xref: /qemu/target/riscv/cpu_helper.c (revision 29b62a10)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "pmu.h"
25 #include "exec/exec-all.h"
26 #include "instmap.h"
27 #include "tcg/tcg-op.h"
28 #include "trace.h"
29 #include "semihosting/common-semi.h"
30 #include "sysemu/cpu-timers.h"
31 #include "cpu_bits.h"
32 #include "debug.h"
33 
34 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
35 {
36 #ifdef CONFIG_USER_ONLY
37     return 0;
38 #else
39     return env->priv;
40 #endif
41 }
42 
43 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
44                           target_ulong *cs_base, uint32_t *pflags)
45 {
46     CPUState *cs = env_cpu(env);
47     RISCVCPU *cpu = RISCV_CPU(cs);
48 
49     uint32_t flags = 0;
50 
51     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
52     *cs_base = 0;
53 
54     if (riscv_has_ext(env, RVV) || cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) {
55         /*
56          * If env->vl equals to VLMAX, we can use generic vector operation
57          * expanders (GVEC) to accerlate the vector operations.
58          * However, as LMUL could be a fractional number. The maximum
59          * vector size can be operated might be less than 8 bytes,
60          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
61          * only when maxsz >= 8 bytes.
62          */
63         uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype);
64         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
65         uint32_t maxsz = vlmax << sew;
66         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
67                            (maxsz >= 8);
68         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
69         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
70         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
71                     FIELD_EX64(env->vtype, VTYPE, VLMUL));
72         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
73         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
74                     FIELD_EX64(env->vtype, VTYPE, VTA));
75         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
76                     FIELD_EX64(env->vtype, VTYPE, VMA));
77     } else {
78         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
79     }
80 
81 #ifdef CONFIG_USER_ONLY
82     flags |= TB_FLAGS_MSTATUS_FS;
83     flags |= TB_FLAGS_MSTATUS_VS;
84 #else
85     flags |= cpu_mmu_index(env, 0);
86     if (riscv_cpu_fp_enabled(env)) {
87         flags |= env->mstatus & MSTATUS_FS;
88     }
89 
90     if (riscv_cpu_vector_enabled(env)) {
91         flags |= env->mstatus & MSTATUS_VS;
92     }
93 
94     if (riscv_has_ext(env, RVH)) {
95         if (env->priv == PRV_M ||
96             (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
97             (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
98                 get_field(env->hstatus, HSTATUS_HU))) {
99             flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
100         }
101 
102         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
103                            get_field(env->mstatus_hs, MSTATUS_FS));
104 
105         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
106                            get_field(env->mstatus_hs, MSTATUS_VS));
107     }
108     if (riscv_feature(env, RISCV_FEATURE_DEBUG) && !icount_enabled()) {
109         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
110     }
111 #endif
112 
113     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
114     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
115         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
116     }
117     if (env->cur_pmbase != 0) {
118         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
119     }
120 
121     *pflags = flags;
122 }
123 
124 void riscv_cpu_update_mask(CPURISCVState *env)
125 {
126     target_ulong mask = -1, base = 0;
127     /*
128      * TODO: Current RVJ spec does not specify
129      * how the extension interacts with XLEN.
130      */
131 #ifndef CONFIG_USER_ONLY
132     if (riscv_has_ext(env, RVJ)) {
133         switch (env->priv) {
134         case PRV_M:
135             if (env->mmte & M_PM_ENABLE) {
136                 mask = env->mpmmask;
137                 base = env->mpmbase;
138             }
139             break;
140         case PRV_S:
141             if (env->mmte & S_PM_ENABLE) {
142                 mask = env->spmmask;
143                 base = env->spmbase;
144             }
145             break;
146         case PRV_U:
147             if (env->mmte & U_PM_ENABLE) {
148                 mask = env->upmmask;
149                 base = env->upmbase;
150             }
151             break;
152         default:
153             g_assert_not_reached();
154         }
155     }
156 #endif
157     if (env->xl == MXL_RV32) {
158         env->cur_pmmask = mask & UINT32_MAX;
159         env->cur_pmbase = base & UINT32_MAX;
160     } else {
161         env->cur_pmmask = mask;
162         env->cur_pmbase = base;
163     }
164 }
165 
166 #ifndef CONFIG_USER_ONLY
167 
168 /*
169  * The HS-mode is allowed to configure priority only for the
170  * following VS-mode local interrupts:
171  *
172  * 0  (Reserved interrupt, reads as zero)
173  * 1  Supervisor software interrupt
174  * 4  (Reserved interrupt, reads as zero)
175  * 5  Supervisor timer interrupt
176  * 8  (Reserved interrupt, reads as zero)
177  * 13 (Reserved interrupt)
178  * 14 "
179  * 15 "
180  * 16 "
181  * 17 "
182  * 18 "
183  * 19 "
184  * 20 "
185  * 21 "
186  * 22 "
187  * 23 "
188  */
189 
190 static const int hviprio_index2irq[] = {
191     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
192 static const int hviprio_index2rdzero[] = {
193     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
194 
195 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
196 {
197     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
198         return -EINVAL;
199     }
200 
201     if (out_irq) {
202         *out_irq = hviprio_index2irq[index];
203     }
204 
205     if (out_rdzero) {
206         *out_rdzero = hviprio_index2rdzero[index];
207     }
208 
209     return 0;
210 }
211 
212 /*
213  * Default priorities of local interrupts are defined in the
214  * RISC-V Advanced Interrupt Architecture specification.
215  *
216  * ----------------------------------------------------------------
217  *  Default  |
218  *  Priority | Major Interrupt Numbers
219  * ----------------------------------------------------------------
220  *  Highest  | 47, 23, 46, 45, 22, 44,
221  *           | 43, 21, 42, 41, 20, 40
222  *           |
223  *           | 11 (0b),  3 (03),  7 (07)
224  *           |  9 (09),  1 (01),  5 (05)
225  *           | 12 (0c)
226  *           | 10 (0a),  2 (02),  6 (06)
227  *           |
228  *           | 39, 19, 38, 37, 18, 36,
229  *  Lowest   | 35, 17, 34, 33, 16, 32
230  * ----------------------------------------------------------------
231  */
232 static const uint8_t default_iprio[64] = {
233  /* Custom interrupts 48 to 63 */
234  [63] = IPRIO_MMAXIPRIO,
235  [62] = IPRIO_MMAXIPRIO,
236  [61] = IPRIO_MMAXIPRIO,
237  [60] = IPRIO_MMAXIPRIO,
238  [59] = IPRIO_MMAXIPRIO,
239  [58] = IPRIO_MMAXIPRIO,
240  [57] = IPRIO_MMAXIPRIO,
241  [56] = IPRIO_MMAXIPRIO,
242  [55] = IPRIO_MMAXIPRIO,
243  [54] = IPRIO_MMAXIPRIO,
244  [53] = IPRIO_MMAXIPRIO,
245  [52] = IPRIO_MMAXIPRIO,
246  [51] = IPRIO_MMAXIPRIO,
247  [50] = IPRIO_MMAXIPRIO,
248  [49] = IPRIO_MMAXIPRIO,
249  [48] = IPRIO_MMAXIPRIO,
250 
251  /* Custom interrupts 24 to 31 */
252  [31] = IPRIO_MMAXIPRIO,
253  [30] = IPRIO_MMAXIPRIO,
254  [29] = IPRIO_MMAXIPRIO,
255  [28] = IPRIO_MMAXIPRIO,
256  [27] = IPRIO_MMAXIPRIO,
257  [26] = IPRIO_MMAXIPRIO,
258  [25] = IPRIO_MMAXIPRIO,
259  [24] = IPRIO_MMAXIPRIO,
260 
261  [47] = IPRIO_DEFAULT_UPPER,
262  [23] = IPRIO_DEFAULT_UPPER + 1,
263  [46] = IPRIO_DEFAULT_UPPER + 2,
264  [45] = IPRIO_DEFAULT_UPPER + 3,
265  [22] = IPRIO_DEFAULT_UPPER + 4,
266  [44] = IPRIO_DEFAULT_UPPER + 5,
267 
268  [43] = IPRIO_DEFAULT_UPPER + 6,
269  [21] = IPRIO_DEFAULT_UPPER + 7,
270  [42] = IPRIO_DEFAULT_UPPER + 8,
271  [41] = IPRIO_DEFAULT_UPPER + 9,
272  [20] = IPRIO_DEFAULT_UPPER + 10,
273  [40] = IPRIO_DEFAULT_UPPER + 11,
274 
275  [11] = IPRIO_DEFAULT_M,
276  [3]  = IPRIO_DEFAULT_M + 1,
277  [7]  = IPRIO_DEFAULT_M + 2,
278 
279  [9]  = IPRIO_DEFAULT_S,
280  [1]  = IPRIO_DEFAULT_S + 1,
281  [5]  = IPRIO_DEFAULT_S + 2,
282 
283  [12] = IPRIO_DEFAULT_SGEXT,
284 
285  [10] = IPRIO_DEFAULT_VS,
286  [2]  = IPRIO_DEFAULT_VS + 1,
287  [6]  = IPRIO_DEFAULT_VS + 2,
288 
289  [39] = IPRIO_DEFAULT_LOWER,
290  [19] = IPRIO_DEFAULT_LOWER + 1,
291  [38] = IPRIO_DEFAULT_LOWER + 2,
292  [37] = IPRIO_DEFAULT_LOWER + 3,
293  [18] = IPRIO_DEFAULT_LOWER + 4,
294  [36] = IPRIO_DEFAULT_LOWER + 5,
295 
296  [35] = IPRIO_DEFAULT_LOWER + 6,
297  [17] = IPRIO_DEFAULT_LOWER + 7,
298  [34] = IPRIO_DEFAULT_LOWER + 8,
299  [33] = IPRIO_DEFAULT_LOWER + 9,
300  [16] = IPRIO_DEFAULT_LOWER + 10,
301  [32] = IPRIO_DEFAULT_LOWER + 11,
302 };
303 
304 uint8_t riscv_cpu_default_priority(int irq)
305 {
306     if (irq < 0 || irq > 63) {
307         return IPRIO_MMAXIPRIO;
308     }
309 
310     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
311 };
312 
313 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
314                                     int extirq, unsigned int extirq_def_prio,
315                                     uint64_t pending, uint8_t *iprio)
316 {
317     RISCVCPU *cpu = env_archcpu(env);
318     int irq, best_irq = RISCV_EXCP_NONE;
319     unsigned int prio, best_prio = UINT_MAX;
320 
321     if (!pending) {
322         return RISCV_EXCP_NONE;
323     }
324 
325     irq = ctz64(pending);
326     if (!((extirq == IRQ_M_EXT) ? cpu->cfg.ext_smaia : cpu->cfg.ext_ssaia)) {
327         return irq;
328     }
329 
330     pending = pending >> irq;
331     while (pending) {
332         prio = iprio[irq];
333         if (!prio) {
334             if (irq == extirq) {
335                 prio = extirq_def_prio;
336             } else {
337                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
338                        1 : IPRIO_MMAXIPRIO;
339             }
340         }
341         if ((pending & 0x1) && (prio <= best_prio)) {
342             best_irq = irq;
343             best_prio = prio;
344         }
345         irq++;
346         pending = pending >> 1;
347     }
348 
349     return best_irq;
350 }
351 
352 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
353 {
354     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
355     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
356     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
357 
358     return (env->mip | vsgein | vstip) & env->mie;
359 }
360 
361 int riscv_cpu_mirq_pending(CPURISCVState *env)
362 {
363     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
364                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
365 
366     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
367                                     irqs, env->miprio);
368 }
369 
370 int riscv_cpu_sirq_pending(CPURISCVState *env)
371 {
372     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
373                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
374 
375     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
376                                     irqs, env->siprio);
377 }
378 
379 int riscv_cpu_vsirq_pending(CPURISCVState *env)
380 {
381     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
382                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
383 
384     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
385                                     irqs >> 1, env->hviprio);
386 }
387 
388 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
389 {
390     int virq;
391     uint64_t irqs, pending, mie, hsie, vsie;
392 
393     /* Determine interrupt enable state of all privilege modes */
394     if (riscv_cpu_virt_enabled(env)) {
395         mie = 1;
396         hsie = 1;
397         vsie = (env->priv < PRV_S) ||
398                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
399     } else {
400         mie = (env->priv < PRV_M) ||
401               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
402         hsie = (env->priv < PRV_S) ||
403                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
404         vsie = 0;
405     }
406 
407     /* Determine all pending interrupts */
408     pending = riscv_cpu_all_pending(env);
409 
410     /* Check M-mode interrupts */
411     irqs = pending & ~env->mideleg & -mie;
412     if (irqs) {
413         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
414                                         irqs, env->miprio);
415     }
416 
417     /* Check HS-mode interrupts */
418     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
419     if (irqs) {
420         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
421                                         irqs, env->siprio);
422     }
423 
424     /* Check VS-mode interrupts */
425     irqs = pending & env->mideleg & env->hideleg & -vsie;
426     if (irqs) {
427         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
428                                         irqs >> 1, env->hviprio);
429         return (virq <= 0) ? virq : virq + 1;
430     }
431 
432     /* Indicate no pending interrupt */
433     return RISCV_EXCP_NONE;
434 }
435 
436 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
437 {
438     if (interrupt_request & CPU_INTERRUPT_HARD) {
439         RISCVCPU *cpu = RISCV_CPU(cs);
440         CPURISCVState *env = &cpu->env;
441         int interruptno = riscv_cpu_local_irq_pending(env);
442         if (interruptno >= 0) {
443             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
444             riscv_cpu_do_interrupt(cs);
445             return true;
446         }
447     }
448     return false;
449 }
450 
451 /* Return true is floating point support is currently enabled */
452 bool riscv_cpu_fp_enabled(CPURISCVState *env)
453 {
454     if (env->mstatus & MSTATUS_FS) {
455         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
456             return false;
457         }
458         return true;
459     }
460 
461     return false;
462 }
463 
464 /* Return true is vector support is currently enabled */
465 bool riscv_cpu_vector_enabled(CPURISCVState *env)
466 {
467     if (env->mstatus & MSTATUS_VS) {
468         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) {
469             return false;
470         }
471         return true;
472     }
473 
474     return false;
475 }
476 
477 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
478 {
479     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
480                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
481                             MSTATUS64_UXL | MSTATUS_VS;
482 
483     if (riscv_has_ext(env, RVF)) {
484         mstatus_mask |= MSTATUS_FS;
485     }
486     bool current_virt = riscv_cpu_virt_enabled(env);
487 
488     g_assert(riscv_has_ext(env, RVH));
489 
490     if (current_virt) {
491         /* Current V=1 and we are about to change to V=0 */
492         env->vsstatus = env->mstatus & mstatus_mask;
493         env->mstatus &= ~mstatus_mask;
494         env->mstatus |= env->mstatus_hs;
495 
496         env->vstvec = env->stvec;
497         env->stvec = env->stvec_hs;
498 
499         env->vsscratch = env->sscratch;
500         env->sscratch = env->sscratch_hs;
501 
502         env->vsepc = env->sepc;
503         env->sepc = env->sepc_hs;
504 
505         env->vscause = env->scause;
506         env->scause = env->scause_hs;
507 
508         env->vstval = env->stval;
509         env->stval = env->stval_hs;
510 
511         env->vsatp = env->satp;
512         env->satp = env->satp_hs;
513     } else {
514         /* Current V=0 and we are about to change to V=1 */
515         env->mstatus_hs = env->mstatus & mstatus_mask;
516         env->mstatus &= ~mstatus_mask;
517         env->mstatus |= env->vsstatus;
518 
519         env->stvec_hs = env->stvec;
520         env->stvec = env->vstvec;
521 
522         env->sscratch_hs = env->sscratch;
523         env->sscratch = env->vsscratch;
524 
525         env->sepc_hs = env->sepc;
526         env->sepc = env->vsepc;
527 
528         env->scause_hs = env->scause;
529         env->scause = env->vscause;
530 
531         env->stval_hs = env->stval;
532         env->stval = env->vstval;
533 
534         env->satp_hs = env->satp;
535         env->satp = env->vsatp;
536     }
537 }
538 
539 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
540 {
541     if (!riscv_has_ext(env, RVH)) {
542         return 0;
543     }
544 
545     return env->geilen;
546 }
547 
548 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
549 {
550     if (!riscv_has_ext(env, RVH)) {
551         return;
552     }
553 
554     if (geilen > (TARGET_LONG_BITS - 1)) {
555         return;
556     }
557 
558     env->geilen = geilen;
559 }
560 
561 bool riscv_cpu_virt_enabled(CPURISCVState *env)
562 {
563     if (!riscv_has_ext(env, RVH)) {
564         return false;
565     }
566 
567     return get_field(env->virt, VIRT_ONOFF);
568 }
569 
570 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
571 {
572     if (!riscv_has_ext(env, RVH)) {
573         return;
574     }
575 
576     /* Flush the TLB on all virt mode changes. */
577     if (get_field(env->virt, VIRT_ONOFF) != enable) {
578         tlb_flush(env_cpu(env));
579     }
580 
581     env->virt = set_field(env->virt, VIRT_ONOFF, enable);
582 
583     if (enable) {
584         /*
585          * The guest external interrupts from an interrupt controller are
586          * delivered only when the Guest/VM is running (i.e. V=1). This means
587          * any guest external interrupt which is triggered while the Guest/VM
588          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
589          * with sluggish response to serial console input and other I/O events.
590          *
591          * To solve this, we check and inject interrupt after setting V=1.
592          */
593         riscv_cpu_update_mip(env_archcpu(env), 0, 0);
594     }
595 }
596 
597 bool riscv_cpu_two_stage_lookup(int mmu_idx)
598 {
599     return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
600 }
601 
602 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
603 {
604     CPURISCVState *env = &cpu->env;
605     if (env->miclaim & interrupts) {
606         return -1;
607     } else {
608         env->miclaim |= interrupts;
609         return 0;
610     }
611 }
612 
613 uint64_t riscv_cpu_update_mip(RISCVCPU *cpu, uint64_t mask, uint64_t value)
614 {
615     CPURISCVState *env = &cpu->env;
616     CPUState *cs = CPU(cpu);
617     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
618 
619     if (riscv_cpu_virt_enabled(env)) {
620         gein = get_field(env->hstatus, HSTATUS_VGEIN);
621         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
622     }
623 
624     /* No need to update mip for VSTIP */
625     mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask;
626     vstip = env->vstime_irq ? MIP_VSTIP : 0;
627 
628     QEMU_IOTHREAD_LOCK_GUARD();
629 
630     env->mip = (env->mip & ~mask) | (value & mask);
631 
632     if (env->mip | vsgein | vstip) {
633         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
634     } else {
635         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
636     }
637 
638     return old;
639 }
640 
641 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
642                              void *arg)
643 {
644     env->rdtime_fn = fn;
645     env->rdtime_fn_arg = arg;
646 }
647 
648 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
649                                    int (*rmw_fn)(void *arg,
650                                                  target_ulong reg,
651                                                  target_ulong *val,
652                                                  target_ulong new_val,
653                                                  target_ulong write_mask),
654                                    void *rmw_fn_arg)
655 {
656     if (priv <= PRV_M) {
657         env->aia_ireg_rmw_fn[priv] = rmw_fn;
658         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
659     }
660 }
661 
662 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
663 {
664     if (newpriv > PRV_M) {
665         g_assert_not_reached();
666     }
667     if (newpriv == PRV_H) {
668         newpriv = PRV_U;
669     }
670     if (icount_enabled() && newpriv != env->priv) {
671         riscv_itrigger_update_priv(env);
672     }
673     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
674     env->priv = newpriv;
675     env->xl = cpu_recompute_xl(env);
676     riscv_cpu_update_mask(env);
677 
678     /*
679      * Clear the load reservation - otherwise a reservation placed in one
680      * context/process can be used by another, resulting in an SC succeeding
681      * incorrectly. Version 2.2 of the ISA specification explicitly requires
682      * this behaviour, while later revisions say that the kernel "should" use
683      * an SC instruction to force the yielding of a load reservation on a
684      * preemptive context switch. As a result, do both.
685      */
686     env->load_res = -1;
687 }
688 
689 /*
690  * get_physical_address_pmp - check PMP permission for this physical address
691  *
692  * Match the PMP region and check permission for this physical address and it's
693  * TLB page. Returns 0 if the permission checking was successful
694  *
695  * @env: CPURISCVState
696  * @prot: The returned protection attributes
697  * @tlb_size: TLB page size containing addr. It could be modified after PMP
698  *            permission checking. NULL if not set TLB page for addr.
699  * @addr: The physical address to be checked permission
700  * @access_type: The type of MMU access
701  * @mode: Indicates current privilege level.
702  */
703 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
704                                     target_ulong *tlb_size, hwaddr addr,
705                                     int size, MMUAccessType access_type,
706                                     int mode)
707 {
708     pmp_priv_t pmp_priv;
709     int pmp_index = -1;
710 
711     if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
712         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
713         return TRANSLATE_SUCCESS;
714     }
715 
716     pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
717                                    &pmp_priv, mode);
718     if (pmp_index < 0) {
719         *prot = 0;
720         return TRANSLATE_PMP_FAIL;
721     }
722 
723     *prot = pmp_priv_to_page_prot(pmp_priv);
724     if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
725         target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
726         target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
727 
728         *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
729     }
730 
731     return TRANSLATE_SUCCESS;
732 }
733 
734 /* get_physical_address - get the physical address for this virtual address
735  *
736  * Do a page table walk to obtain the physical address corresponding to a
737  * virtual address. Returns 0 if the translation was successful
738  *
739  * Adapted from Spike's mmu_t::translate and mmu_t::walk
740  *
741  * @env: CPURISCVState
742  * @physical: This will be set to the calculated physical address
743  * @prot: The returned protection attributes
744  * @addr: The virtual address to be translated
745  * @fault_pte_addr: If not NULL, this will be set to fault pte address
746  *                  when a error occurs on pte address translation.
747  *                  This will already be shifted to match htval.
748  * @access_type: The type of MMU access
749  * @mmu_idx: Indicates current privilege level
750  * @first_stage: Are we in first stage translation?
751  *               Second stage is used for hypervisor guest translation
752  * @two_stage: Are we going to perform two stage translation
753  * @is_debug: Is this access from a debugger or the monitor?
754  */
755 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
756                                 int *prot, target_ulong addr,
757                                 target_ulong *fault_pte_addr,
758                                 int access_type, int mmu_idx,
759                                 bool first_stage, bool two_stage,
760                                 bool is_debug)
761 {
762     /* NOTE: the env->pc value visible here will not be
763      * correct, but the value visible to the exception handler
764      * (riscv_cpu_do_interrupt) is correct */
765     MemTxResult res;
766     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
767     int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
768     bool use_background = false;
769     hwaddr ppn;
770     RISCVCPU *cpu = env_archcpu(env);
771     int napot_bits = 0;
772     target_ulong napot_mask;
773 
774     /*
775      * Check if we should use the background registers for the two
776      * stage translation. We don't need to check if we actually need
777      * two stage translation as that happened before this function
778      * was called. Background registers will be used if the guest has
779      * forced a two stage translation to be on (in HS or M mode).
780      */
781     if (!riscv_cpu_virt_enabled(env) && two_stage) {
782         use_background = true;
783     }
784 
785     /* MPRV does not affect the virtual-machine load/store
786        instructions, HLV, HLVX, and HSV. */
787     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
788         mode = get_field(env->hstatus, HSTATUS_SPVP);
789     } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
790         if (get_field(env->mstatus, MSTATUS_MPRV)) {
791             mode = get_field(env->mstatus, MSTATUS_MPP);
792         }
793     }
794 
795     if (first_stage == false) {
796         /* We are in stage 2 translation, this is similar to stage 1. */
797         /* Stage 2 is always taken as U-mode */
798         mode = PRV_U;
799     }
800 
801     if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
802         *physical = addr;
803         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
804         return TRANSLATE_SUCCESS;
805     }
806 
807     *prot = 0;
808 
809     hwaddr base;
810     int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
811 
812     if (first_stage == true) {
813         mxr = get_field(env->mstatus, MSTATUS_MXR);
814     } else {
815         mxr = get_field(env->vsstatus, MSTATUS_MXR);
816     }
817 
818     if (first_stage == true) {
819         if (use_background) {
820             if (riscv_cpu_mxl(env) == MXL_RV32) {
821                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
822                 vm = get_field(env->vsatp, SATP32_MODE);
823             } else {
824                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
825                 vm = get_field(env->vsatp, SATP64_MODE);
826             }
827         } else {
828             if (riscv_cpu_mxl(env) == MXL_RV32) {
829                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
830                 vm = get_field(env->satp, SATP32_MODE);
831             } else {
832                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
833                 vm = get_field(env->satp, SATP64_MODE);
834             }
835         }
836         widened = 0;
837     } else {
838         if (riscv_cpu_mxl(env) == MXL_RV32) {
839             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
840             vm = get_field(env->hgatp, SATP32_MODE);
841         } else {
842             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
843             vm = get_field(env->hgatp, SATP64_MODE);
844         }
845         widened = 2;
846     }
847     /* status.SUM will be ignored if execute on background */
848     sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
849     switch (vm) {
850     case VM_1_10_SV32:
851       levels = 2; ptidxbits = 10; ptesize = 4; break;
852     case VM_1_10_SV39:
853       levels = 3; ptidxbits = 9; ptesize = 8; break;
854     case VM_1_10_SV48:
855       levels = 4; ptidxbits = 9; ptesize = 8; break;
856     case VM_1_10_SV57:
857       levels = 5; ptidxbits = 9; ptesize = 8; break;
858     case VM_1_10_MBARE:
859         *physical = addr;
860         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
861         return TRANSLATE_SUCCESS;
862     default:
863       g_assert_not_reached();
864     }
865 
866     CPUState *cs = env_cpu(env);
867     int va_bits = PGSHIFT + levels * ptidxbits + widened;
868     target_ulong mask, masked_msbs;
869 
870     if (TARGET_LONG_BITS > (va_bits - 1)) {
871         mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
872     } else {
873         mask = 0;
874     }
875     masked_msbs = (addr >> (va_bits - 1)) & mask;
876 
877     if (masked_msbs != 0 && masked_msbs != mask) {
878         return TRANSLATE_FAIL;
879     }
880 
881     int ptshift = (levels - 1) * ptidxbits;
882     int i;
883 
884 #if !TCG_OVERSIZED_GUEST
885 restart:
886 #endif
887     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
888         target_ulong idx;
889         if (i == 0) {
890             idx = (addr >> (PGSHIFT + ptshift)) &
891                            ((1 << (ptidxbits + widened)) - 1);
892         } else {
893             idx = (addr >> (PGSHIFT + ptshift)) &
894                            ((1 << ptidxbits) - 1);
895         }
896 
897         /* check that physical address of PTE is legal */
898         hwaddr pte_addr;
899 
900         if (two_stage && first_stage) {
901             int vbase_prot;
902             hwaddr vbase;
903 
904             /* Do the second stage translation on the base PTE address. */
905             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
906                                                  base, NULL, MMU_DATA_LOAD,
907                                                  mmu_idx, false, true,
908                                                  is_debug);
909 
910             if (vbase_ret != TRANSLATE_SUCCESS) {
911                 if (fault_pte_addr) {
912                     *fault_pte_addr = (base + idx * ptesize) >> 2;
913                 }
914                 return TRANSLATE_G_STAGE_FAIL;
915             }
916 
917             pte_addr = vbase + idx * ptesize;
918         } else {
919             pte_addr = base + idx * ptesize;
920         }
921 
922         int pmp_prot;
923         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
924                                                sizeof(target_ulong),
925                                                MMU_DATA_LOAD, PRV_S);
926         if (pmp_ret != TRANSLATE_SUCCESS) {
927             return TRANSLATE_PMP_FAIL;
928         }
929 
930         target_ulong pte;
931         if (riscv_cpu_mxl(env) == MXL_RV32) {
932             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
933         } else {
934             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
935         }
936 
937         if (res != MEMTX_OK) {
938             return TRANSLATE_FAIL;
939         }
940 
941         if (riscv_cpu_sxl(env) == MXL_RV32) {
942             ppn = pte >> PTE_PPN_SHIFT;
943         } else if (cpu->cfg.ext_svpbmt || cpu->cfg.ext_svnapot) {
944             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
945         } else {
946             ppn = pte >> PTE_PPN_SHIFT;
947             if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
948                 return TRANSLATE_FAIL;
949             }
950         }
951 
952         if (!(pte & PTE_V)) {
953             /* Invalid PTE */
954             return TRANSLATE_FAIL;
955         } else if (!cpu->cfg.ext_svpbmt && (pte & PTE_PBMT)) {
956             return TRANSLATE_FAIL;
957         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
958             /* Inner PTE, continue walking */
959             if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
960                 return TRANSLATE_FAIL;
961             }
962             base = ppn << PGSHIFT;
963         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
964             /* Reserved leaf PTE flags: PTE_W */
965             return TRANSLATE_FAIL;
966         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
967             /* Reserved leaf PTE flags: PTE_W + PTE_X */
968             return TRANSLATE_FAIL;
969         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
970                    (!sum || access_type == MMU_INST_FETCH))) {
971             /* User PTE flags when not U mode and mstatus.SUM is not set,
972                or the access type is an instruction fetch */
973             return TRANSLATE_FAIL;
974         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
975             /* Supervisor PTE flags when not S mode */
976             return TRANSLATE_FAIL;
977         } else if (ppn & ((1ULL << ptshift) - 1)) {
978             /* Misaligned PPN */
979             return TRANSLATE_FAIL;
980         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
981                    ((pte & PTE_X) && mxr))) {
982             /* Read access check failed */
983             return TRANSLATE_FAIL;
984         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
985             /* Write access check failed */
986             return TRANSLATE_FAIL;
987         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
988             /* Fetch access check failed */
989             return TRANSLATE_FAIL;
990         } else {
991             /* if necessary, set accessed and dirty bits. */
992             target_ulong updated_pte = pte | PTE_A |
993                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
994 
995             /* Page table updates need to be atomic with MTTCG enabled */
996             if (updated_pte != pte) {
997                 /*
998                  * - if accessed or dirty bits need updating, and the PTE is
999                  *   in RAM, then we do so atomically with a compare and swap.
1000                  * - if the PTE is in IO space or ROM, then it can't be updated
1001                  *   and we return TRANSLATE_FAIL.
1002                  * - if the PTE changed by the time we went to update it, then
1003                  *   it is no longer valid and we must re-walk the page table.
1004                  */
1005                 MemoryRegion *mr;
1006                 hwaddr l = sizeof(target_ulong), addr1;
1007                 mr = address_space_translate(cs->as, pte_addr,
1008                     &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
1009                 if (memory_region_is_ram(mr)) {
1010                     target_ulong *pte_pa =
1011                         qemu_map_ram_ptr(mr->ram_block, addr1);
1012 #if TCG_OVERSIZED_GUEST
1013                     /* MTTCG is not enabled on oversized TCG guests so
1014                      * page table updates do not need to be atomic */
1015                     *pte_pa = pte = updated_pte;
1016 #else
1017                     target_ulong old_pte =
1018                         qatomic_cmpxchg(pte_pa, pte, updated_pte);
1019                     if (old_pte != pte) {
1020                         goto restart;
1021                     } else {
1022                         pte = updated_pte;
1023                     }
1024 #endif
1025                 } else {
1026                     /* misconfigured PTE in ROM (AD bits are not preset) or
1027                      * PTE is in IO space and can't be updated atomically */
1028                     return TRANSLATE_FAIL;
1029                 }
1030             }
1031 
1032             /* for superpage mappings, make a fake leaf PTE for the TLB's
1033                benefit. */
1034             target_ulong vpn = addr >> PGSHIFT;
1035 
1036             if (cpu->cfg.ext_svnapot && (pte & PTE_N)) {
1037                 napot_bits = ctzl(ppn) + 1;
1038                 if ((i != (levels - 1)) || (napot_bits != 4)) {
1039                     return TRANSLATE_FAIL;
1040                 }
1041             }
1042 
1043             napot_mask = (1 << napot_bits) - 1;
1044             *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1045                           (vpn & (((target_ulong)1 << ptshift) - 1))
1046                          ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1047 
1048             /* set permissions on the TLB entry */
1049             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1050                 *prot |= PAGE_READ;
1051             }
1052             if ((pte & PTE_X)) {
1053                 *prot |= PAGE_EXEC;
1054             }
1055             /* add write permission on stores or if the page is already dirty,
1056                so that we TLB miss on later writes to update the dirty bit */
1057             if ((pte & PTE_W) &&
1058                     (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1059                 *prot |= PAGE_WRITE;
1060             }
1061             return TRANSLATE_SUCCESS;
1062         }
1063     }
1064     return TRANSLATE_FAIL;
1065 }
1066 
1067 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1068                                 MMUAccessType access_type, bool pmp_violation,
1069                                 bool first_stage, bool two_stage,
1070                                 bool two_stage_indirect)
1071 {
1072     CPUState *cs = env_cpu(env);
1073     int page_fault_exceptions, vm;
1074     uint64_t stap_mode;
1075 
1076     if (riscv_cpu_mxl(env) == MXL_RV32) {
1077         stap_mode = SATP32_MODE;
1078     } else {
1079         stap_mode = SATP64_MODE;
1080     }
1081 
1082     if (first_stage) {
1083         vm = get_field(env->satp, stap_mode);
1084     } else {
1085         vm = get_field(env->hgatp, stap_mode);
1086     }
1087 
1088     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1089 
1090     switch (access_type) {
1091     case MMU_INST_FETCH:
1092         if (riscv_cpu_virt_enabled(env) && !first_stage) {
1093             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1094         } else {
1095             cs->exception_index = page_fault_exceptions ?
1096                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1097         }
1098         break;
1099     case MMU_DATA_LOAD:
1100         if (two_stage && !first_stage) {
1101             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1102         } else {
1103             cs->exception_index = page_fault_exceptions ?
1104                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1105         }
1106         break;
1107     case MMU_DATA_STORE:
1108         if (two_stage && !first_stage) {
1109             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1110         } else {
1111             cs->exception_index = page_fault_exceptions ?
1112                 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1113         }
1114         break;
1115     default:
1116         g_assert_not_reached();
1117     }
1118     env->badaddr = address;
1119     env->two_stage_lookup = two_stage;
1120     env->two_stage_indirect_lookup = two_stage_indirect;
1121 }
1122 
1123 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1124 {
1125     RISCVCPU *cpu = RISCV_CPU(cs);
1126     CPURISCVState *env = &cpu->env;
1127     hwaddr phys_addr;
1128     int prot;
1129     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1130 
1131     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1132                              true, riscv_cpu_virt_enabled(env), true)) {
1133         return -1;
1134     }
1135 
1136     if (riscv_cpu_virt_enabled(env)) {
1137         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1138                                  0, mmu_idx, false, true, true)) {
1139             return -1;
1140         }
1141     }
1142 
1143     return phys_addr & TARGET_PAGE_MASK;
1144 }
1145 
1146 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1147                                      vaddr addr, unsigned size,
1148                                      MMUAccessType access_type,
1149                                      int mmu_idx, MemTxAttrs attrs,
1150                                      MemTxResult response, uintptr_t retaddr)
1151 {
1152     RISCVCPU *cpu = RISCV_CPU(cs);
1153     CPURISCVState *env = &cpu->env;
1154 
1155     if (access_type == MMU_DATA_STORE) {
1156         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1157     } else if (access_type == MMU_DATA_LOAD) {
1158         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1159     } else {
1160         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1161     }
1162 
1163     env->badaddr = addr;
1164     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1165                             riscv_cpu_two_stage_lookup(mmu_idx);
1166     env->two_stage_indirect_lookup = false;
1167     cpu_loop_exit_restore(cs, retaddr);
1168 }
1169 
1170 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1171                                    MMUAccessType access_type, int mmu_idx,
1172                                    uintptr_t retaddr)
1173 {
1174     RISCVCPU *cpu = RISCV_CPU(cs);
1175     CPURISCVState *env = &cpu->env;
1176     switch (access_type) {
1177     case MMU_INST_FETCH:
1178         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1179         break;
1180     case MMU_DATA_LOAD:
1181         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1182         break;
1183     case MMU_DATA_STORE:
1184         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1185         break;
1186     default:
1187         g_assert_not_reached();
1188     }
1189     env->badaddr = addr;
1190     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1191                             riscv_cpu_two_stage_lookup(mmu_idx);
1192     env->two_stage_indirect_lookup = false;
1193     cpu_loop_exit_restore(cs, retaddr);
1194 }
1195 
1196 
1197 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1198 {
1199     enum riscv_pmu_event_idx pmu_event_type;
1200 
1201     switch (access_type) {
1202     case MMU_INST_FETCH:
1203         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1204         break;
1205     case MMU_DATA_LOAD:
1206         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1207         break;
1208     case MMU_DATA_STORE:
1209         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1210         break;
1211     default:
1212         return;
1213     }
1214 
1215     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1216 }
1217 
1218 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1219                         MMUAccessType access_type, int mmu_idx,
1220                         bool probe, uintptr_t retaddr)
1221 {
1222     RISCVCPU *cpu = RISCV_CPU(cs);
1223     CPURISCVState *env = &cpu->env;
1224     vaddr im_address;
1225     hwaddr pa = 0;
1226     int prot, prot2, prot_pmp;
1227     bool pmp_violation = false;
1228     bool first_stage_error = true;
1229     bool two_stage_lookup = false;
1230     bool two_stage_indirect_error = false;
1231     int ret = TRANSLATE_FAIL;
1232     int mode = mmu_idx;
1233     /* default TLB page size */
1234     target_ulong tlb_size = TARGET_PAGE_SIZE;
1235 
1236     env->guest_phys_fault_addr = 0;
1237 
1238     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1239                   __func__, address, access_type, mmu_idx);
1240 
1241     /* MPRV does not affect the virtual-machine load/store
1242        instructions, HLV, HLVX, and HSV. */
1243     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1244         mode = get_field(env->hstatus, HSTATUS_SPVP);
1245     } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1246                get_field(env->mstatus, MSTATUS_MPRV)) {
1247         mode = get_field(env->mstatus, MSTATUS_MPP);
1248         if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1249             two_stage_lookup = true;
1250         }
1251     }
1252 
1253     pmu_tlb_fill_incr_ctr(cpu, access_type);
1254     if (riscv_cpu_virt_enabled(env) ||
1255         ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1256          access_type != MMU_INST_FETCH)) {
1257         /* Two stage lookup */
1258         ret = get_physical_address(env, &pa, &prot, address,
1259                                    &env->guest_phys_fault_addr, access_type,
1260                                    mmu_idx, true, true, false);
1261 
1262         /*
1263          * A G-stage exception may be triggered during two state lookup.
1264          * And the env->guest_phys_fault_addr has already been set in
1265          * get_physical_address().
1266          */
1267         if (ret == TRANSLATE_G_STAGE_FAIL) {
1268             first_stage_error = false;
1269             two_stage_indirect_error = true;
1270             access_type = MMU_DATA_LOAD;
1271         }
1272 
1273         qemu_log_mask(CPU_LOG_MMU,
1274                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1275                       HWADDR_FMT_plx " prot %d\n",
1276                       __func__, address, ret, pa, prot);
1277 
1278         if (ret == TRANSLATE_SUCCESS) {
1279             /* Second stage lookup */
1280             im_address = pa;
1281 
1282             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1283                                        access_type, mmu_idx, false, true,
1284                                        false);
1285 
1286             qemu_log_mask(CPU_LOG_MMU,
1287                     "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
1288                     HWADDR_FMT_plx " prot %d\n",
1289                     __func__, im_address, ret, pa, prot2);
1290 
1291             prot &= prot2;
1292 
1293             if (ret == TRANSLATE_SUCCESS) {
1294                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1295                                                size, access_type, mode);
1296 
1297                 qemu_log_mask(CPU_LOG_MMU,
1298                               "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1299                               " %d tlb_size " TARGET_FMT_lu "\n",
1300                               __func__, pa, ret, prot_pmp, tlb_size);
1301 
1302                 prot &= prot_pmp;
1303             }
1304 
1305             if (ret != TRANSLATE_SUCCESS) {
1306                 /*
1307                  * Guest physical address translation failed, this is a HS
1308                  * level exception
1309                  */
1310                 first_stage_error = false;
1311                 env->guest_phys_fault_addr = (im_address |
1312                                               (address &
1313                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1314             }
1315         }
1316     } else {
1317         /* Single stage lookup */
1318         ret = get_physical_address(env, &pa, &prot, address, NULL,
1319                                    access_type, mmu_idx, true, false, false);
1320 
1321         qemu_log_mask(CPU_LOG_MMU,
1322                       "%s address=%" VADDR_PRIx " ret %d physical "
1323                       HWADDR_FMT_plx " prot %d\n",
1324                       __func__, address, ret, pa, prot);
1325 
1326         if (ret == TRANSLATE_SUCCESS) {
1327             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1328                                            size, access_type, mode);
1329 
1330             qemu_log_mask(CPU_LOG_MMU,
1331                           "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1332                           " %d tlb_size " TARGET_FMT_lu "\n",
1333                           __func__, pa, ret, prot_pmp, tlb_size);
1334 
1335             prot &= prot_pmp;
1336         }
1337     }
1338 
1339     if (ret == TRANSLATE_PMP_FAIL) {
1340         pmp_violation = true;
1341     }
1342 
1343     if (ret == TRANSLATE_SUCCESS) {
1344         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1345                      prot, mmu_idx, tlb_size);
1346         return true;
1347     } else if (probe) {
1348         return false;
1349     } else {
1350         raise_mmu_exception(env, address, access_type, pmp_violation,
1351                             first_stage_error,
1352                             riscv_cpu_virt_enabled(env) ||
1353                                 riscv_cpu_two_stage_lookup(mmu_idx),
1354                             two_stage_indirect_error);
1355         cpu_loop_exit_restore(cs, retaddr);
1356     }
1357 
1358     return true;
1359 }
1360 
1361 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1362                                            target_ulong insn,
1363                                            target_ulong taddr)
1364 {
1365     target_ulong xinsn = 0;
1366     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1367 
1368     /*
1369      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1370      * be uncompressed. The Quadrant 1 of RVC instruction space need
1371      * not be transformed because these instructions won't generate
1372      * any load/store trap.
1373      */
1374 
1375     if ((insn & 0x3) != 0x3) {
1376         /* Transform 16bit instruction into 32bit instruction */
1377         switch (GET_C_OP(insn)) {
1378         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1379             switch (GET_C_FUNC(insn)) {
1380             case OPC_RISC_C_FUNC_FLD_LQ:
1381                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1382                     xinsn = OPC_RISC_FLD;
1383                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1384                     access_rs1 = GET_C_RS1S(insn);
1385                     access_imm = GET_C_LD_IMM(insn);
1386                     access_size = 8;
1387                 }
1388                 break;
1389             case OPC_RISC_C_FUNC_LW: /* C.LW */
1390                 xinsn = OPC_RISC_LW;
1391                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1392                 access_rs1 = GET_C_RS1S(insn);
1393                 access_imm = GET_C_LW_IMM(insn);
1394                 access_size = 4;
1395                 break;
1396             case OPC_RISC_C_FUNC_FLW_LD:
1397                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1398                     xinsn = OPC_RISC_FLW;
1399                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1400                     access_rs1 = GET_C_RS1S(insn);
1401                     access_imm = GET_C_LW_IMM(insn);
1402                     access_size = 4;
1403                 } else { /* C.LD (RV64/RV128) */
1404                     xinsn = OPC_RISC_LD;
1405                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1406                     access_rs1 = GET_C_RS1S(insn);
1407                     access_imm = GET_C_LD_IMM(insn);
1408                     access_size = 8;
1409                 }
1410                 break;
1411             case OPC_RISC_C_FUNC_FSD_SQ:
1412                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1413                     xinsn = OPC_RISC_FSD;
1414                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1415                     access_rs1 = GET_C_RS1S(insn);
1416                     access_imm = GET_C_SD_IMM(insn);
1417                     access_size = 8;
1418                 }
1419                 break;
1420             case OPC_RISC_C_FUNC_SW: /* C.SW */
1421                 xinsn = OPC_RISC_SW;
1422                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1423                 access_rs1 = GET_C_RS1S(insn);
1424                 access_imm = GET_C_SW_IMM(insn);
1425                 access_size = 4;
1426                 break;
1427             case OPC_RISC_C_FUNC_FSW_SD:
1428                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1429                     xinsn = OPC_RISC_FSW;
1430                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1431                     access_rs1 = GET_C_RS1S(insn);
1432                     access_imm = GET_C_SW_IMM(insn);
1433                     access_size = 4;
1434                 } else { /* C.SD (RV64/RV128) */
1435                     xinsn = OPC_RISC_SD;
1436                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1437                     access_rs1 = GET_C_RS1S(insn);
1438                     access_imm = GET_C_SD_IMM(insn);
1439                     access_size = 8;
1440                 }
1441                 break;
1442             default:
1443                 break;
1444             }
1445             break;
1446         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1447             switch (GET_C_FUNC(insn)) {
1448             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1449                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1450                     xinsn = OPC_RISC_FLD;
1451                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1452                     access_rs1 = 2;
1453                     access_imm = GET_C_LDSP_IMM(insn);
1454                     access_size = 8;
1455                 }
1456                 break;
1457             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1458                 xinsn = OPC_RISC_LW;
1459                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1460                 access_rs1 = 2;
1461                 access_imm = GET_C_LWSP_IMM(insn);
1462                 access_size = 4;
1463                 break;
1464             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1465                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1466                     xinsn = OPC_RISC_FLW;
1467                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1468                     access_rs1 = 2;
1469                     access_imm = GET_C_LWSP_IMM(insn);
1470                     access_size = 4;
1471                 } else { /* C.LDSP (RV64/RV128) */
1472                     xinsn = OPC_RISC_LD;
1473                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1474                     access_rs1 = 2;
1475                     access_imm = GET_C_LDSP_IMM(insn);
1476                     access_size = 8;
1477                 }
1478                 break;
1479             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1480                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1481                     xinsn = OPC_RISC_FSD;
1482                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1483                     access_rs1 = 2;
1484                     access_imm = GET_C_SDSP_IMM(insn);
1485                     access_size = 8;
1486                 }
1487                 break;
1488             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1489                 xinsn = OPC_RISC_SW;
1490                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1491                 access_rs1 = 2;
1492                 access_imm = GET_C_SWSP_IMM(insn);
1493                 access_size = 4;
1494                 break;
1495             case 7:
1496                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1497                     xinsn = OPC_RISC_FSW;
1498                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1499                     access_rs1 = 2;
1500                     access_imm = GET_C_SWSP_IMM(insn);
1501                     access_size = 4;
1502                 } else { /* C.SDSP (RV64/RV128) */
1503                     xinsn = OPC_RISC_SD;
1504                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1505                     access_rs1 = 2;
1506                     access_imm = GET_C_SDSP_IMM(insn);
1507                     access_size = 8;
1508                 }
1509                 break;
1510             default:
1511                 break;
1512             }
1513             break;
1514         default:
1515             break;
1516         }
1517 
1518         /*
1519          * Clear Bit1 of transformed instruction to indicate that
1520          * original insruction was a 16bit instruction
1521          */
1522         xinsn &= ~((target_ulong)0x2);
1523     } else {
1524         /* Transform 32bit (or wider) instructions */
1525         switch (MASK_OP_MAJOR(insn)) {
1526         case OPC_RISC_ATOMIC:
1527             xinsn = insn;
1528             access_rs1 = GET_RS1(insn);
1529             access_size = 1 << GET_FUNCT3(insn);
1530             break;
1531         case OPC_RISC_LOAD:
1532         case OPC_RISC_FP_LOAD:
1533             xinsn = SET_I_IMM(insn, 0);
1534             access_rs1 = GET_RS1(insn);
1535             access_imm = GET_IMM(insn);
1536             access_size = 1 << GET_FUNCT3(insn);
1537             break;
1538         case OPC_RISC_STORE:
1539         case OPC_RISC_FP_STORE:
1540             xinsn = SET_S_IMM(insn, 0);
1541             access_rs1 = GET_RS1(insn);
1542             access_imm = GET_STORE_IMM(insn);
1543             access_size = 1 << GET_FUNCT3(insn);
1544             break;
1545         case OPC_RISC_SYSTEM:
1546             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1547                 xinsn = insn;
1548                 access_rs1 = GET_RS1(insn);
1549                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1550                 access_size = 1 << access_size;
1551             }
1552             break;
1553         default:
1554             break;
1555         }
1556     }
1557 
1558     if (access_size) {
1559         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1560                                (access_size - 1));
1561     }
1562 
1563     return xinsn;
1564 }
1565 #endif /* !CONFIG_USER_ONLY */
1566 
1567 /*
1568  * Handle Traps
1569  *
1570  * Adapted from Spike's processor_t::take_trap.
1571  *
1572  */
1573 void riscv_cpu_do_interrupt(CPUState *cs)
1574 {
1575 #if !defined(CONFIG_USER_ONLY)
1576 
1577     RISCVCPU *cpu = RISCV_CPU(cs);
1578     CPURISCVState *env = &cpu->env;
1579     bool write_gva = false;
1580     uint64_t s;
1581 
1582     /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1583      * so we mask off the MSB and separate into trap type and cause.
1584      */
1585     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1586     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1587     uint64_t deleg = async ? env->mideleg : env->medeleg;
1588     target_ulong tval = 0;
1589     target_ulong tinst = 0;
1590     target_ulong htval = 0;
1591     target_ulong mtval2 = 0;
1592 
1593     if  (cause == RISCV_EXCP_SEMIHOST) {
1594         do_common_semihosting(cs);
1595         env->pc += 4;
1596         return;
1597     }
1598 
1599     if (!async) {
1600         /* set tval to badaddr for traps with address information */
1601         switch (cause) {
1602         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1603         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1604         case RISCV_EXCP_LOAD_ADDR_MIS:
1605         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1606         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1607         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1608         case RISCV_EXCP_LOAD_PAGE_FAULT:
1609         case RISCV_EXCP_STORE_PAGE_FAULT:
1610             write_gva = env->two_stage_lookup;
1611             tval = env->badaddr;
1612             if (env->two_stage_indirect_lookup) {
1613                 /*
1614                  * special pseudoinstruction for G-stage fault taken while
1615                  * doing VS-stage page table walk.
1616                  */
1617                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1618             } else {
1619                 /*
1620                  * The "Addr. Offset" field in transformed instruction is
1621                  * non-zero only for misaligned access.
1622                  */
1623                 tinst = riscv_transformed_insn(env, env->bins, tval);
1624             }
1625             break;
1626         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1627         case RISCV_EXCP_INST_ADDR_MIS:
1628         case RISCV_EXCP_INST_ACCESS_FAULT:
1629         case RISCV_EXCP_INST_PAGE_FAULT:
1630             write_gva = env->two_stage_lookup;
1631             tval = env->badaddr;
1632             if (env->two_stage_indirect_lookup) {
1633                 /*
1634                  * special pseudoinstruction for G-stage fault taken while
1635                  * doing VS-stage page table walk.
1636                  */
1637                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1638             }
1639             break;
1640         case RISCV_EXCP_ILLEGAL_INST:
1641         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1642             tval = env->bins;
1643             break;
1644         default:
1645             break;
1646         }
1647         /* ecall is dispatched as one cause so translate based on mode */
1648         if (cause == RISCV_EXCP_U_ECALL) {
1649             assert(env->priv <= 3);
1650 
1651             if (env->priv == PRV_M) {
1652                 cause = RISCV_EXCP_M_ECALL;
1653             } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
1654                 cause = RISCV_EXCP_VS_ECALL;
1655             } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
1656                 cause = RISCV_EXCP_S_ECALL;
1657             } else if (env->priv == PRV_U) {
1658                 cause = RISCV_EXCP_U_ECALL;
1659             }
1660         }
1661     }
1662 
1663     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1664                      riscv_cpu_get_trap_name(cause, async));
1665 
1666     qemu_log_mask(CPU_LOG_INT,
1667                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1668                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1669                   __func__, env->mhartid, async, cause, env->pc, tval,
1670                   riscv_cpu_get_trap_name(cause, async));
1671 
1672     if (env->priv <= PRV_S &&
1673             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1674         /* handle the trap in S-mode */
1675         if (riscv_has_ext(env, RVH)) {
1676             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1677 
1678             if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
1679                 /* Trap to VS mode */
1680                 /*
1681                  * See if we need to adjust cause. Yes if its VS mode interrupt
1682                  * no if hypervisor has delegated one of hs mode's interrupt
1683                  */
1684                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1685                     cause == IRQ_VS_EXT) {
1686                     cause = cause - 1;
1687                 }
1688                 write_gva = false;
1689             } else if (riscv_cpu_virt_enabled(env)) {
1690                 /* Trap into HS mode, from virt */
1691                 riscv_cpu_swap_hypervisor_regs(env);
1692                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1693                                          env->priv);
1694                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1695                                          riscv_cpu_virt_enabled(env));
1696 
1697 
1698                 htval = env->guest_phys_fault_addr;
1699 
1700                 riscv_cpu_set_virt_enabled(env, 0);
1701             } else {
1702                 /* Trap into HS mode */
1703                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1704                 htval = env->guest_phys_fault_addr;
1705             }
1706             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1707         }
1708 
1709         s = env->mstatus;
1710         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1711         s = set_field(s, MSTATUS_SPP, env->priv);
1712         s = set_field(s, MSTATUS_SIE, 0);
1713         env->mstatus = s;
1714         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1715         env->sepc = env->pc;
1716         env->stval = tval;
1717         env->htval = htval;
1718         env->htinst = tinst;
1719         env->pc = (env->stvec >> 2 << 2) +
1720             ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1721         riscv_cpu_set_mode(env, PRV_S);
1722     } else {
1723         /* handle the trap in M-mode */
1724         if (riscv_has_ext(env, RVH)) {
1725             if (riscv_cpu_virt_enabled(env)) {
1726                 riscv_cpu_swap_hypervisor_regs(env);
1727             }
1728             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1729                                      riscv_cpu_virt_enabled(env));
1730             if (riscv_cpu_virt_enabled(env) && tval) {
1731                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1732             }
1733 
1734             mtval2 = env->guest_phys_fault_addr;
1735 
1736             /* Trapping to M mode, virt is disabled */
1737             riscv_cpu_set_virt_enabled(env, 0);
1738         }
1739 
1740         s = env->mstatus;
1741         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1742         s = set_field(s, MSTATUS_MPP, env->priv);
1743         s = set_field(s, MSTATUS_MIE, 0);
1744         env->mstatus = s;
1745         env->mcause = cause | ~(((target_ulong)-1) >> async);
1746         env->mepc = env->pc;
1747         env->mtval = tval;
1748         env->mtval2 = mtval2;
1749         env->mtinst = tinst;
1750         env->pc = (env->mtvec >> 2 << 2) +
1751             ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1752         riscv_cpu_set_mode(env, PRV_M);
1753     }
1754 
1755     /* NOTE: it is not necessary to yield load reservations here. It is only
1756      * necessary for an SC from "another hart" to cause a load reservation
1757      * to be yielded. Refer to the memory consistency model section of the
1758      * RISC-V ISA Specification.
1759      */
1760 
1761     env->two_stage_lookup = false;
1762     env->two_stage_indirect_lookup = false;
1763 #endif
1764     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1765 }
1766