xref: /qemu/target/ppc/mmu-radix64.c (revision 7a21bee2)
1 /*
2  *  PowerPC Radix MMU mulation helpers for QEMU.
3  *
4  *  Copyright (c) 2016 Suraj Jitindar Singh, IBM Corporation
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/error-report.h"
24 #include "sysemu/kvm.h"
25 #include "kvm_ppc.h"
26 #include "exec/log.h"
27 #include "internal.h"
28 #include "mmu-radix64.h"
29 #include "mmu-book3s-v3.h"
30 
31 static bool ppc_radix64_get_fully_qualified_addr(const CPUPPCState *env,
32                                                  vaddr eaddr,
33                                                  uint64_t *lpid, uint64_t *pid)
34 {
35     /* When EA(2:11) are nonzero, raise a segment interrupt */
36     if (eaddr & ~R_EADDR_VALID_MASK) {
37         return false;
38     }
39 
40     if (FIELD_EX64(env->msr, MSR, HV)) { /* MSR[HV] -> Hypervisor/bare metal */
41         switch (eaddr & R_EADDR_QUADRANT) {
42         case R_EADDR_QUADRANT0:
43             *lpid = 0;
44             *pid = env->spr[SPR_BOOKS_PID];
45             break;
46         case R_EADDR_QUADRANT1:
47             *lpid = env->spr[SPR_LPIDR];
48             *pid = env->spr[SPR_BOOKS_PID];
49             break;
50         case R_EADDR_QUADRANT2:
51             *lpid = env->spr[SPR_LPIDR];
52             *pid = 0;
53             break;
54         case R_EADDR_QUADRANT3:
55             *lpid = 0;
56             *pid = 0;
57             break;
58         default:
59             g_assert_not_reached();
60         }
61     } else {  /* !MSR[HV] -> Guest */
62         switch (eaddr & R_EADDR_QUADRANT) {
63         case R_EADDR_QUADRANT0: /* Guest application */
64             *lpid = env->spr[SPR_LPIDR];
65             *pid = env->spr[SPR_BOOKS_PID];
66             break;
67         case R_EADDR_QUADRANT1: /* Illegal */
68         case R_EADDR_QUADRANT2:
69             return false;
70         case R_EADDR_QUADRANT3: /* Guest OS */
71             *lpid = env->spr[SPR_LPIDR];
72             *pid = 0; /* pid set to 0 -> addresses guest operating system */
73             break;
74         default:
75             g_assert_not_reached();
76         }
77     }
78 
79     return true;
80 }
81 
82 static void ppc_radix64_raise_segi(PowerPCCPU *cpu, MMUAccessType access_type,
83                                    vaddr eaddr)
84 {
85     CPUState *cs = CPU(cpu);
86     CPUPPCState *env = &cpu->env;
87 
88     switch (access_type) {
89     case MMU_INST_FETCH:
90         /* Instruction Segment Interrupt */
91         cs->exception_index = POWERPC_EXCP_ISEG;
92         break;
93     case MMU_DATA_STORE:
94     case MMU_DATA_LOAD:
95         /* Data Segment Interrupt */
96         cs->exception_index = POWERPC_EXCP_DSEG;
97         env->spr[SPR_DAR] = eaddr;
98         break;
99     default:
100         g_assert_not_reached();
101     }
102     env->error_code = 0;
103 }
104 
105 static inline const char *access_str(MMUAccessType access_type)
106 {
107     return access_type == MMU_DATA_LOAD ? "reading" :
108         (access_type == MMU_DATA_STORE ? "writing" : "execute");
109 }
110 
111 static void ppc_radix64_raise_si(PowerPCCPU *cpu, MMUAccessType access_type,
112                                  vaddr eaddr, uint32_t cause)
113 {
114     CPUState *cs = CPU(cpu);
115     CPUPPCState *env = &cpu->env;
116 
117     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx" cause %08x\n",
118                   __func__, access_str(access_type),
119                   eaddr, cause);
120 
121     switch (access_type) {
122     case MMU_INST_FETCH:
123         /* Instruction Storage Interrupt */
124         cs->exception_index = POWERPC_EXCP_ISI;
125         env->error_code = cause;
126         break;
127     case MMU_DATA_STORE:
128         cause |= DSISR_ISSTORE;
129         /* fall through */
130     case MMU_DATA_LOAD:
131         /* Data Storage Interrupt */
132         cs->exception_index = POWERPC_EXCP_DSI;
133         env->spr[SPR_DSISR] = cause;
134         env->spr[SPR_DAR] = eaddr;
135         env->error_code = 0;
136         break;
137     default:
138         g_assert_not_reached();
139     }
140 }
141 
142 static void ppc_radix64_raise_hsi(PowerPCCPU *cpu, MMUAccessType access_type,
143                                   vaddr eaddr, hwaddr g_raddr, uint32_t cause)
144 {
145     CPUState *cs = CPU(cpu);
146     CPUPPCState *env = &cpu->env;
147 
148     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx" 0x%"
149                   HWADDR_PRIx" cause %08x\n",
150                   __func__, access_str(access_type),
151                   eaddr, g_raddr, cause);
152 
153     switch (access_type) {
154     case MMU_INST_FETCH:
155         /* H Instruction Storage Interrupt */
156         cs->exception_index = POWERPC_EXCP_HISI;
157         env->spr[SPR_ASDR] = g_raddr;
158         env->error_code = cause;
159         break;
160     case MMU_DATA_STORE:
161         cause |= DSISR_ISSTORE;
162         /* fall through */
163     case MMU_DATA_LOAD:
164         /* H Data Storage Interrupt */
165         cs->exception_index = POWERPC_EXCP_HDSI;
166         env->spr[SPR_HDSISR] = cause;
167         env->spr[SPR_HDAR] = eaddr;
168         env->spr[SPR_ASDR] = g_raddr;
169         env->error_code = 0;
170         break;
171     default:
172         g_assert_not_reached();
173     }
174 }
175 
176 static bool ppc_radix64_check_prot(PowerPCCPU *cpu, MMUAccessType access_type,
177                                    uint64_t pte, int *fault_cause, int *prot,
178                                    int mmu_idx, bool partition_scoped)
179 {
180     CPUPPCState *env = &cpu->env;
181     int need_prot;
182 
183     /* Check Page Attributes (pte58:59) */
184     if ((pte & R_PTE_ATT) == R_PTE_ATT_NI_IO && access_type == MMU_INST_FETCH) {
185         /*
186          * Radix PTE entries with the non-idempotent I/O attribute are treated
187          * as guarded storage
188          */
189         *fault_cause |= SRR1_NOEXEC_GUARD;
190         return true;
191     }
192 
193     /* Determine permissions allowed by Encoded Access Authority */
194     if (!partition_scoped && (pte & R_PTE_EAA_PRIV) &&
195         FIELD_EX64(env->msr, MSR, PR)) {
196         *prot = 0;
197     } else if (mmuidx_pr(mmu_idx) || (pte & R_PTE_EAA_PRIV) ||
198                partition_scoped) {
199         *prot = ppc_radix64_get_prot_eaa(pte);
200     } else { /* !MSR_PR && !(pte & R_PTE_EAA_PRIV) && !partition_scoped */
201         *prot = ppc_radix64_get_prot_eaa(pte);
202         *prot &= ppc_radix64_get_prot_amr(cpu); /* Least combined permissions */
203     }
204 
205     /* Check if requested access type is allowed */
206     need_prot = prot_for_access_type(access_type);
207     if (need_prot & ~*prot) { /* Page Protected for that Access */
208         *fault_cause |= access_type == MMU_INST_FETCH ? SRR1_NOEXEC_GUARD :
209                                                         DSISR_PROTFAULT;
210         return true;
211     }
212 
213     return false;
214 }
215 
216 static void ppc_radix64_set_rc(PowerPCCPU *cpu, MMUAccessType access_type,
217                                uint64_t pte, hwaddr pte_addr, int *prot)
218 {
219     CPUState *cs = CPU(cpu);
220     uint64_t npte;
221 
222     npte = pte | R_PTE_R; /* Always set reference bit */
223 
224     if (access_type == MMU_DATA_STORE) { /* Store/Write */
225         npte |= R_PTE_C; /* Set change bit */
226     } else {
227         /*
228          * Treat the page as read-only for now, so that a later write
229          * will pass through this function again to set the C bit.
230          */
231         *prot &= ~PAGE_WRITE;
232     }
233 
234     if (pte ^ npte) { /* If pte has changed then write it back */
235         stq_phys(cs->as, pte_addr, npte);
236     }
237 }
238 
239 static bool ppc_radix64_is_valid_level(int level, int psize, uint64_t nls)
240 {
241     /*
242      * Check if this is a valid level, according to POWER9 and POWER10
243      * Processor User's Manuals, sections 4.10.4.1 and 5.10.6.1, respectively:
244      * Supported Radix Tree Configurations and Resulting Page Sizes.
245      *
246      * Note: these checks are specific to POWER9 and POWER10 CPUs. Any future
247      * CPUs that supports a different Radix MMU configuration will need their
248      * own implementation.
249      */
250     switch (level) {
251     case 0:     /* Root Page Dir */
252         return psize == 52 && nls == 13;
253     case 1:
254     case 2:
255         return nls == 9;
256     case 3:
257         return nls == 9 || nls == 5;
258     default:
259         qemu_log_mask(LOG_GUEST_ERROR, "invalid radix level: %d\n", level);
260         return false;
261     }
262 }
263 
264 static int ppc_radix64_next_level(AddressSpace *as, vaddr eaddr,
265                                   uint64_t *pte_addr, uint64_t *nls,
266                                   int *psize, uint64_t *pte, int *fault_cause)
267 {
268     uint64_t index, mask, nlb, pde;
269 
270     /* Read page <directory/table> entry from guest address space */
271     pde = ldq_phys(as, *pte_addr);
272     if (!(pde & R_PTE_VALID)) {         /* Invalid Entry */
273         *fault_cause |= DSISR_NOPTE;
274         return 1;
275     }
276 
277     *pte = pde;
278     *psize -= *nls;
279     if (!(pde & R_PTE_LEAF)) { /* Prepare for next iteration */
280         *nls = pde & R_PDE_NLS;
281         index = eaddr >> (*psize - *nls);       /* Shift */
282         index &= ((1UL << *nls) - 1);           /* Mask */
283         nlb = pde & R_PDE_NLB;
284         mask = MAKE_64BIT_MASK(0, *nls + 3);
285 
286         if (nlb & mask) {
287             qemu_log_mask(LOG_GUEST_ERROR,
288                 "%s: misaligned page dir/table base: 0x"TARGET_FMT_lx
289                 " page dir size: 0x"TARGET_FMT_lx"\n",
290                 __func__, nlb, mask + 1);
291             nlb &= ~mask;
292         }
293         *pte_addr = nlb + index * sizeof(pde);
294     }
295     return 0;
296 }
297 
298 static int ppc_radix64_walk_tree(AddressSpace *as, vaddr eaddr,
299                                  uint64_t base_addr, uint64_t nls,
300                                  hwaddr *raddr, int *psize, uint64_t *pte,
301                                  int *fault_cause, hwaddr *pte_addr)
302 {
303     uint64_t index, pde, rpn, mask;
304     int level = 0;
305 
306     index = eaddr >> (*psize - nls);    /* Shift */
307     index &= ((1UL << nls) - 1);        /* Mask */
308     mask = MAKE_64BIT_MASK(0, nls + 3);
309 
310     if (base_addr & mask) {
311         qemu_log_mask(LOG_GUEST_ERROR,
312             "%s: misaligned page dir base: 0x"TARGET_FMT_lx
313             " page dir size: 0x"TARGET_FMT_lx"\n",
314             __func__, base_addr, mask + 1);
315         base_addr &= ~mask;
316     }
317     *pte_addr = base_addr + index * sizeof(pde);
318 
319     do {
320         int ret;
321 
322         if (!ppc_radix64_is_valid_level(level++, *psize, nls)) {
323             *fault_cause |= DSISR_R_BADCONFIG;
324             return 1;
325         }
326 
327         ret = ppc_radix64_next_level(as, eaddr, pte_addr, &nls, psize, &pde,
328                                      fault_cause);
329         if (ret) {
330             return ret;
331         }
332     } while (!(pde & R_PTE_LEAF));
333 
334     *pte = pde;
335     rpn = pde & R_PTE_RPN;
336     mask = (1UL << *psize) - 1;
337 
338     /* Or high bits of rpn and low bits to ea to form whole real addr */
339     *raddr = (rpn & ~mask) | (eaddr & mask);
340     return 0;
341 }
342 
343 static bool validate_pate(PowerPCCPU *cpu, uint64_t lpid, ppc_v3_pate_t *pate)
344 {
345     CPUPPCState *env = &cpu->env;
346 
347     if (!(pate->dw0 & PATE0_HR)) {
348         return false;
349     }
350     if (lpid == 0 && !FIELD_EX64(env->msr, MSR, HV)) {
351         return false;
352     }
353     if ((pate->dw0 & PATE1_R_PRTS) < 5) {
354         return false;
355     }
356     /* More checks ... */
357     return true;
358 }
359 
360 static int ppc_radix64_partition_scoped_xlate(PowerPCCPU *cpu,
361                                               MMUAccessType access_type,
362                                               vaddr eaddr, hwaddr g_raddr,
363                                               ppc_v3_pate_t pate,
364                                               hwaddr *h_raddr, int *h_prot,
365                                               int *h_page_size, bool pde_addr,
366                                               int mmu_idx, bool guest_visible)
367 {
368     int fault_cause = 0;
369     hwaddr pte_addr;
370     uint64_t pte;
371 
372     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx
373                   " mmu_idx %u 0x%"HWADDR_PRIx"\n",
374                   __func__, access_str(access_type),
375                   eaddr, mmu_idx, g_raddr);
376 
377     *h_page_size = PRTBE_R_GET_RTS(pate.dw0);
378     /* No valid pte or access denied due to protection */
379     if (ppc_radix64_walk_tree(CPU(cpu)->as, g_raddr, pate.dw0 & PRTBE_R_RPDB,
380                               pate.dw0 & PRTBE_R_RPDS, h_raddr, h_page_size,
381                               &pte, &fault_cause, &pte_addr) ||
382         ppc_radix64_check_prot(cpu, access_type, pte,
383                                &fault_cause, h_prot, mmu_idx, true)) {
384         if (pde_addr) { /* address being translated was that of a guest pde */
385             fault_cause |= DSISR_PRTABLE_FAULT;
386         }
387         if (guest_visible) {
388             ppc_radix64_raise_hsi(cpu, access_type, eaddr, g_raddr, fault_cause);
389         }
390         return 1;
391     }
392 
393     if (guest_visible) {
394         ppc_radix64_set_rc(cpu, access_type, pte, pte_addr, h_prot);
395     }
396 
397     return 0;
398 }
399 
400 /*
401  * The spapr vhc has a flat partition scope provided by qemu memory when
402  * not nested.
403  *
404  * When running a nested guest, the addressing is 2-level radix on top of the
405  * vhc memory, so it works practically identically to the bare metal 2-level
406  * radix. So that code is selected directly. A cleaner and more flexible nested
407  * hypervisor implementation would allow the vhc to provide a ->nested_xlate()
408  * function but that is not required for the moment.
409  */
410 static bool vhyp_flat_addressing(PowerPCCPU *cpu)
411 {
412     if (cpu->vhyp) {
413         return !vhyp_cpu_in_nested(cpu);
414     }
415     return false;
416 }
417 
418 static int ppc_radix64_process_scoped_xlate(PowerPCCPU *cpu,
419                                             MMUAccessType access_type,
420                                             vaddr eaddr, uint64_t pid,
421                                             ppc_v3_pate_t pate, hwaddr *g_raddr,
422                                             int *g_prot, int *g_page_size,
423                                             int mmu_idx, bool guest_visible)
424 {
425     CPUState *cs = CPU(cpu);
426     CPUPPCState *env = &cpu->env;
427     uint64_t offset, size, prtb, prtbe_addr, prtbe0, base_addr, nls, index, pte;
428     int fault_cause = 0, h_page_size, h_prot;
429     hwaddr h_raddr, pte_addr;
430     int ret;
431 
432     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx
433                   " mmu_idx %u pid %"PRIu64"\n",
434                   __func__, access_str(access_type),
435                   eaddr, mmu_idx, pid);
436 
437     prtb = (pate.dw1 & PATE1_R_PRTB);
438     size = 1ULL << ((pate.dw1 & PATE1_R_PRTS) + 12);
439     if (prtb & (size - 1)) {
440         /* Process Table not properly aligned */
441         if (guest_visible) {
442             ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_R_BADCONFIG);
443         }
444         return 1;
445     }
446 
447     /* Index Process Table by PID to Find Corresponding Process Table Entry */
448     offset = pid * sizeof(struct prtb_entry);
449     if (offset >= size) {
450         /* offset exceeds size of the process table */
451         if (guest_visible) {
452             ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_NOPTE);
453         }
454         return 1;
455     }
456     prtbe_addr = prtb + offset;
457 
458     if (vhyp_flat_addressing(cpu)) {
459         prtbe0 = ldq_phys(cs->as, prtbe_addr);
460     } else {
461         /*
462          * Process table addresses are subject to partition-scoped
463          * translation
464          *
465          * On a Radix host, the partition-scoped page table for LPID=0
466          * is only used to translate the effective addresses of the
467          * process table entries.
468          */
469         ret = ppc_radix64_partition_scoped_xlate(cpu, 0, eaddr, prtbe_addr,
470                                                  pate, &h_raddr, &h_prot,
471                                                  &h_page_size, true,
472             /* mmu_idx is 5 because we're translating from hypervisor scope */
473                                                  5, guest_visible);
474         if (ret) {
475             return ret;
476         }
477         prtbe0 = ldq_phys(cs->as, h_raddr);
478     }
479 
480     /* Walk Radix Tree from Process Table Entry to Convert EA to RA */
481     *g_page_size = PRTBE_R_GET_RTS(prtbe0);
482     base_addr = prtbe0 & PRTBE_R_RPDB;
483     nls = prtbe0 & PRTBE_R_RPDS;
484     if (FIELD_EX64(env->msr, MSR, HV) || vhyp_flat_addressing(cpu)) {
485         /*
486          * Can treat process table addresses as real addresses
487          */
488         ret = ppc_radix64_walk_tree(cs->as, eaddr & R_EADDR_MASK, base_addr,
489                                     nls, g_raddr, g_page_size, &pte,
490                                     &fault_cause, &pte_addr);
491         if (ret) {
492             /* No valid PTE */
493             if (guest_visible) {
494                 ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause);
495             }
496             return ret;
497         }
498     } else {
499         uint64_t rpn, mask;
500         int level = 0;
501 
502         index = (eaddr & R_EADDR_MASK) >> (*g_page_size - nls); /* Shift */
503         index &= ((1UL << nls) - 1);                            /* Mask */
504         pte_addr = base_addr + (index * sizeof(pte));
505 
506         /*
507          * Each process table address is subject to a partition-scoped
508          * translation
509          */
510         do {
511             ret = ppc_radix64_partition_scoped_xlate(cpu, 0, eaddr, pte_addr,
512                                                      pate, &h_raddr, &h_prot,
513                                                      &h_page_size, true,
514             /* mmu_idx is 5 because we're translating from hypervisor scope */
515                                                      5, guest_visible);
516             if (ret) {
517                 return ret;
518             }
519 
520             if (!ppc_radix64_is_valid_level(level++, *g_page_size, nls)) {
521                 fault_cause |= DSISR_R_BADCONFIG;
522                 return 1;
523             }
524 
525             ret = ppc_radix64_next_level(cs->as, eaddr & R_EADDR_MASK, &h_raddr,
526                                          &nls, g_page_size, &pte, &fault_cause);
527             if (ret) {
528                 /* No valid pte */
529                 if (guest_visible) {
530                     ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause);
531                 }
532                 return ret;
533             }
534             pte_addr = h_raddr;
535         } while (!(pte & R_PTE_LEAF));
536 
537         rpn = pte & R_PTE_RPN;
538         mask = (1UL << *g_page_size) - 1;
539 
540         /* Or high bits of rpn and low bits to ea to form whole real addr */
541         *g_raddr = (rpn & ~mask) | (eaddr & mask);
542     }
543 
544     if (ppc_radix64_check_prot(cpu, access_type, pte, &fault_cause,
545                                g_prot, mmu_idx, false)) {
546         /* Access denied due to protection */
547         if (guest_visible) {
548             ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause);
549         }
550         return 1;
551     }
552 
553     if (guest_visible) {
554         ppc_radix64_set_rc(cpu, access_type, pte, pte_addr, g_prot);
555     }
556 
557     return 0;
558 }
559 
560 /*
561  * Radix tree translation is a 2 steps translation process:
562  *
563  * 1. Process-scoped translation:   Guest Eff Addr  -> Guest Real Addr
564  * 2. Partition-scoped translation: Guest Real Addr -> Host Real Addr
565  *
566  *                                  MSR[HV]
567  *              +-------------+----------------+---------------+
568  *              |             |     HV = 0     |     HV = 1    |
569  *              +-------------+----------------+---------------+
570  *              | Relocation  |    Partition   |      No       |
571  *              | = Off       |     Scoped     |  Translation  |
572  *  Relocation  +-------------+----------------+---------------+
573  *              | Relocation  |   Partition &  |    Process    |
574  *              | = On        | Process Scoped |    Scoped     |
575  *              +-------------+----------------+---------------+
576  */
577 static bool ppc_radix64_xlate_impl(PowerPCCPU *cpu, vaddr eaddr,
578                                    MMUAccessType access_type, hwaddr *raddr,
579                                    int *psizep, int *protp, int mmu_idx,
580                                    bool guest_visible)
581 {
582     CPUPPCState *env = &cpu->env;
583     uint64_t lpid, pid;
584     ppc_v3_pate_t pate;
585     int psize, prot;
586     hwaddr g_raddr;
587     bool relocation;
588 
589     assert(!(mmuidx_hv(mmu_idx) && cpu->vhyp));
590 
591     relocation = !mmuidx_real(mmu_idx);
592 
593     /* HV or virtual hypervisor Real Mode Access */
594     if (!relocation && (mmuidx_hv(mmu_idx) || vhyp_flat_addressing(cpu))) {
595         /* In real mode top 4 effective addr bits (mostly) ignored */
596         *raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
597 
598         /* In HV mode, add HRMOR if top EA bit is clear */
599         if (mmuidx_hv(mmu_idx) || !env->has_hv_mode) {
600             if (!(eaddr >> 63)) {
601                 *raddr |= env->spr[SPR_HRMOR];
602            }
603         }
604         *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
605         *psizep = TARGET_PAGE_BITS;
606         return true;
607     }
608 
609     /*
610      * Check UPRT (we avoid the check in real mode to deal with
611      * transitional states during kexec.
612      */
613     if (guest_visible && !ppc64_use_proc_tbl(cpu)) {
614         qemu_log_mask(LOG_GUEST_ERROR,
615                       "LPCR:UPRT not set in radix mode ! LPCR="
616                       TARGET_FMT_lx "\n", env->spr[SPR_LPCR]);
617     }
618 
619     /* Virtual Mode Access - get the fully qualified address */
620     if (!ppc_radix64_get_fully_qualified_addr(&cpu->env, eaddr, &lpid, &pid)) {
621         if (guest_visible) {
622             ppc_radix64_raise_segi(cpu, access_type, eaddr);
623         }
624         return false;
625     }
626 
627     /* Get Partition Table */
628     if (cpu->vhyp) {
629         PPCVirtualHypervisorClass *vhc;
630         vhc = PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
631         if (!vhc->get_pate(cpu->vhyp, cpu, lpid, &pate)) {
632             if (guest_visible) {
633                 ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr,
634                                       DSISR_R_BADCONFIG);
635             }
636             return false;
637         }
638     } else {
639         if (!ppc64_v3_get_pate(cpu, lpid, &pate)) {
640             if (guest_visible) {
641                 ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr,
642                                       DSISR_R_BADCONFIG);
643             }
644             return false;
645         }
646         if (!validate_pate(cpu, lpid, &pate)) {
647             if (guest_visible) {
648                 ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr,
649                                       DSISR_R_BADCONFIG);
650             }
651             return false;
652         }
653     }
654 
655     *psizep = INT_MAX;
656     *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
657 
658     /*
659      * Perform process-scoped translation if relocation enabled.
660      *
661      * - Translates an effective address to a host real address in
662      *   quadrants 0 and 3 when HV=1.
663      *
664      * - Translates an effective address to a guest real address.
665      */
666     if (relocation) {
667         int ret = ppc_radix64_process_scoped_xlate(cpu, access_type, eaddr, pid,
668                                                    pate, &g_raddr, &prot,
669                                                    &psize, mmu_idx, guest_visible);
670         if (ret) {
671             return false;
672         }
673         *psizep = MIN(*psizep, psize);
674         *protp &= prot;
675     } else {
676         g_raddr = eaddr & R_EADDR_MASK;
677     }
678 
679     if (vhyp_flat_addressing(cpu)) {
680         *raddr = g_raddr;
681     } else {
682         /*
683          * Perform partition-scoped translation if !HV or HV access to
684          * quadrants 1 or 2. Translates a guest real address to a host
685          * real address.
686          */
687         if (lpid || !mmuidx_hv(mmu_idx)) {
688             int ret;
689 
690             ret = ppc_radix64_partition_scoped_xlate(cpu, access_type, eaddr,
691                                                      g_raddr, pate, raddr,
692                                                      &prot, &psize, false,
693                                                      mmu_idx, guest_visible);
694             if (ret) {
695                 return false;
696             }
697             *psizep = MIN(*psizep, psize);
698             *protp &= prot;
699         } else {
700             *raddr = g_raddr;
701         }
702     }
703 
704     return true;
705 }
706 
707 bool ppc_radix64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
708                        hwaddr *raddrp, int *psizep, int *protp, int mmu_idx,
709                        bool guest_visible)
710 {
711     bool ret = ppc_radix64_xlate_impl(cpu, eaddr, access_type, raddrp,
712                                       psizep, protp, mmu_idx, guest_visible);
713 
714     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx
715                   " mmu_idx %u (prot %c%c%c) -> 0x%"HWADDR_PRIx"\n",
716                   __func__, access_str(access_type),
717                   eaddr, mmu_idx,
718                   *protp & PAGE_READ ? 'r' : '-',
719                   *protp & PAGE_WRITE ? 'w' : '-',
720                   *protp & PAGE_EXEC ? 'x' : '-',
721                   *raddrp);
722 
723     return ret;
724 }
725