949                      PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
950                      TARGET_PAGE_SIZE);
951         return 0;
952     }
953 
954     /* 2. Translation is on, so look up the SLB */
955     slb = slb_lookup(cpu, eaddr);
956     if (!slb) {
957         /* No entry found, check if in-memory segment tables are in use */
958         if (ppc64_use_proc_tbl(cpu)) {
959             /* TODO - Unsupported */
960             error_report("Segment Table Support Unimplemented");
961             exit(1);
962         }
963         /* Segment still not found, generate the appropriate interrupt */
964         switch (access_type) {
965         case MMU_INST_FETCH:
966             cs->exception_index = POWERPC_EXCP_ISEG;
967             env->error_code = 0;
968             break;
969         case MMU_DATA_LOAD:
970         case MMU_DATA_STORE:
971             cs->exception_index = POWERPC_EXCP_DSEG;
972             env->error_code = 0;
973             env->spr[SPR_DAR] = eaddr;
974             break;
975         default:
976             g_assert_not_reached();
977         }
978         return 1;
979     }
980 
981 skip_slb_search:
982 
983     /* 3. Check for segment level no-execute violation */
984     if (access_type == MMU_INST_FETCH && (slb->vsid & SLB_VSID_N)) {
985         ppc_hash64_set_isi(cs, SRR1_NOEXEC_GUARD);
986         return 1;
987     }
988 
989     /* 4. Locate the PTE in the hash table */
990     ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
991     if (ptex == -1) {
992         switch (access_type) {
993         case MMU_INST_FETCH:
994             ppc_hash64_set_isi(cs, SRR1_NOPTE);
995             break;
996         case MMU_DATA_LOAD:
997             ppc_hash64_set_dsi(cs, eaddr, DSISR_NOPTE);
998             break;
999         case MMU_DATA_STORE:
1000             ppc_hash64_set_dsi(cs, eaddr, DSISR_NOPTE | DSISR_ISSTORE);
1001             break;
1002         default:
1003             g_assert_not_reached();
1004         }
1005         return 1;
1006     }
1007     qemu_log_mask(CPU_LOG_MMU,
1008                   "found PTE at index %08" HWADDR_PRIx "\n", ptex);
1009 
1010     /* 5. Check access permissions */
1011 
1012     exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
1013     pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
1014     amr_prot = ppc_hash64_amr_prot(cpu, pte);
1015     prot = exec_prot & pp_prot & amr_prot;
1016 
1017     need_prot = prot_for_access_type(access_type);
1018     if (need_prot & ~prot) {
1019         /* Access right violation */
1020         qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
1021         if (access_type == MMU_INST_FETCH) {
1022             int srr1 = 0;
1023             if (PAGE_EXEC & ~exec_prot) {
1024                 srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
1025             } else if (PAGE_EXEC & ~pp_prot) {
1026                 srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
1027             }
1028             if (PAGE_EXEC & ~amr_prot) {
1029                 srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
1030             }
1031             ppc_hash64_set_isi(cs, srr1);
1032         } else {
1033             int dsisr = 0;
1034             if (need_prot & ~pp_prot) {
1035                 dsisr |= DSISR_PROTFAULT;
1036             }
1037             if (access_type == MMU_DATA_STORE) {
1038                 dsisr |= DSISR_ISSTORE;
1039             }
1040             if (need_prot & ~amr_prot) {
1041                 dsisr |= DSISR_AMR;
1042             }
1043             ppc_hash64_set_dsi(cs, eaddr, dsisr);
1044         }
1045         return 1;
1046     }
1047 
1048     qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
1049 
1050     /* 6. Update PTE referenced and changed bits if necessary */
1051 
1052     if (!(pte.pte1 & HPTE64_R_R)) {
1053         ppc_hash64_set_r(cpu, ptex, pte.pte1);
1054     }
1055     if (!(pte.pte1 & HPTE64_R_C)) {
1056         if (access_type == MMU_DATA_STORE) {
1057             ppc_hash64_set_c(cpu, ptex, pte.pte1);
1058         } else {
1059             /*
1060              * Treat the page as read-only for now, so that a later write
1061              * will pass through this function again to set the C bit
1062              */
1063             prot &= ~PAGE_WRITE;
1064         }
1065     }
1066 
1067     /* 7. Determine the real address from the PTE */
1068 
1069     raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
1070 
1071     tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
1072                  prot, mmu_idx, 1ULL << apshift);
1073 
1074     return 0;
1075 }
1076 
1077 hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
1078 {
1079     CPUPPCState *env = &cpu->env;
1080     ppc_slb_t vrma_slbe;
1081     ppc_slb_t *slb;
1082     hwaddr ptex, raddr;
1083     ppc_hash_pte64_t pte;
1084     unsigned apshift;
1085 
1086     /* Handle real mode */
1087     if (msr_dr == 0) {
1088         /* In real mode the top 4 effective address bits are ignored */
1089         raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
1090 
1091         if (cpu->vhyp) {
1092             /*
1093              * In virtual hypervisor mode, there's nothing to do:
1094              *   EA == GPA == qemu guest address
1095              */
1096             return raddr;
1097         } else if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
1098             /* In HV mode, add HRMOR if top EA bit is clear */
1099             return raddr | env->spr[SPR_HRMOR];
1100         } else if (ppc_hash64_use_vrma(env)) {
1101             /* Emulated VRMA mode */
1102             slb = &vrma_slbe;
1103             if (build_vrma_slbe(cpu, slb) != 0) {
1104                 return -1;
1105             }
1106         } else {
1107             target_ulong limit = rmls_limit(cpu);
1108 
1109             /* Emulated old-style RMO mode, bounds check against RMLS */
1110             if (raddr >= limit) {
1111                 return -1;
1112             }
1113             return raddr | env->spr[SPR_RMOR];
1114         }
1115     } else {
1116         slb = slb_lookup(cpu, addr);
1117         if (!slb) {
1118             return -1;
1119         }
1120     }
1121 
1122     ptex = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
1123     if (ptex == -1) {
1124         return -1;
1125     }
1126 
1127     return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
1128         & TARGET_PAGE_MASK;
1129 }
1130 
1131 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
1132                                target_ulong pte0, target_ulong pte1)
1133 {
1134     /*
1135      * XXX: given the fact that there are too many segments to
1136      * invalidate, and we still don't have a tlb_flush_mask(env, n,
1137      * mask) in QEMU, we just invalidate all TLBs
1138      */
1139     cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
1140 }
1141 
1142 void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1143 {
1144     PowerPCCPU *cpu = env_archcpu(env);
1145 
1146     ppc_store_lpcr(cpu, val);
1147 }
1148 
1149 void ppc_hash64_init(PowerPCCPU *cpu)
1150 {
1151     CPUPPCState *env = &cpu->env;
1152     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1153 
1154     if (!pcc->hash64_opts) {
1155         assert(!mmu_is_64bit(env->mmu_model));
1156         return;
1157     }
1158 
1159     cpu->hash64_opts = g_memdup(pcc->hash64_opts, sizeof(*cpu->hash64_opts));
1160 }
1161 
1162 void ppc_hash64_finalize(PowerPCCPU *cpu)
1163 {
1164     g_free(cpu->hash64_opts);
1165 }
1166 
1167 const PPCHash64Options ppc_hash64_opts_basic = {
1168     .flags = 0,
1169     .slb_size = 64,
1170     .sps = {
1171         { .page_shift = 12, /* 4K */
1172           .slb_enc = 0,
1173           .enc = { { .page_shift = 12, .pte_enc = 0 } }
1174         },
1175         { .page_shift = 24, /* 16M */
1176           .slb_enc = 0x100,
1177           .enc = { { .page_shift = 24, .pte_enc = 0 } }
1178         },
1179     },
1180 };
1181 
1182 const PPCHash64Options ppc_hash64_opts_POWER7 = {
1183     .flags = PPC_HASH64_1TSEG | PPC_HASH64_AMR | PPC_HASH64_CI_LARGEPAGE,
1184     .slb_size = 32,
1185     .sps = {
1186         {
1187             .page_shift = 12, /* 4K */
1188             .slb_enc = 0,
1189             .enc = { { .page_shift = 12, .pte_enc = 0 },
1190                      { .page_shift = 16, .pte_enc = 0x7 },
1191                      { .page_shift = 24, .pte_enc = 0x38 }, },
1192         },
1193         {
1194             .page_shift = 16, /* 64K */
1195             .slb_enc = SLB_VSID_64K,
1196             .enc = { { .page_shift = 16, .pte_enc = 0x1 },
1197                      { .page_shift = 24, .pte_enc = 0x8 }, },
1198         },
1199         {
1200             .page_shift = 24, /* 16M */
1201             .slb_enc = SLB_VSID_16M,
1202             .enc = { { .page_shift = 24, .pte_enc = 0 }, },
1203         },
1204         {
1205             .page_shift = 34, /* 16G */
1206             .slb_enc = SLB_VSID_16G,
1207             .enc = { { .page_shift = 34, .pte_enc = 0x3 }, },
1208         },
1209     }
1210 };
1211 
1212 
1213