xref: /qemu/target/riscv/cpu_helper.c (revision d0fb9657)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
27 #include "semihosting/common-semi.h"
28 
29 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
30 {
31 #ifdef CONFIG_USER_ONLY
32     return 0;
33 #else
34     return env->priv;
35 #endif
36 }
37 
38 #ifndef CONFIG_USER_ONLY
39 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
40 {
41     target_ulong irqs;
42 
43     target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
44     target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
45     target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE);
46 
47     target_ulong pending = env->mip & env->mie &
48                                ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
49     target_ulong vspending = (env->mip & env->mie &
50                               (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP));
51 
52     target_ulong mie    = env->priv < PRV_M ||
53                           (env->priv == PRV_M && mstatus_mie);
54     target_ulong sie    = env->priv < PRV_S ||
55                           (env->priv == PRV_S && mstatus_sie);
56     target_ulong hs_sie = env->priv < PRV_S ||
57                           (env->priv == PRV_S && hs_mstatus_sie);
58 
59     if (riscv_cpu_virt_enabled(env)) {
60         target_ulong pending_hs_irq = pending & -hs_sie;
61 
62         if (pending_hs_irq) {
63             riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP);
64             return ctz64(pending_hs_irq);
65         }
66 
67         pending = vspending;
68     }
69 
70     irqs = (pending & ~env->mideleg & -mie) | (pending &  env->mideleg & -sie);
71 
72     if (irqs) {
73         return ctz64(irqs); /* since non-zero */
74     } else {
75         return RISCV_EXCP_NONE; /* indicates no pending interrupt */
76     }
77 }
78 #endif
79 
80 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
81 {
82 #if !defined(CONFIG_USER_ONLY)
83     if (interrupt_request & CPU_INTERRUPT_HARD) {
84         RISCVCPU *cpu = RISCV_CPU(cs);
85         CPURISCVState *env = &cpu->env;
86         int interruptno = riscv_cpu_local_irq_pending(env);
87         if (interruptno >= 0) {
88             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
89             riscv_cpu_do_interrupt(cs);
90             return true;
91         }
92     }
93 #endif
94     return false;
95 }
96 
97 #if !defined(CONFIG_USER_ONLY)
98 
99 /* Return true is floating point support is currently enabled */
100 bool riscv_cpu_fp_enabled(CPURISCVState *env)
101 {
102     if (env->mstatus & MSTATUS_FS) {
103         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
104             return false;
105         }
106         return true;
107     }
108 
109     return false;
110 }
111 
112 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
113 {
114     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
115                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
116                             MSTATUS64_UXL;
117     bool current_virt = riscv_cpu_virt_enabled(env);
118 
119     g_assert(riscv_has_ext(env, RVH));
120 
121     if (current_virt) {
122         /* Current V=1 and we are about to change to V=0 */
123         env->vsstatus = env->mstatus & mstatus_mask;
124         env->mstatus &= ~mstatus_mask;
125         env->mstatus |= env->mstatus_hs;
126 
127         env->vstvec = env->stvec;
128         env->stvec = env->stvec_hs;
129 
130         env->vsscratch = env->sscratch;
131         env->sscratch = env->sscratch_hs;
132 
133         env->vsepc = env->sepc;
134         env->sepc = env->sepc_hs;
135 
136         env->vscause = env->scause;
137         env->scause = env->scause_hs;
138 
139         env->vstval = env->stval;
140         env->stval = env->stval_hs;
141 
142         env->vsatp = env->satp;
143         env->satp = env->satp_hs;
144     } else {
145         /* Current V=0 and we are about to change to V=1 */
146         env->mstatus_hs = env->mstatus & mstatus_mask;
147         env->mstatus &= ~mstatus_mask;
148         env->mstatus |= env->vsstatus;
149 
150         env->stvec_hs = env->stvec;
151         env->stvec = env->vstvec;
152 
153         env->sscratch_hs = env->sscratch;
154         env->sscratch = env->vsscratch;
155 
156         env->sepc_hs = env->sepc;
157         env->sepc = env->vsepc;
158 
159         env->scause_hs = env->scause;
160         env->scause = env->vscause;
161 
162         env->stval_hs = env->stval;
163         env->stval = env->vstval;
164 
165         env->satp_hs = env->satp;
166         env->satp = env->vsatp;
167     }
168 }
169 
170 bool riscv_cpu_virt_enabled(CPURISCVState *env)
171 {
172     if (!riscv_has_ext(env, RVH)) {
173         return false;
174     }
175 
176     return get_field(env->virt, VIRT_ONOFF);
177 }
178 
179 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
180 {
181     if (!riscv_has_ext(env, RVH)) {
182         return;
183     }
184 
185     /* Flush the TLB on all virt mode changes. */
186     if (get_field(env->virt, VIRT_ONOFF) != enable) {
187         tlb_flush(env_cpu(env));
188     }
189 
190     env->virt = set_field(env->virt, VIRT_ONOFF, enable);
191 }
192 
193 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
194 {
195     if (!riscv_has_ext(env, RVH)) {
196         return false;
197     }
198 
199     return get_field(env->virt, FORCE_HS_EXCEP);
200 }
201 
202 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
203 {
204     if (!riscv_has_ext(env, RVH)) {
205         return;
206     }
207 
208     env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
209 }
210 
211 bool riscv_cpu_two_stage_lookup(int mmu_idx)
212 {
213     return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
214 }
215 
216 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
217 {
218     CPURISCVState *env = &cpu->env;
219     if (env->miclaim & interrupts) {
220         return -1;
221     } else {
222         env->miclaim |= interrupts;
223         return 0;
224     }
225 }
226 
227 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
228 {
229     CPURISCVState *env = &cpu->env;
230     CPUState *cs = CPU(cpu);
231     uint32_t old = env->mip;
232     bool locked = false;
233 
234     if (!qemu_mutex_iothread_locked()) {
235         locked = true;
236         qemu_mutex_lock_iothread();
237     }
238 
239     env->mip = (env->mip & ~mask) | (value & mask);
240 
241     if (env->mip) {
242         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
243     } else {
244         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
245     }
246 
247     if (locked) {
248         qemu_mutex_unlock_iothread();
249     }
250 
251     return old;
252 }
253 
254 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
255                              uint32_t arg)
256 {
257     env->rdtime_fn = fn;
258     env->rdtime_fn_arg = arg;
259 }
260 
261 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
262 {
263     if (newpriv > PRV_M) {
264         g_assert_not_reached();
265     }
266     if (newpriv == PRV_H) {
267         newpriv = PRV_U;
268     }
269     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
270     env->priv = newpriv;
271 
272     /*
273      * Clear the load reservation - otherwise a reservation placed in one
274      * context/process can be used by another, resulting in an SC succeeding
275      * incorrectly. Version 2.2 of the ISA specification explicitly requires
276      * this behaviour, while later revisions say that the kernel "should" use
277      * an SC instruction to force the yielding of a load reservation on a
278      * preemptive context switch. As a result, do both.
279      */
280     env->load_res = -1;
281 }
282 
283 /*
284  * get_physical_address_pmp - check PMP permission for this physical address
285  *
286  * Match the PMP region and check permission for this physical address and it's
287  * TLB page. Returns 0 if the permission checking was successful
288  *
289  * @env: CPURISCVState
290  * @prot: The returned protection attributes
291  * @tlb_size: TLB page size containing addr. It could be modified after PMP
292  *            permission checking. NULL if not set TLB page for addr.
293  * @addr: The physical address to be checked permission
294  * @access_type: The type of MMU access
295  * @mode: Indicates current privilege level.
296  */
297 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
298                                     target_ulong *tlb_size, hwaddr addr,
299                                     int size, MMUAccessType access_type,
300                                     int mode)
301 {
302     pmp_priv_t pmp_priv;
303     target_ulong tlb_size_pmp = 0;
304 
305     if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
306         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
307         return TRANSLATE_SUCCESS;
308     }
309 
310     if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv,
311                             mode)) {
312         *prot = 0;
313         return TRANSLATE_PMP_FAIL;
314     }
315 
316     *prot = pmp_priv_to_page_prot(pmp_priv);
317     if (tlb_size != NULL) {
318         if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) {
319             *tlb_size = tlb_size_pmp;
320         }
321     }
322 
323     return TRANSLATE_SUCCESS;
324 }
325 
326 /* get_physical_address - get the physical address for this virtual address
327  *
328  * Do a page table walk to obtain the physical address corresponding to a
329  * virtual address. Returns 0 if the translation was successful
330  *
331  * Adapted from Spike's mmu_t::translate and mmu_t::walk
332  *
333  * @env: CPURISCVState
334  * @physical: This will be set to the calculated physical address
335  * @prot: The returned protection attributes
336  * @addr: The virtual address to be translated
337  * @fault_pte_addr: If not NULL, this will be set to fault pte address
338  *                  when a error occurs on pte address translation.
339  *                  This will already be shifted to match htval.
340  * @access_type: The type of MMU access
341  * @mmu_idx: Indicates current privilege level
342  * @first_stage: Are we in first stage translation?
343  *               Second stage is used for hypervisor guest translation
344  * @two_stage: Are we going to perform two stage translation
345  * @is_debug: Is this access from a debugger or the monitor?
346  */
347 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
348                                 int *prot, target_ulong addr,
349                                 target_ulong *fault_pte_addr,
350                                 int access_type, int mmu_idx,
351                                 bool first_stage, bool two_stage,
352                                 bool is_debug)
353 {
354     /* NOTE: the env->pc value visible here will not be
355      * correct, but the value visible to the exception handler
356      * (riscv_cpu_do_interrupt) is correct */
357     MemTxResult res;
358     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
359     int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
360     bool use_background = false;
361 
362     /*
363      * Check if we should use the background registers for the two
364      * stage translation. We don't need to check if we actually need
365      * two stage translation as that happened before this function
366      * was called. Background registers will be used if the guest has
367      * forced a two stage translation to be on (in HS or M mode).
368      */
369     if (!riscv_cpu_virt_enabled(env) && two_stage) {
370         use_background = true;
371     }
372 
373     /* MPRV does not affect the virtual-machine load/store
374        instructions, HLV, HLVX, and HSV. */
375     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
376         mode = get_field(env->hstatus, HSTATUS_SPVP);
377     } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
378         if (get_field(env->mstatus, MSTATUS_MPRV)) {
379             mode = get_field(env->mstatus, MSTATUS_MPP);
380         }
381     }
382 
383     if (first_stage == false) {
384         /* We are in stage 2 translation, this is similar to stage 1. */
385         /* Stage 2 is always taken as U-mode */
386         mode = PRV_U;
387     }
388 
389     if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
390         *physical = addr;
391         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
392         return TRANSLATE_SUCCESS;
393     }
394 
395     *prot = 0;
396 
397     hwaddr base;
398     int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
399 
400     if (first_stage == true) {
401         mxr = get_field(env->mstatus, MSTATUS_MXR);
402     } else {
403         mxr = get_field(env->vsstatus, MSTATUS_MXR);
404     }
405 
406     if (first_stage == true) {
407         if (use_background) {
408             if (riscv_cpu_is_32bit(env)) {
409                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
410                 vm = get_field(env->vsatp, SATP32_MODE);
411             } else {
412                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
413                 vm = get_field(env->vsatp, SATP64_MODE);
414             }
415         } else {
416             if (riscv_cpu_is_32bit(env)) {
417                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
418                 vm = get_field(env->satp, SATP32_MODE);
419             } else {
420                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
421                 vm = get_field(env->satp, SATP64_MODE);
422             }
423         }
424         widened = 0;
425     } else {
426         if (riscv_cpu_is_32bit(env)) {
427             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
428             vm = get_field(env->hgatp, SATP32_MODE);
429         } else {
430             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
431             vm = get_field(env->hgatp, SATP64_MODE);
432         }
433         widened = 2;
434     }
435     /* status.SUM will be ignored if execute on background */
436     sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
437     switch (vm) {
438     case VM_1_10_SV32:
439       levels = 2; ptidxbits = 10; ptesize = 4; break;
440     case VM_1_10_SV39:
441       levels = 3; ptidxbits = 9; ptesize = 8; break;
442     case VM_1_10_SV48:
443       levels = 4; ptidxbits = 9; ptesize = 8; break;
444     case VM_1_10_SV57:
445       levels = 5; ptidxbits = 9; ptesize = 8; break;
446     case VM_1_10_MBARE:
447         *physical = addr;
448         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
449         return TRANSLATE_SUCCESS;
450     default:
451       g_assert_not_reached();
452     }
453 
454     CPUState *cs = env_cpu(env);
455     int va_bits = PGSHIFT + levels * ptidxbits + widened;
456     target_ulong mask, masked_msbs;
457 
458     if (TARGET_LONG_BITS > (va_bits - 1)) {
459         mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
460     } else {
461         mask = 0;
462     }
463     masked_msbs = (addr >> (va_bits - 1)) & mask;
464 
465     if (masked_msbs != 0 && masked_msbs != mask) {
466         return TRANSLATE_FAIL;
467     }
468 
469     int ptshift = (levels - 1) * ptidxbits;
470     int i;
471 
472 #if !TCG_OVERSIZED_GUEST
473 restart:
474 #endif
475     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
476         target_ulong idx;
477         if (i == 0) {
478             idx = (addr >> (PGSHIFT + ptshift)) &
479                            ((1 << (ptidxbits + widened)) - 1);
480         } else {
481             idx = (addr >> (PGSHIFT + ptshift)) &
482                            ((1 << ptidxbits) - 1);
483         }
484 
485         /* check that physical address of PTE is legal */
486         hwaddr pte_addr;
487 
488         if (two_stage && first_stage) {
489             int vbase_prot;
490             hwaddr vbase;
491 
492             /* Do the second stage translation on the base PTE address. */
493             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
494                                                  base, NULL, MMU_DATA_LOAD,
495                                                  mmu_idx, false, true,
496                                                  is_debug);
497 
498             if (vbase_ret != TRANSLATE_SUCCESS) {
499                 if (fault_pte_addr) {
500                     *fault_pte_addr = (base + idx * ptesize) >> 2;
501                 }
502                 return TRANSLATE_G_STAGE_FAIL;
503             }
504 
505             pte_addr = vbase + idx * ptesize;
506         } else {
507             pte_addr = base + idx * ptesize;
508         }
509 
510         int pmp_prot;
511         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
512                                                sizeof(target_ulong),
513                                                MMU_DATA_LOAD, PRV_S);
514         if (pmp_ret != TRANSLATE_SUCCESS) {
515             return TRANSLATE_PMP_FAIL;
516         }
517 
518         target_ulong pte;
519         if (riscv_cpu_is_32bit(env)) {
520             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
521         } else {
522             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
523         }
524 
525         if (res != MEMTX_OK) {
526             return TRANSLATE_FAIL;
527         }
528 
529         hwaddr ppn = pte >> PTE_PPN_SHIFT;
530 
531         if (!(pte & PTE_V)) {
532             /* Invalid PTE */
533             return TRANSLATE_FAIL;
534         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
535             /* Inner PTE, continue walking */
536             base = ppn << PGSHIFT;
537         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
538             /* Reserved leaf PTE flags: PTE_W */
539             return TRANSLATE_FAIL;
540         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
541             /* Reserved leaf PTE flags: PTE_W + PTE_X */
542             return TRANSLATE_FAIL;
543         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
544                    (!sum || access_type == MMU_INST_FETCH))) {
545             /* User PTE flags when not U mode and mstatus.SUM is not set,
546                or the access type is an instruction fetch */
547             return TRANSLATE_FAIL;
548         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
549             /* Supervisor PTE flags when not S mode */
550             return TRANSLATE_FAIL;
551         } else if (ppn & ((1ULL << ptshift) - 1)) {
552             /* Misaligned PPN */
553             return TRANSLATE_FAIL;
554         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
555                    ((pte & PTE_X) && mxr))) {
556             /* Read access check failed */
557             return TRANSLATE_FAIL;
558         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
559             /* Write access check failed */
560             return TRANSLATE_FAIL;
561         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
562             /* Fetch access check failed */
563             return TRANSLATE_FAIL;
564         } else {
565             /* if necessary, set accessed and dirty bits. */
566             target_ulong updated_pte = pte | PTE_A |
567                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
568 
569             /* Page table updates need to be atomic with MTTCG enabled */
570             if (updated_pte != pte) {
571                 /*
572                  * - if accessed or dirty bits need updating, and the PTE is
573                  *   in RAM, then we do so atomically with a compare and swap.
574                  * - if the PTE is in IO space or ROM, then it can't be updated
575                  *   and we return TRANSLATE_FAIL.
576                  * - if the PTE changed by the time we went to update it, then
577                  *   it is no longer valid and we must re-walk the page table.
578                  */
579                 MemoryRegion *mr;
580                 hwaddr l = sizeof(target_ulong), addr1;
581                 mr = address_space_translate(cs->as, pte_addr,
582                     &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
583                 if (memory_region_is_ram(mr)) {
584                     target_ulong *pte_pa =
585                         qemu_map_ram_ptr(mr->ram_block, addr1);
586 #if TCG_OVERSIZED_GUEST
587                     /* MTTCG is not enabled on oversized TCG guests so
588                      * page table updates do not need to be atomic */
589                     *pte_pa = pte = updated_pte;
590 #else
591                     target_ulong old_pte =
592                         qatomic_cmpxchg(pte_pa, pte, updated_pte);
593                     if (old_pte != pte) {
594                         goto restart;
595                     } else {
596                         pte = updated_pte;
597                     }
598 #endif
599                 } else {
600                     /* misconfigured PTE in ROM (AD bits are not preset) or
601                      * PTE is in IO space and can't be updated atomically */
602                     return TRANSLATE_FAIL;
603                 }
604             }
605 
606             /* for superpage mappings, make a fake leaf PTE for the TLB's
607                benefit. */
608             target_ulong vpn = addr >> PGSHIFT;
609             *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) |
610                         (addr & ~TARGET_PAGE_MASK);
611 
612             /* set permissions on the TLB entry */
613             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
614                 *prot |= PAGE_READ;
615             }
616             if ((pte & PTE_X)) {
617                 *prot |= PAGE_EXEC;
618             }
619             /* add write permission on stores or if the page is already dirty,
620                so that we TLB miss on later writes to update the dirty bit */
621             if ((pte & PTE_W) &&
622                     (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
623                 *prot |= PAGE_WRITE;
624             }
625             return TRANSLATE_SUCCESS;
626         }
627     }
628     return TRANSLATE_FAIL;
629 }
630 
631 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
632                                 MMUAccessType access_type, bool pmp_violation,
633                                 bool first_stage, bool two_stage)
634 {
635     CPUState *cs = env_cpu(env);
636     int page_fault_exceptions, vm;
637     uint64_t stap_mode;
638 
639     if (riscv_cpu_is_32bit(env)) {
640         stap_mode = SATP32_MODE;
641     } else {
642         stap_mode = SATP64_MODE;
643     }
644 
645     if (first_stage) {
646         vm = get_field(env->satp, stap_mode);
647     } else {
648         vm = get_field(env->hgatp, stap_mode);
649     }
650 
651     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
652 
653     switch (access_type) {
654     case MMU_INST_FETCH:
655         if (riscv_cpu_virt_enabled(env) && !first_stage) {
656             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
657         } else {
658             cs->exception_index = page_fault_exceptions ?
659                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
660         }
661         break;
662     case MMU_DATA_LOAD:
663         if (two_stage && !first_stage) {
664             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
665         } else {
666             cs->exception_index = page_fault_exceptions ?
667                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
668         }
669         break;
670     case MMU_DATA_STORE:
671         if (two_stage && !first_stage) {
672             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
673         } else {
674             cs->exception_index = page_fault_exceptions ?
675                 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
676         }
677         break;
678     default:
679         g_assert_not_reached();
680     }
681     env->badaddr = address;
682     env->two_stage_lookup = two_stage;
683 }
684 
685 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
686 {
687     RISCVCPU *cpu = RISCV_CPU(cs);
688     CPURISCVState *env = &cpu->env;
689     hwaddr phys_addr;
690     int prot;
691     int mmu_idx = cpu_mmu_index(&cpu->env, false);
692 
693     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
694                              true, riscv_cpu_virt_enabled(env), true)) {
695         return -1;
696     }
697 
698     if (riscv_cpu_virt_enabled(env)) {
699         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
700                                  0, mmu_idx, false, true, true)) {
701             return -1;
702         }
703     }
704 
705     return phys_addr & TARGET_PAGE_MASK;
706 }
707 
708 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
709                                      vaddr addr, unsigned size,
710                                      MMUAccessType access_type,
711                                      int mmu_idx, MemTxAttrs attrs,
712                                      MemTxResult response, uintptr_t retaddr)
713 {
714     RISCVCPU *cpu = RISCV_CPU(cs);
715     CPURISCVState *env = &cpu->env;
716 
717     if (access_type == MMU_DATA_STORE) {
718         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
719     } else if (access_type == MMU_DATA_LOAD) {
720         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
721     } else {
722         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
723     }
724 
725     env->badaddr = addr;
726     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
727                             riscv_cpu_two_stage_lookup(mmu_idx);
728     riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
729 }
730 
731 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
732                                    MMUAccessType access_type, int mmu_idx,
733                                    uintptr_t retaddr)
734 {
735     RISCVCPU *cpu = RISCV_CPU(cs);
736     CPURISCVState *env = &cpu->env;
737     switch (access_type) {
738     case MMU_INST_FETCH:
739         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
740         break;
741     case MMU_DATA_LOAD:
742         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
743         break;
744     case MMU_DATA_STORE:
745         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
746         break;
747     default:
748         g_assert_not_reached();
749     }
750     env->badaddr = addr;
751     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
752                             riscv_cpu_two_stage_lookup(mmu_idx);
753     riscv_raise_exception(env, cs->exception_index, retaddr);
754 }
755 #endif /* !CONFIG_USER_ONLY */
756 
757 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
758                         MMUAccessType access_type, int mmu_idx,
759                         bool probe, uintptr_t retaddr)
760 {
761     RISCVCPU *cpu = RISCV_CPU(cs);
762     CPURISCVState *env = &cpu->env;
763 #ifndef CONFIG_USER_ONLY
764     vaddr im_address;
765     hwaddr pa = 0;
766     int prot, prot2, prot_pmp;
767     bool pmp_violation = false;
768     bool first_stage_error = true;
769     bool two_stage_lookup = false;
770     int ret = TRANSLATE_FAIL;
771     int mode = mmu_idx;
772     /* default TLB page size */
773     target_ulong tlb_size = TARGET_PAGE_SIZE;
774 
775     env->guest_phys_fault_addr = 0;
776 
777     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
778                   __func__, address, access_type, mmu_idx);
779 
780     /* MPRV does not affect the virtual-machine load/store
781        instructions, HLV, HLVX, and HSV. */
782     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
783         mode = get_field(env->hstatus, HSTATUS_SPVP);
784     } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
785                get_field(env->mstatus, MSTATUS_MPRV)) {
786         mode = get_field(env->mstatus, MSTATUS_MPP);
787         if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
788             two_stage_lookup = true;
789         }
790     }
791 
792     if (riscv_cpu_virt_enabled(env) ||
793         ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
794          access_type != MMU_INST_FETCH)) {
795         /* Two stage lookup */
796         ret = get_physical_address(env, &pa, &prot, address,
797                                    &env->guest_phys_fault_addr, access_type,
798                                    mmu_idx, true, true, false);
799 
800         /*
801          * A G-stage exception may be triggered during two state lookup.
802          * And the env->guest_phys_fault_addr has already been set in
803          * get_physical_address().
804          */
805         if (ret == TRANSLATE_G_STAGE_FAIL) {
806             first_stage_error = false;
807             access_type = MMU_DATA_LOAD;
808         }
809 
810         qemu_log_mask(CPU_LOG_MMU,
811                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
812                       TARGET_FMT_plx " prot %d\n",
813                       __func__, address, ret, pa, prot);
814 
815         if (ret == TRANSLATE_SUCCESS) {
816             /* Second stage lookup */
817             im_address = pa;
818 
819             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
820                                        access_type, mmu_idx, false, true,
821                                        false);
822 
823             qemu_log_mask(CPU_LOG_MMU,
824                     "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
825                     TARGET_FMT_plx " prot %d\n",
826                     __func__, im_address, ret, pa, prot2);
827 
828             prot &= prot2;
829 
830             if (ret == TRANSLATE_SUCCESS) {
831                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
832                                                size, access_type, mode);
833 
834                 qemu_log_mask(CPU_LOG_MMU,
835                               "%s PMP address=" TARGET_FMT_plx " ret %d prot"
836                               " %d tlb_size " TARGET_FMT_lu "\n",
837                               __func__, pa, ret, prot_pmp, tlb_size);
838 
839                 prot &= prot_pmp;
840             }
841 
842             if (ret != TRANSLATE_SUCCESS) {
843                 /*
844                  * Guest physical address translation failed, this is a HS
845                  * level exception
846                  */
847                 first_stage_error = false;
848                 env->guest_phys_fault_addr = (im_address |
849                                               (address &
850                                                (TARGET_PAGE_SIZE - 1))) >> 2;
851             }
852         }
853     } else {
854         /* Single stage lookup */
855         ret = get_physical_address(env, &pa, &prot, address, NULL,
856                                    access_type, mmu_idx, true, false, false);
857 
858         qemu_log_mask(CPU_LOG_MMU,
859                       "%s address=%" VADDR_PRIx " ret %d physical "
860                       TARGET_FMT_plx " prot %d\n",
861                       __func__, address, ret, pa, prot);
862 
863         if (ret == TRANSLATE_SUCCESS) {
864             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
865                                            size, access_type, mode);
866 
867             qemu_log_mask(CPU_LOG_MMU,
868                           "%s PMP address=" TARGET_FMT_plx " ret %d prot"
869                           " %d tlb_size " TARGET_FMT_lu "\n",
870                           __func__, pa, ret, prot_pmp, tlb_size);
871 
872             prot &= prot_pmp;
873         }
874     }
875 
876     if (ret == TRANSLATE_PMP_FAIL) {
877         pmp_violation = true;
878     }
879 
880     if (ret == TRANSLATE_SUCCESS) {
881         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
882                      prot, mmu_idx, tlb_size);
883         return true;
884     } else if (probe) {
885         return false;
886     } else {
887         raise_mmu_exception(env, address, access_type, pmp_violation,
888                             first_stage_error,
889                             riscv_cpu_virt_enabled(env) ||
890                                 riscv_cpu_two_stage_lookup(mmu_idx));
891         riscv_raise_exception(env, cs->exception_index, retaddr);
892     }
893 
894     return true;
895 
896 #else
897     switch (access_type) {
898     case MMU_INST_FETCH:
899         cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
900         break;
901     case MMU_DATA_LOAD:
902         cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
903         break;
904     case MMU_DATA_STORE:
905         cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
906         break;
907     default:
908         g_assert_not_reached();
909     }
910     env->badaddr = address;
911     cpu_loop_exit_restore(cs, retaddr);
912 #endif
913 }
914 
915 /*
916  * Handle Traps
917  *
918  * Adapted from Spike's processor_t::take_trap.
919  *
920  */
921 void riscv_cpu_do_interrupt(CPUState *cs)
922 {
923 #if !defined(CONFIG_USER_ONLY)
924 
925     RISCVCPU *cpu = RISCV_CPU(cs);
926     CPURISCVState *env = &cpu->env;
927     bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env);
928     uint64_t s;
929 
930     /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
931      * so we mask off the MSB and separate into trap type and cause.
932      */
933     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
934     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
935     target_ulong deleg = async ? env->mideleg : env->medeleg;
936     bool write_tval = false;
937     target_ulong tval = 0;
938     target_ulong htval = 0;
939     target_ulong mtval2 = 0;
940 
941     if  (cause == RISCV_EXCP_SEMIHOST) {
942         if (env->priv >= PRV_S) {
943             env->gpr[xA0] = do_common_semihosting(cs);
944             env->pc += 4;
945             return;
946         }
947         cause = RISCV_EXCP_BREAKPOINT;
948     }
949 
950     if (!async) {
951         /* set tval to badaddr for traps with address information */
952         switch (cause) {
953         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
954         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
955         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
956             force_hs_execp = true;
957             /* fallthrough */
958         case RISCV_EXCP_INST_ADDR_MIS:
959         case RISCV_EXCP_INST_ACCESS_FAULT:
960         case RISCV_EXCP_LOAD_ADDR_MIS:
961         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
962         case RISCV_EXCP_LOAD_ACCESS_FAULT:
963         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
964         case RISCV_EXCP_INST_PAGE_FAULT:
965         case RISCV_EXCP_LOAD_PAGE_FAULT:
966         case RISCV_EXCP_STORE_PAGE_FAULT:
967             write_tval  = true;
968             tval = env->badaddr;
969             break;
970         default:
971             break;
972         }
973         /* ecall is dispatched as one cause so translate based on mode */
974         if (cause == RISCV_EXCP_U_ECALL) {
975             assert(env->priv <= 3);
976 
977             if (env->priv == PRV_M) {
978                 cause = RISCV_EXCP_M_ECALL;
979             } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
980                 cause = RISCV_EXCP_VS_ECALL;
981             } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
982                 cause = RISCV_EXCP_S_ECALL;
983             } else if (env->priv == PRV_U) {
984                 cause = RISCV_EXCP_U_ECALL;
985             }
986         }
987     }
988 
989     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
990                      riscv_cpu_get_trap_name(cause, async));
991 
992     qemu_log_mask(CPU_LOG_INT,
993                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
994                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
995                   __func__, env->mhartid, async, cause, env->pc, tval,
996                   riscv_cpu_get_trap_name(cause, async));
997 
998     if (env->priv <= PRV_S &&
999             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1000         /* handle the trap in S-mode */
1001         if (riscv_has_ext(env, RVH)) {
1002             target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
1003 
1004             if (env->two_stage_lookup && write_tval) {
1005                 /*
1006                  * If we are writing a guest virtual address to stval, set
1007                  * this to 1. If we are trapping to VS we will set this to 0
1008                  * later.
1009                  */
1010                 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1);
1011             } else {
1012                 /* For other HS-mode traps, we set this to 0. */
1013                 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
1014             }
1015 
1016             if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) &&
1017                 !force_hs_execp) {
1018                 /* Trap to VS mode */
1019                 /*
1020                  * See if we need to adjust cause. Yes if its VS mode interrupt
1021                  * no if hypervisor has delegated one of hs mode's interrupt
1022                  */
1023                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1024                     cause == IRQ_VS_EXT) {
1025                     cause = cause - 1;
1026                 }
1027                 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
1028             } else if (riscv_cpu_virt_enabled(env)) {
1029                 /* Trap into HS mode, from virt */
1030                 riscv_cpu_swap_hypervisor_regs(env);
1031                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1032                                          env->priv);
1033                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1034                                          riscv_cpu_virt_enabled(env));
1035 
1036                 htval = env->guest_phys_fault_addr;
1037 
1038                 riscv_cpu_set_virt_enabled(env, 0);
1039                 riscv_cpu_set_force_hs_excep(env, 0);
1040             } else {
1041                 /* Trap into HS mode */
1042                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1043                 htval = env->guest_phys_fault_addr;
1044             }
1045         }
1046 
1047         s = env->mstatus;
1048         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1049         s = set_field(s, MSTATUS_SPP, env->priv);
1050         s = set_field(s, MSTATUS_SIE, 0);
1051         env->mstatus = s;
1052         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1053         env->sepc = env->pc;
1054         env->stval = tval;
1055         env->htval = htval;
1056         env->pc = (env->stvec >> 2 << 2) +
1057             ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1058         riscv_cpu_set_mode(env, PRV_S);
1059     } else {
1060         /* handle the trap in M-mode */
1061         if (riscv_has_ext(env, RVH)) {
1062             if (riscv_cpu_virt_enabled(env)) {
1063                 riscv_cpu_swap_hypervisor_regs(env);
1064             }
1065             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1066                                      riscv_cpu_virt_enabled(env));
1067             if (riscv_cpu_virt_enabled(env) && tval) {
1068                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1069             }
1070 
1071             mtval2 = env->guest_phys_fault_addr;
1072 
1073             /* Trapping to M mode, virt is disabled */
1074             riscv_cpu_set_virt_enabled(env, 0);
1075             riscv_cpu_set_force_hs_excep(env, 0);
1076         }
1077 
1078         s = env->mstatus;
1079         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1080         s = set_field(s, MSTATUS_MPP, env->priv);
1081         s = set_field(s, MSTATUS_MIE, 0);
1082         env->mstatus = s;
1083         env->mcause = cause | ~(((target_ulong)-1) >> async);
1084         env->mepc = env->pc;
1085         env->mtval = tval;
1086         env->mtval2 = mtval2;
1087         env->pc = (env->mtvec >> 2 << 2) +
1088             ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1089         riscv_cpu_set_mode(env, PRV_M);
1090     }
1091 
1092     /* NOTE: it is not necessary to yield load reservations here. It is only
1093      * necessary for an SC from "another hart" to cause a load reservation
1094      * to be yielded. Refer to the memory consistency model section of the
1095      * RISC-V ISA Specification.
1096      */
1097 
1098     env->two_stage_lookup = false;
1099 #endif
1100     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1101 }
1102