xref: /qemu/target/riscv/csr.c (revision 195801d7)
1 /*
2  * RISC-V Control and Status Registers.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/timer.h"
23 #include "cpu.h"
24 #include "tcg/tcg-cpu.h"
25 #include "pmu.h"
26 #include "time_helper.h"
27 #include "exec/exec-all.h"
28 #include "exec/tb-flush.h"
29 #include "sysemu/cpu-timers.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 
33 
34 /* CSR function table public API */
35 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops)
36 {
37     *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)];
38 }
39 
40 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops)
41 {
42     csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops;
43 }
44 
45 /* Predicates */
46 #if !defined(CONFIG_USER_ONLY)
47 RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit)
48 {
49     bool virt = env->virt_enabled;
50 
51     if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) {
52         return RISCV_EXCP_NONE;
53     }
54 
55     if (!(env->mstateen[index] & bit)) {
56         return RISCV_EXCP_ILLEGAL_INST;
57     }
58 
59     if (virt) {
60         if (!(env->hstateen[index] & bit)) {
61             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
62         }
63 
64         if (env->priv == PRV_U && !(env->sstateen[index] & bit)) {
65             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
66         }
67     }
68 
69     if (env->priv == PRV_U && riscv_has_ext(env, RVS)) {
70         if (!(env->sstateen[index] & bit)) {
71             return RISCV_EXCP_ILLEGAL_INST;
72         }
73     }
74 
75     return RISCV_EXCP_NONE;
76 }
77 #endif
78 
79 static RISCVException fs(CPURISCVState *env, int csrno)
80 {
81 #if !defined(CONFIG_USER_ONLY)
82     if (!env->debugger && !riscv_cpu_fp_enabled(env) &&
83         !riscv_cpu_cfg(env)->ext_zfinx) {
84         return RISCV_EXCP_ILLEGAL_INST;
85     }
86 
87     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
88         return smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR);
89     }
90 #endif
91     return RISCV_EXCP_NONE;
92 }
93 
94 static RISCVException vs(CPURISCVState *env, int csrno)
95 {
96     if (riscv_cpu_cfg(env)->ext_zve32f) {
97 #if !defined(CONFIG_USER_ONLY)
98         if (!env->debugger && !riscv_cpu_vector_enabled(env)) {
99             return RISCV_EXCP_ILLEGAL_INST;
100         }
101 #endif
102         return RISCV_EXCP_NONE;
103     }
104     return RISCV_EXCP_ILLEGAL_INST;
105 }
106 
107 static RISCVException ctr(CPURISCVState *env, int csrno)
108 {
109 #if !defined(CONFIG_USER_ONLY)
110     RISCVCPU *cpu = env_archcpu(env);
111     int ctr_index;
112     target_ulong ctr_mask;
113     int base_csrno = CSR_CYCLE;
114     bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false;
115 
116     if (rv32 && csrno >= CSR_CYCLEH) {
117         /* Offset for RV32 hpmcounternh counters */
118         base_csrno += 0x80;
119     }
120     ctr_index = csrno - base_csrno;
121     ctr_mask = BIT(ctr_index);
122 
123     if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) ||
124         (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) {
125         if (!riscv_cpu_cfg(env)->ext_zicntr) {
126             return RISCV_EXCP_ILLEGAL_INST;
127         }
128 
129         goto skip_ext_pmu_check;
130     }
131 
132     if (!(cpu->pmu_avail_ctrs & ctr_mask)) {
133         /* No counter is enabled in PMU or the counter is out of range */
134         return RISCV_EXCP_ILLEGAL_INST;
135     }
136 
137 skip_ext_pmu_check:
138 
139     if (env->debugger) {
140         return RISCV_EXCP_NONE;
141     }
142 
143     if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) {
144         return RISCV_EXCP_ILLEGAL_INST;
145     }
146 
147     if (env->virt_enabled) {
148         if (!get_field(env->hcounteren, ctr_mask) ||
149             (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) {
150             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
151         }
152     }
153 
154     if (riscv_has_ext(env, RVS) && env->priv == PRV_U &&
155         !get_field(env->scounteren, ctr_mask)) {
156         return RISCV_EXCP_ILLEGAL_INST;
157     }
158 
159 #endif
160     return RISCV_EXCP_NONE;
161 }
162 
163 static RISCVException ctr32(CPURISCVState *env, int csrno)
164 {
165     if (riscv_cpu_mxl(env) != MXL_RV32) {
166         return RISCV_EXCP_ILLEGAL_INST;
167     }
168 
169     return ctr(env, csrno);
170 }
171 
172 static RISCVException zcmt(CPURISCVState *env, int csrno)
173 {
174     if (!riscv_cpu_cfg(env)->ext_zcmt) {
175         return RISCV_EXCP_ILLEGAL_INST;
176     }
177 
178 #if !defined(CONFIG_USER_ONLY)
179     RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT);
180     if (ret != RISCV_EXCP_NONE) {
181         return ret;
182     }
183 #endif
184 
185     return RISCV_EXCP_NONE;
186 }
187 
188 #if !defined(CONFIG_USER_ONLY)
189 static RISCVException mctr(CPURISCVState *env, int csrno)
190 {
191     RISCVCPU *cpu = env_archcpu(env);
192     uint32_t pmu_avail_ctrs = cpu->pmu_avail_ctrs;
193     int ctr_index;
194     int base_csrno = CSR_MHPMCOUNTER3;
195 
196     if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) {
197         /* Offset for RV32 mhpmcounternh counters */
198         base_csrno += 0x80;
199     }
200     ctr_index = csrno - base_csrno;
201     if ((BIT(ctr_index) & pmu_avail_ctrs >> 3) == 0) {
202         /* The PMU is not enabled or counter is out of range */
203         return RISCV_EXCP_ILLEGAL_INST;
204     }
205 
206     return RISCV_EXCP_NONE;
207 }
208 
209 static RISCVException mctr32(CPURISCVState *env, int csrno)
210 {
211     if (riscv_cpu_mxl(env) != MXL_RV32) {
212         return RISCV_EXCP_ILLEGAL_INST;
213     }
214 
215     return mctr(env, csrno);
216 }
217 
218 static RISCVException sscofpmf(CPURISCVState *env, int csrno)
219 {
220     if (!riscv_cpu_cfg(env)->ext_sscofpmf) {
221         return RISCV_EXCP_ILLEGAL_INST;
222     }
223 
224     return RISCV_EXCP_NONE;
225 }
226 
227 static RISCVException any(CPURISCVState *env, int csrno)
228 {
229     return RISCV_EXCP_NONE;
230 }
231 
232 static RISCVException any32(CPURISCVState *env, int csrno)
233 {
234     if (riscv_cpu_mxl(env) != MXL_RV32) {
235         return RISCV_EXCP_ILLEGAL_INST;
236     }
237 
238     return any(env, csrno);
239 
240 }
241 
242 static int aia_any(CPURISCVState *env, int csrno)
243 {
244     if (!riscv_cpu_cfg(env)->ext_smaia) {
245         return RISCV_EXCP_ILLEGAL_INST;
246     }
247 
248     return any(env, csrno);
249 }
250 
251 static int aia_any32(CPURISCVState *env, int csrno)
252 {
253     if (!riscv_cpu_cfg(env)->ext_smaia) {
254         return RISCV_EXCP_ILLEGAL_INST;
255     }
256 
257     return any32(env, csrno);
258 }
259 
260 static RISCVException smode(CPURISCVState *env, int csrno)
261 {
262     if (riscv_has_ext(env, RVS)) {
263         return RISCV_EXCP_NONE;
264     }
265 
266     return RISCV_EXCP_ILLEGAL_INST;
267 }
268 
269 static int smode32(CPURISCVState *env, int csrno)
270 {
271     if (riscv_cpu_mxl(env) != MXL_RV32) {
272         return RISCV_EXCP_ILLEGAL_INST;
273     }
274 
275     return smode(env, csrno);
276 }
277 
278 static int aia_smode(CPURISCVState *env, int csrno)
279 {
280     if (!riscv_cpu_cfg(env)->ext_ssaia) {
281         return RISCV_EXCP_ILLEGAL_INST;
282     }
283 
284     return smode(env, csrno);
285 }
286 
287 static int aia_smode32(CPURISCVState *env, int csrno)
288 {
289     if (!riscv_cpu_cfg(env)->ext_ssaia) {
290         return RISCV_EXCP_ILLEGAL_INST;
291     }
292 
293     return smode32(env, csrno);
294 }
295 
296 static RISCVException hmode(CPURISCVState *env, int csrno)
297 {
298     if (riscv_has_ext(env, RVH)) {
299         return RISCV_EXCP_NONE;
300     }
301 
302     return RISCV_EXCP_ILLEGAL_INST;
303 }
304 
305 static RISCVException hmode32(CPURISCVState *env, int csrno)
306 {
307     if (riscv_cpu_mxl(env) != MXL_RV32) {
308         return RISCV_EXCP_ILLEGAL_INST;
309     }
310 
311     return hmode(env, csrno);
312 
313 }
314 
315 static RISCVException umode(CPURISCVState *env, int csrno)
316 {
317     if (riscv_has_ext(env, RVU)) {
318         return RISCV_EXCP_NONE;
319     }
320 
321     return RISCV_EXCP_ILLEGAL_INST;
322 }
323 
324 static RISCVException umode32(CPURISCVState *env, int csrno)
325 {
326     if (riscv_cpu_mxl(env) != MXL_RV32) {
327         return RISCV_EXCP_ILLEGAL_INST;
328     }
329 
330     return umode(env, csrno);
331 }
332 
333 static RISCVException mstateen(CPURISCVState *env, int csrno)
334 {
335     if (!riscv_cpu_cfg(env)->ext_smstateen) {
336         return RISCV_EXCP_ILLEGAL_INST;
337     }
338 
339     return any(env, csrno);
340 }
341 
342 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base)
343 {
344     if (!riscv_cpu_cfg(env)->ext_smstateen) {
345         return RISCV_EXCP_ILLEGAL_INST;
346     }
347 
348     RISCVException ret = hmode(env, csrno);
349     if (ret != RISCV_EXCP_NONE) {
350         return ret;
351     }
352 
353     if (env->debugger) {
354         return RISCV_EXCP_NONE;
355     }
356 
357     if (env->priv < PRV_M) {
358         if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) {
359             return RISCV_EXCP_ILLEGAL_INST;
360         }
361     }
362 
363     return RISCV_EXCP_NONE;
364 }
365 
366 static RISCVException hstateen(CPURISCVState *env, int csrno)
367 {
368     return hstateen_pred(env, csrno, CSR_HSTATEEN0);
369 }
370 
371 static RISCVException hstateenh(CPURISCVState *env, int csrno)
372 {
373     return hstateen_pred(env, csrno, CSR_HSTATEEN0H);
374 }
375 
376 static RISCVException sstateen(CPURISCVState *env, int csrno)
377 {
378     bool virt = env->virt_enabled;
379     int index = csrno - CSR_SSTATEEN0;
380 
381     if (!riscv_cpu_cfg(env)->ext_smstateen) {
382         return RISCV_EXCP_ILLEGAL_INST;
383     }
384 
385     RISCVException ret = smode(env, csrno);
386     if (ret != RISCV_EXCP_NONE) {
387         return ret;
388     }
389 
390     if (env->debugger) {
391         return RISCV_EXCP_NONE;
392     }
393 
394     if (env->priv < PRV_M) {
395         if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) {
396             return RISCV_EXCP_ILLEGAL_INST;
397         }
398 
399         if (virt) {
400             if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) {
401                 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
402             }
403         }
404     }
405 
406     return RISCV_EXCP_NONE;
407 }
408 
409 static RISCVException sstc(CPURISCVState *env, int csrno)
410 {
411     bool hmode_check = false;
412 
413     if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) {
414         return RISCV_EXCP_ILLEGAL_INST;
415     }
416 
417     if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) {
418         hmode_check = true;
419     }
420 
421     RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno);
422     if (ret != RISCV_EXCP_NONE) {
423         return ret;
424     }
425 
426     if (env->debugger) {
427         return RISCV_EXCP_NONE;
428     }
429 
430     if (env->priv == PRV_M) {
431         return RISCV_EXCP_NONE;
432     }
433 
434     /*
435      * No need of separate function for rv32 as menvcfg stores both menvcfg
436      * menvcfgh for RV32.
437      */
438     if (!(get_field(env->mcounteren, COUNTEREN_TM) &&
439           get_field(env->menvcfg, MENVCFG_STCE))) {
440         return RISCV_EXCP_ILLEGAL_INST;
441     }
442 
443     if (env->virt_enabled) {
444         if (!(get_field(env->hcounteren, COUNTEREN_TM) &&
445               get_field(env->henvcfg, HENVCFG_STCE))) {
446             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
447         }
448     }
449 
450     return RISCV_EXCP_NONE;
451 }
452 
453 static RISCVException sstc_32(CPURISCVState *env, int csrno)
454 {
455     if (riscv_cpu_mxl(env) != MXL_RV32) {
456         return RISCV_EXCP_ILLEGAL_INST;
457     }
458 
459     return sstc(env, csrno);
460 }
461 
462 static RISCVException satp(CPURISCVState *env, int csrno)
463 {
464     if (env->priv == PRV_S && !env->virt_enabled &&
465         get_field(env->mstatus, MSTATUS_TVM)) {
466         return RISCV_EXCP_ILLEGAL_INST;
467     }
468     if (env->priv == PRV_S && env->virt_enabled &&
469         get_field(env->hstatus, HSTATUS_VTVM)) {
470         return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
471     }
472 
473     return smode(env, csrno);
474 }
475 
476 static RISCVException hgatp(CPURISCVState *env, int csrno)
477 {
478     if (env->priv == PRV_S && !env->virt_enabled &&
479         get_field(env->mstatus, MSTATUS_TVM)) {
480         return RISCV_EXCP_ILLEGAL_INST;
481     }
482 
483     return hmode(env, csrno);
484 }
485 
486 /* Checks if PointerMasking registers could be accessed */
487 static RISCVException pointer_masking(CPURISCVState *env, int csrno)
488 {
489     /* Check if j-ext is present */
490     if (riscv_has_ext(env, RVJ)) {
491         return RISCV_EXCP_NONE;
492     }
493     return RISCV_EXCP_ILLEGAL_INST;
494 }
495 
496 static int aia_hmode(CPURISCVState *env, int csrno)
497 {
498     if (!riscv_cpu_cfg(env)->ext_ssaia) {
499         return RISCV_EXCP_ILLEGAL_INST;
500      }
501 
502      return hmode(env, csrno);
503 }
504 
505 static int aia_hmode32(CPURISCVState *env, int csrno)
506 {
507     if (!riscv_cpu_cfg(env)->ext_ssaia) {
508         return RISCV_EXCP_ILLEGAL_INST;
509     }
510 
511     return hmode32(env, csrno);
512 }
513 
514 static RISCVException pmp(CPURISCVState *env, int csrno)
515 {
516     if (riscv_cpu_cfg(env)->pmp) {
517         if (csrno <= CSR_PMPCFG3) {
518             uint32_t reg_index = csrno - CSR_PMPCFG0;
519 
520             /* TODO: RV128 restriction check */
521             if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) {
522                 return RISCV_EXCP_ILLEGAL_INST;
523             }
524         }
525 
526         return RISCV_EXCP_NONE;
527     }
528 
529     return RISCV_EXCP_ILLEGAL_INST;
530 }
531 
532 static RISCVException have_mseccfg(CPURISCVState *env, int csrno)
533 {
534     if (riscv_cpu_cfg(env)->ext_smepmp) {
535         return RISCV_EXCP_NONE;
536     }
537     if (riscv_cpu_cfg(env)->ext_zkr) {
538         return RISCV_EXCP_NONE;
539     }
540 
541     return RISCV_EXCP_ILLEGAL_INST;
542 }
543 
544 static RISCVException debug(CPURISCVState *env, int csrno)
545 {
546     if (riscv_cpu_cfg(env)->debug) {
547         return RISCV_EXCP_NONE;
548     }
549 
550     return RISCV_EXCP_ILLEGAL_INST;
551 }
552 #endif
553 
554 static RISCVException seed(CPURISCVState *env, int csrno)
555 {
556     if (!riscv_cpu_cfg(env)->ext_zkr) {
557         return RISCV_EXCP_ILLEGAL_INST;
558     }
559 
560 #if !defined(CONFIG_USER_ONLY)
561     if (env->debugger) {
562         return RISCV_EXCP_NONE;
563     }
564 
565     /*
566      * With a CSR read-write instruction:
567      * 1) The seed CSR is always available in machine mode as normal.
568      * 2) Attempted access to seed from virtual modes VS and VU always raises
569      * an exception(virtual instruction exception only if mseccfg.sseed=1).
570      * 3) Without the corresponding access control bit set to 1, any attempted
571      * access to seed from U, S or HS modes will raise an illegal instruction
572      * exception.
573      */
574     if (env->priv == PRV_M) {
575         return RISCV_EXCP_NONE;
576     } else if (env->virt_enabled) {
577         if (env->mseccfg & MSECCFG_SSEED) {
578             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
579         } else {
580             return RISCV_EXCP_ILLEGAL_INST;
581         }
582     } else {
583         if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) {
584             return RISCV_EXCP_NONE;
585         } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) {
586             return RISCV_EXCP_NONE;
587         } else {
588             return RISCV_EXCP_ILLEGAL_INST;
589         }
590     }
591 #else
592     return RISCV_EXCP_NONE;
593 #endif
594 }
595 
596 /* User Floating-Point CSRs */
597 static RISCVException read_fflags(CPURISCVState *env, int csrno,
598                                   target_ulong *val)
599 {
600     *val = riscv_cpu_get_fflags(env);
601     return RISCV_EXCP_NONE;
602 }
603 
604 static RISCVException write_fflags(CPURISCVState *env, int csrno,
605                                    target_ulong val)
606 {
607 #if !defined(CONFIG_USER_ONLY)
608     if (riscv_has_ext(env, RVF)) {
609         env->mstatus |= MSTATUS_FS;
610     }
611 #endif
612     riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT));
613     return RISCV_EXCP_NONE;
614 }
615 
616 static RISCVException read_frm(CPURISCVState *env, int csrno,
617                                target_ulong *val)
618 {
619     *val = env->frm;
620     return RISCV_EXCP_NONE;
621 }
622 
623 static RISCVException write_frm(CPURISCVState *env, int csrno,
624                                 target_ulong val)
625 {
626 #if !defined(CONFIG_USER_ONLY)
627     if (riscv_has_ext(env, RVF)) {
628         env->mstatus |= MSTATUS_FS;
629     }
630 #endif
631     env->frm = val & (FSR_RD >> FSR_RD_SHIFT);
632     return RISCV_EXCP_NONE;
633 }
634 
635 static RISCVException read_fcsr(CPURISCVState *env, int csrno,
636                                 target_ulong *val)
637 {
638     *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT)
639         | (env->frm << FSR_RD_SHIFT);
640     return RISCV_EXCP_NONE;
641 }
642 
643 static RISCVException write_fcsr(CPURISCVState *env, int csrno,
644                                  target_ulong val)
645 {
646 #if !defined(CONFIG_USER_ONLY)
647     if (riscv_has_ext(env, RVF)) {
648         env->mstatus |= MSTATUS_FS;
649     }
650 #endif
651     env->frm = (val & FSR_RD) >> FSR_RD_SHIFT;
652     riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT);
653     return RISCV_EXCP_NONE;
654 }
655 
656 static RISCVException read_vtype(CPURISCVState *env, int csrno,
657                                  target_ulong *val)
658 {
659     uint64_t vill;
660     switch (env->xl) {
661     case MXL_RV32:
662         vill = (uint32_t)env->vill << 31;
663         break;
664     case MXL_RV64:
665         vill = (uint64_t)env->vill << 63;
666         break;
667     default:
668         g_assert_not_reached();
669     }
670     *val = (target_ulong)vill | env->vtype;
671     return RISCV_EXCP_NONE;
672 }
673 
674 static RISCVException read_vl(CPURISCVState *env, int csrno,
675                               target_ulong *val)
676 {
677     *val = env->vl;
678     return RISCV_EXCP_NONE;
679 }
680 
681 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val)
682 {
683     *val = riscv_cpu_cfg(env)->vlen >> 3;
684     return RISCV_EXCP_NONE;
685 }
686 
687 static RISCVException read_vxrm(CPURISCVState *env, int csrno,
688                                 target_ulong *val)
689 {
690     *val = env->vxrm;
691     return RISCV_EXCP_NONE;
692 }
693 
694 static RISCVException write_vxrm(CPURISCVState *env, int csrno,
695                                  target_ulong val)
696 {
697 #if !defined(CONFIG_USER_ONLY)
698     env->mstatus |= MSTATUS_VS;
699 #endif
700     env->vxrm = val;
701     return RISCV_EXCP_NONE;
702 }
703 
704 static RISCVException read_vxsat(CPURISCVState *env, int csrno,
705                                  target_ulong *val)
706 {
707     *val = env->vxsat;
708     return RISCV_EXCP_NONE;
709 }
710 
711 static RISCVException write_vxsat(CPURISCVState *env, int csrno,
712                                   target_ulong val)
713 {
714 #if !defined(CONFIG_USER_ONLY)
715     env->mstatus |= MSTATUS_VS;
716 #endif
717     env->vxsat = val;
718     return RISCV_EXCP_NONE;
719 }
720 
721 static RISCVException read_vstart(CPURISCVState *env, int csrno,
722                                   target_ulong *val)
723 {
724     *val = env->vstart;
725     return RISCV_EXCP_NONE;
726 }
727 
728 static RISCVException write_vstart(CPURISCVState *env, int csrno,
729                                    target_ulong val)
730 {
731 #if !defined(CONFIG_USER_ONLY)
732     env->mstatus |= MSTATUS_VS;
733 #endif
734     /*
735      * The vstart CSR is defined to have only enough writable bits
736      * to hold the largest element index, i.e. lg2(VLEN) bits.
737      */
738     env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlen));
739     return RISCV_EXCP_NONE;
740 }
741 
742 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val)
743 {
744     *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT);
745     return RISCV_EXCP_NONE;
746 }
747 
748 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val)
749 {
750 #if !defined(CONFIG_USER_ONLY)
751     env->mstatus |= MSTATUS_VS;
752 #endif
753     env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT;
754     env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT;
755     return RISCV_EXCP_NONE;
756 }
757 
758 /* User Timers and Counters */
759 static target_ulong get_ticks(bool shift)
760 {
761     int64_t val;
762     target_ulong result;
763 
764 #if !defined(CONFIG_USER_ONLY)
765     if (icount_enabled()) {
766         val = icount_get();
767     } else {
768         val = cpu_get_host_ticks();
769     }
770 #else
771     val = cpu_get_host_ticks();
772 #endif
773 
774     if (shift) {
775         result = val >> 32;
776     } else {
777         result = val;
778     }
779 
780     return result;
781 }
782 
783 #if defined(CONFIG_USER_ONLY)
784 static RISCVException read_time(CPURISCVState *env, int csrno,
785                                 target_ulong *val)
786 {
787     *val = cpu_get_host_ticks();
788     return RISCV_EXCP_NONE;
789 }
790 
791 static RISCVException read_timeh(CPURISCVState *env, int csrno,
792                                  target_ulong *val)
793 {
794     *val = cpu_get_host_ticks() >> 32;
795     return RISCV_EXCP_NONE;
796 }
797 
798 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val)
799 {
800     *val = get_ticks(false);
801     return RISCV_EXCP_NONE;
802 }
803 
804 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val)
805 {
806     *val = get_ticks(true);
807     return RISCV_EXCP_NONE;
808 }
809 
810 #else /* CONFIG_USER_ONLY */
811 
812 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val)
813 {
814     int evt_index = csrno - CSR_MCOUNTINHIBIT;
815 
816     *val = env->mhpmevent_val[evt_index];
817 
818     return RISCV_EXCP_NONE;
819 }
820 
821 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val)
822 {
823     int evt_index = csrno - CSR_MCOUNTINHIBIT;
824     uint64_t mhpmevt_val = val;
825 
826     env->mhpmevent_val[evt_index] = val;
827 
828     if (riscv_cpu_mxl(env) == MXL_RV32) {
829         mhpmevt_val = mhpmevt_val |
830                       ((uint64_t)env->mhpmeventh_val[evt_index] << 32);
831     }
832     riscv_pmu_update_event_map(env, mhpmevt_val, evt_index);
833 
834     return RISCV_EXCP_NONE;
835 }
836 
837 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val)
838 {
839     int evt_index = csrno - CSR_MHPMEVENT3H + 3;
840 
841     *val = env->mhpmeventh_val[evt_index];
842 
843     return RISCV_EXCP_NONE;
844 }
845 
846 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val)
847 {
848     int evt_index = csrno - CSR_MHPMEVENT3H + 3;
849     uint64_t mhpmevth_val = val;
850     uint64_t mhpmevt_val = env->mhpmevent_val[evt_index];
851 
852     mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32);
853     env->mhpmeventh_val[evt_index] = val;
854 
855     riscv_pmu_update_event_map(env, mhpmevt_val, evt_index);
856 
857     return RISCV_EXCP_NONE;
858 }
859 
860 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val)
861 {
862     int ctr_idx = csrno - CSR_MCYCLE;
863     PMUCTRState *counter = &env->pmu_ctrs[ctr_idx];
864     uint64_t mhpmctr_val = val;
865 
866     counter->mhpmcounter_val = val;
867     if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) ||
868         riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) {
869         counter->mhpmcounter_prev = get_ticks(false);
870         if (ctr_idx > 2) {
871             if (riscv_cpu_mxl(env) == MXL_RV32) {
872                 mhpmctr_val = mhpmctr_val |
873                               ((uint64_t)counter->mhpmcounterh_val << 32);
874             }
875             riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx);
876         }
877      } else {
878         /* Other counters can keep incrementing from the given value */
879         counter->mhpmcounter_prev = val;
880     }
881 
882     return RISCV_EXCP_NONE;
883 }
884 
885 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val)
886 {
887     int ctr_idx = csrno - CSR_MCYCLEH;
888     PMUCTRState *counter = &env->pmu_ctrs[ctr_idx];
889     uint64_t mhpmctr_val = counter->mhpmcounter_val;
890     uint64_t mhpmctrh_val = val;
891 
892     counter->mhpmcounterh_val = val;
893     mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32);
894     if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) ||
895         riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) {
896         counter->mhpmcounterh_prev = get_ticks(true);
897         if (ctr_idx > 2) {
898             riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx);
899         }
900     } else {
901         counter->mhpmcounterh_prev = val;
902     }
903 
904     return RISCV_EXCP_NONE;
905 }
906 
907 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val,
908                                          bool upper_half, uint32_t ctr_idx)
909 {
910     PMUCTRState *counter = &env->pmu_ctrs[ctr_idx];
911     target_ulong ctr_prev = upper_half ? counter->mhpmcounterh_prev :
912                                          counter->mhpmcounter_prev;
913     target_ulong ctr_val = upper_half ? counter->mhpmcounterh_val :
914                                         counter->mhpmcounter_val;
915 
916     if (get_field(env->mcountinhibit, BIT(ctr_idx))) {
917         /*
918          * Counter should not increment if inhibit bit is set. We can't really
919          * stop the icount counting. Just return the counter value written by
920          * the supervisor to indicate that counter was not incremented.
921          */
922         if (!counter->started) {
923             *val = ctr_val;
924             return RISCV_EXCP_NONE;
925         } else {
926             /* Mark that the counter has been stopped */
927             counter->started = false;
928         }
929     }
930 
931     /*
932      * The kernel computes the perf delta by subtracting the current value from
933      * the value it initialized previously (ctr_val).
934      */
935     if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) ||
936         riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) {
937         *val = get_ticks(upper_half) - ctr_prev + ctr_val;
938     } else {
939         *val = ctr_val;
940     }
941 
942     return RISCV_EXCP_NONE;
943 }
944 
945 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val)
946 {
947     uint16_t ctr_index;
948 
949     if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) {
950         ctr_index = csrno - CSR_MCYCLE;
951     } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) {
952         ctr_index = csrno - CSR_CYCLE;
953     } else {
954         return RISCV_EXCP_ILLEGAL_INST;
955     }
956 
957     return riscv_pmu_read_ctr(env, val, false, ctr_index);
958 }
959 
960 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val)
961 {
962     uint16_t ctr_index;
963 
964     if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) {
965         ctr_index = csrno - CSR_MCYCLEH;
966     } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) {
967         ctr_index = csrno - CSR_CYCLEH;
968     } else {
969         return RISCV_EXCP_ILLEGAL_INST;
970     }
971 
972     return riscv_pmu_read_ctr(env, val, true, ctr_index);
973 }
974 
975 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val)
976 {
977     int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT;
978     int i;
979     *val = 0;
980     target_ulong *mhpm_evt_val;
981     uint64_t of_bit_mask;
982 
983     if (riscv_cpu_mxl(env) == MXL_RV32) {
984         mhpm_evt_val = env->mhpmeventh_val;
985         of_bit_mask = MHPMEVENTH_BIT_OF;
986     } else {
987         mhpm_evt_val = env->mhpmevent_val;
988         of_bit_mask = MHPMEVENT_BIT_OF;
989     }
990 
991     for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) {
992         if ((get_field(env->mcounteren, BIT(i))) &&
993             (mhpm_evt_val[i] & of_bit_mask)) {
994                     *val |= BIT(i);
995             }
996     }
997 
998     return RISCV_EXCP_NONE;
999 }
1000 
1001 static RISCVException read_time(CPURISCVState *env, int csrno,
1002                                 target_ulong *val)
1003 {
1004     uint64_t delta = env->virt_enabled ? env->htimedelta : 0;
1005 
1006     if (!env->rdtime_fn) {
1007         return RISCV_EXCP_ILLEGAL_INST;
1008     }
1009 
1010     *val = env->rdtime_fn(env->rdtime_fn_arg) + delta;
1011     return RISCV_EXCP_NONE;
1012 }
1013 
1014 static RISCVException read_timeh(CPURISCVState *env, int csrno,
1015                                  target_ulong *val)
1016 {
1017     uint64_t delta = env->virt_enabled ? env->htimedelta : 0;
1018 
1019     if (!env->rdtime_fn) {
1020         return RISCV_EXCP_ILLEGAL_INST;
1021     }
1022 
1023     *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32;
1024     return RISCV_EXCP_NONE;
1025 }
1026 
1027 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno,
1028                                      target_ulong *val)
1029 {
1030     *val = env->vstimecmp;
1031 
1032     return RISCV_EXCP_NONE;
1033 }
1034 
1035 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno,
1036                                       target_ulong *val)
1037 {
1038     *val = env->vstimecmp >> 32;
1039 
1040     return RISCV_EXCP_NONE;
1041 }
1042 
1043 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno,
1044                                       target_ulong val)
1045 {
1046     if (riscv_cpu_mxl(env) == MXL_RV32) {
1047         env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val);
1048     } else {
1049         env->vstimecmp = val;
1050     }
1051 
1052     riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp,
1053                               env->htimedelta, MIP_VSTIP);
1054 
1055     return RISCV_EXCP_NONE;
1056 }
1057 
1058 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno,
1059                                        target_ulong val)
1060 {
1061     env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val);
1062     riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp,
1063                               env->htimedelta, MIP_VSTIP);
1064 
1065     return RISCV_EXCP_NONE;
1066 }
1067 
1068 static RISCVException read_stimecmp(CPURISCVState *env, int csrno,
1069                                     target_ulong *val)
1070 {
1071     if (env->virt_enabled) {
1072         *val = env->vstimecmp;
1073     } else {
1074         *val = env->stimecmp;
1075     }
1076 
1077     return RISCV_EXCP_NONE;
1078 }
1079 
1080 static RISCVException read_stimecmph(CPURISCVState *env, int csrno,
1081                                      target_ulong *val)
1082 {
1083     if (env->virt_enabled) {
1084         *val = env->vstimecmp >> 32;
1085     } else {
1086         *val = env->stimecmp >> 32;
1087     }
1088 
1089     return RISCV_EXCP_NONE;
1090 }
1091 
1092 static RISCVException write_stimecmp(CPURISCVState *env, int csrno,
1093                                      target_ulong val)
1094 {
1095     if (env->virt_enabled) {
1096         if (env->hvictl & HVICTL_VTI) {
1097             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
1098         }
1099         return write_vstimecmp(env, csrno, val);
1100     }
1101 
1102     if (riscv_cpu_mxl(env) == MXL_RV32) {
1103         env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val);
1104     } else {
1105         env->stimecmp = val;
1106     }
1107 
1108     riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP);
1109 
1110     return RISCV_EXCP_NONE;
1111 }
1112 
1113 static RISCVException write_stimecmph(CPURISCVState *env, int csrno,
1114                                       target_ulong val)
1115 {
1116     if (env->virt_enabled) {
1117         if (env->hvictl & HVICTL_VTI) {
1118             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
1119         }
1120         return write_vstimecmph(env, csrno, val);
1121     }
1122 
1123     env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val);
1124     riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP);
1125 
1126     return RISCV_EXCP_NONE;
1127 }
1128 
1129 #define VSTOPI_NUM_SRCS 5
1130 
1131 #define LOCAL_INTERRUPTS (~0x1FFF)
1132 
1133 static const uint64_t delegable_ints =
1134     S_MODE_INTERRUPTS | VS_MODE_INTERRUPTS | MIP_LCOFIP;
1135 static const uint64_t vs_delegable_ints =
1136     (VS_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & ~MIP_LCOFIP;
1137 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS |
1138                                      HS_MODE_INTERRUPTS | LOCAL_INTERRUPTS;
1139 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \
1140                          (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \
1141                          (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \
1142                          (1ULL << (RISCV_EXCP_BREAKPOINT)) | \
1143                          (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \
1144                          (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \
1145                          (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \
1146                          (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \
1147                          (1ULL << (RISCV_EXCP_U_ECALL)) | \
1148                          (1ULL << (RISCV_EXCP_S_ECALL)) | \
1149                          (1ULL << (RISCV_EXCP_VS_ECALL)) | \
1150                          (1ULL << (RISCV_EXCP_M_ECALL)) | \
1151                          (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \
1152                          (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \
1153                          (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \
1154                          (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \
1155                          (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \
1156                          (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \
1157                          (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT)))
1158 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS &
1159     ~((1ULL << (RISCV_EXCP_S_ECALL)) |
1160       (1ULL << (RISCV_EXCP_VS_ECALL)) |
1161       (1ULL << (RISCV_EXCP_M_ECALL)) |
1162       (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) |
1163       (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) |
1164       (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) |
1165       (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT)));
1166 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE |
1167     SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS |
1168     SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS;
1169 
1170 /*
1171  * Spec allows for bits 13:63 to be either read-only or writable.
1172  * So far we have interrupt LCOFIP in that region which is writable.
1173  *
1174  * Also, spec allows to inject virtual interrupts in this region even
1175  * without any hardware interrupts for that interrupt number.
1176  *
1177  * For now interrupt in 13:63 region are all kept writable. 13 being
1178  * LCOFIP and 14:63 being virtual only. Change this in future if we
1179  * introduce more interrupts that are not writable.
1180  */
1181 
1182 /* Bit STIP can be an alias of mip.STIP that's why it's writable in mvip. */
1183 static const target_ulong mvip_writable_mask = MIP_SSIP | MIP_STIP | MIP_SEIP |
1184                                     LOCAL_INTERRUPTS;
1185 static const target_ulong mvien_writable_mask = MIP_SSIP | MIP_SEIP |
1186                                     LOCAL_INTERRUPTS;
1187 
1188 static const target_ulong sip_writable_mask = SIP_SSIP | LOCAL_INTERRUPTS;
1189 static const target_ulong hip_writable_mask = MIP_VSSIP;
1190 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP |
1191                                     MIP_VSEIP | LOCAL_INTERRUPTS;
1192 static const target_ulong hvien_writable_mask = LOCAL_INTERRUPTS;
1193 
1194 static const target_ulong vsip_writable_mask = MIP_VSSIP | LOCAL_INTERRUPTS;
1195 
1196 const bool valid_vm_1_10_32[16] = {
1197     [VM_1_10_MBARE] = true,
1198     [VM_1_10_SV32] = true
1199 };
1200 
1201 const bool valid_vm_1_10_64[16] = {
1202     [VM_1_10_MBARE] = true,
1203     [VM_1_10_SV39] = true,
1204     [VM_1_10_SV48] = true,
1205     [VM_1_10_SV57] = true
1206 };
1207 
1208 /* Machine Information Registers */
1209 static RISCVException read_zero(CPURISCVState *env, int csrno,
1210                                 target_ulong *val)
1211 {
1212     *val = 0;
1213     return RISCV_EXCP_NONE;
1214 }
1215 
1216 static RISCVException write_ignore(CPURISCVState *env, int csrno,
1217                                    target_ulong val)
1218 {
1219     return RISCV_EXCP_NONE;
1220 }
1221 
1222 static RISCVException read_mvendorid(CPURISCVState *env, int csrno,
1223                                      target_ulong *val)
1224 {
1225     *val = riscv_cpu_cfg(env)->mvendorid;
1226     return RISCV_EXCP_NONE;
1227 }
1228 
1229 static RISCVException read_marchid(CPURISCVState *env, int csrno,
1230                                    target_ulong *val)
1231 {
1232     *val = riscv_cpu_cfg(env)->marchid;
1233     return RISCV_EXCP_NONE;
1234 }
1235 
1236 static RISCVException read_mimpid(CPURISCVState *env, int csrno,
1237                                   target_ulong *val)
1238 {
1239     *val = riscv_cpu_cfg(env)->mimpid;
1240     return RISCV_EXCP_NONE;
1241 }
1242 
1243 static RISCVException read_mhartid(CPURISCVState *env, int csrno,
1244                                    target_ulong *val)
1245 {
1246     *val = env->mhartid;
1247     return RISCV_EXCP_NONE;
1248 }
1249 
1250 /* Machine Trap Setup */
1251 
1252 /* We do not store SD explicitly, only compute it on demand. */
1253 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status)
1254 {
1255     if ((status & MSTATUS_FS) == MSTATUS_FS ||
1256         (status & MSTATUS_VS) == MSTATUS_VS ||
1257         (status & MSTATUS_XS) == MSTATUS_XS) {
1258         switch (xl) {
1259         case MXL_RV32:
1260             return status | MSTATUS32_SD;
1261         case MXL_RV64:
1262             return status | MSTATUS64_SD;
1263         case MXL_RV128:
1264             return MSTATUSH128_SD;
1265         default:
1266             g_assert_not_reached();
1267         }
1268     }
1269     return status;
1270 }
1271 
1272 static RISCVException read_mstatus(CPURISCVState *env, int csrno,
1273                                    target_ulong *val)
1274 {
1275     *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus);
1276     return RISCV_EXCP_NONE;
1277 }
1278 
1279 static bool validate_vm(CPURISCVState *env, target_ulong vm)
1280 {
1281     return (vm & 0xf) <=
1282            satp_mode_max_from_map(riscv_cpu_cfg(env)->satp_mode.map);
1283 }
1284 
1285 static target_ulong legalize_mpp(CPURISCVState *env, target_ulong old_mpp,
1286                                  target_ulong val)
1287 {
1288     bool valid = false;
1289     target_ulong new_mpp = get_field(val, MSTATUS_MPP);
1290 
1291     switch (new_mpp) {
1292     case PRV_M:
1293         valid = true;
1294         break;
1295     case PRV_S:
1296         valid = riscv_has_ext(env, RVS);
1297         break;
1298     case PRV_U:
1299         valid = riscv_has_ext(env, RVU);
1300         break;
1301     }
1302 
1303     /* Remain field unchanged if new_mpp value is invalid */
1304     if (!valid) {
1305         val = set_field(val, MSTATUS_MPP, old_mpp);
1306     }
1307 
1308     return val;
1309 }
1310 
1311 static RISCVException write_mstatus(CPURISCVState *env, int csrno,
1312                                     target_ulong val)
1313 {
1314     uint64_t mstatus = env->mstatus;
1315     uint64_t mask = 0;
1316     RISCVMXL xl = riscv_cpu_mxl(env);
1317 
1318     /*
1319      * MPP field have been made WARL since priv version 1.11. However,
1320      * legalization for it will not break any software running on 1.10.
1321      */
1322     val = legalize_mpp(env, get_field(mstatus, MSTATUS_MPP), val);
1323 
1324     /* flush tlb on mstatus fields that affect VM */
1325     if ((val ^ mstatus) & MSTATUS_MXR) {
1326         tlb_flush(env_cpu(env));
1327     }
1328     mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE |
1329         MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM |
1330         MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR |
1331         MSTATUS_TW | MSTATUS_VS;
1332 
1333     if (riscv_has_ext(env, RVF)) {
1334         mask |= MSTATUS_FS;
1335     }
1336 
1337     if (xl != MXL_RV32 || env->debugger) {
1338         if (riscv_has_ext(env, RVH)) {
1339             mask |= MSTATUS_MPV | MSTATUS_GVA;
1340         }
1341         if ((val & MSTATUS64_UXL) != 0) {
1342             mask |= MSTATUS64_UXL;
1343         }
1344     }
1345 
1346     mstatus = (mstatus & ~mask) | (val & mask);
1347 
1348     env->mstatus = mstatus;
1349 
1350     /*
1351      * Except in debug mode, UXL/SXL can only be modified by higher
1352      * privilege mode. So xl will not be changed in normal mode.
1353      */
1354     if (env->debugger) {
1355         env->xl = cpu_recompute_xl(env);
1356     }
1357 
1358     riscv_cpu_update_mask(env);
1359     return RISCV_EXCP_NONE;
1360 }
1361 
1362 static RISCVException read_mstatush(CPURISCVState *env, int csrno,
1363                                     target_ulong *val)
1364 {
1365     *val = env->mstatus >> 32;
1366     return RISCV_EXCP_NONE;
1367 }
1368 
1369 static RISCVException write_mstatush(CPURISCVState *env, int csrno,
1370                                      target_ulong val)
1371 {
1372     uint64_t valh = (uint64_t)val << 32;
1373     uint64_t mask = riscv_has_ext(env, RVH) ? MSTATUS_MPV | MSTATUS_GVA : 0;
1374 
1375     env->mstatus = (env->mstatus & ~mask) | (valh & mask);
1376 
1377     return RISCV_EXCP_NONE;
1378 }
1379 
1380 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno,
1381                                         Int128 *val)
1382 {
1383     *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128,
1384                                                       env->mstatus));
1385     return RISCV_EXCP_NONE;
1386 }
1387 
1388 static RISCVException read_misa_i128(CPURISCVState *env, int csrno,
1389                                      Int128 *val)
1390 {
1391     *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62);
1392     return RISCV_EXCP_NONE;
1393 }
1394 
1395 static RISCVException read_misa(CPURISCVState *env, int csrno,
1396                                 target_ulong *val)
1397 {
1398     target_ulong misa;
1399 
1400     switch (env->misa_mxl) {
1401     case MXL_RV32:
1402         misa = (target_ulong)MXL_RV32 << 30;
1403         break;
1404 #ifdef TARGET_RISCV64
1405     case MXL_RV64:
1406         misa = (target_ulong)MXL_RV64 << 62;
1407         break;
1408 #endif
1409     default:
1410         g_assert_not_reached();
1411     }
1412 
1413     *val = misa | env->misa_ext;
1414     return RISCV_EXCP_NONE;
1415 }
1416 
1417 static RISCVException write_misa(CPURISCVState *env, int csrno,
1418                                  target_ulong val)
1419 {
1420     RISCVCPU *cpu = env_archcpu(env);
1421     uint32_t orig_misa_ext = env->misa_ext;
1422     Error *local_err = NULL;
1423 
1424     if (!riscv_cpu_cfg(env)->misa_w) {
1425         /* drop write to misa */
1426         return RISCV_EXCP_NONE;
1427     }
1428 
1429     /* Mask extensions that are not supported by this hart */
1430     val &= env->misa_ext_mask;
1431 
1432     /*
1433      * Suppress 'C' if next instruction is not aligned
1434      * TODO: this should check next_pc
1435      */
1436     if ((val & RVC) && (GETPC() & ~3) != 0) {
1437         val &= ~RVC;
1438     }
1439 
1440     /* Disable RVG if any of its dependencies are disabled */
1441     if (!(val & RVI && val & RVM && val & RVA &&
1442           val & RVF && val & RVD)) {
1443         val &= ~RVG;
1444     }
1445 
1446     /* If nothing changed, do nothing. */
1447     if (val == env->misa_ext) {
1448         return RISCV_EXCP_NONE;
1449     }
1450 
1451     env->misa_ext = val;
1452     riscv_cpu_validate_set_extensions(cpu, &local_err);
1453     if (local_err != NULL) {
1454         /* Rollback on validation error */
1455         qemu_log_mask(LOG_GUEST_ERROR, "Unable to write MISA ext value "
1456                       "0x%x, keeping existing MISA ext 0x%x\n",
1457                       env->misa_ext, orig_misa_ext);
1458 
1459         env->misa_ext = orig_misa_ext;
1460 
1461         return RISCV_EXCP_NONE;
1462     }
1463 
1464     if (!(env->misa_ext & RVF)) {
1465         env->mstatus &= ~MSTATUS_FS;
1466     }
1467 
1468     /* flush translation cache */
1469     tb_flush(env_cpu(env));
1470     env->xl = riscv_cpu_mxl(env);
1471     return RISCV_EXCP_NONE;
1472 }
1473 
1474 static RISCVException read_medeleg(CPURISCVState *env, int csrno,
1475                                    target_ulong *val)
1476 {
1477     *val = env->medeleg;
1478     return RISCV_EXCP_NONE;
1479 }
1480 
1481 static RISCVException write_medeleg(CPURISCVState *env, int csrno,
1482                                     target_ulong val)
1483 {
1484     env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS);
1485     return RISCV_EXCP_NONE;
1486 }
1487 
1488 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno,
1489                                     uint64_t *ret_val,
1490                                     uint64_t new_val, uint64_t wr_mask)
1491 {
1492     uint64_t mask = wr_mask & delegable_ints;
1493 
1494     if (ret_val) {
1495         *ret_val = env->mideleg;
1496     }
1497 
1498     env->mideleg = (env->mideleg & ~mask) | (new_val & mask);
1499 
1500     if (riscv_has_ext(env, RVH)) {
1501         env->mideleg |= HS_MODE_INTERRUPTS;
1502     }
1503 
1504     return RISCV_EXCP_NONE;
1505 }
1506 
1507 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno,
1508                                   target_ulong *ret_val,
1509                                   target_ulong new_val, target_ulong wr_mask)
1510 {
1511     uint64_t rval;
1512     RISCVException ret;
1513 
1514     ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask);
1515     if (ret_val) {
1516         *ret_val = rval;
1517     }
1518 
1519     return ret;
1520 }
1521 
1522 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno,
1523                                    target_ulong *ret_val,
1524                                    target_ulong new_val,
1525                                    target_ulong wr_mask)
1526 {
1527     uint64_t rval;
1528     RISCVException ret;
1529 
1530     ret = rmw_mideleg64(env, csrno, &rval,
1531         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
1532     if (ret_val) {
1533         *ret_val = rval >> 32;
1534     }
1535 
1536     return ret;
1537 }
1538 
1539 static RISCVException rmw_mie64(CPURISCVState *env, int csrno,
1540                                 uint64_t *ret_val,
1541                                 uint64_t new_val, uint64_t wr_mask)
1542 {
1543     uint64_t mask = wr_mask & all_ints;
1544 
1545     if (ret_val) {
1546         *ret_val = env->mie;
1547     }
1548 
1549     env->mie = (env->mie & ~mask) | (new_val & mask);
1550 
1551     if (!riscv_has_ext(env, RVH)) {
1552         env->mie &= ~((uint64_t)HS_MODE_INTERRUPTS);
1553     }
1554 
1555     return RISCV_EXCP_NONE;
1556 }
1557 
1558 static RISCVException rmw_mie(CPURISCVState *env, int csrno,
1559                               target_ulong *ret_val,
1560                               target_ulong new_val, target_ulong wr_mask)
1561 {
1562     uint64_t rval;
1563     RISCVException ret;
1564 
1565     ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask);
1566     if (ret_val) {
1567         *ret_val = rval;
1568     }
1569 
1570     return ret;
1571 }
1572 
1573 static RISCVException rmw_mieh(CPURISCVState *env, int csrno,
1574                                target_ulong *ret_val,
1575                                target_ulong new_val, target_ulong wr_mask)
1576 {
1577     uint64_t rval;
1578     RISCVException ret;
1579 
1580     ret = rmw_mie64(env, csrno, &rval,
1581         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
1582     if (ret_val) {
1583         *ret_val = rval >> 32;
1584     }
1585 
1586     return ret;
1587 }
1588 
1589 static RISCVException rmw_mvien64(CPURISCVState *env, int csrno,
1590                                 uint64_t *ret_val,
1591                                 uint64_t new_val, uint64_t wr_mask)
1592 {
1593     uint64_t mask = wr_mask & mvien_writable_mask;
1594 
1595     if (ret_val) {
1596         *ret_val = env->mvien;
1597     }
1598 
1599     env->mvien = (env->mvien & ~mask) | (new_val & mask);
1600 
1601     return RISCV_EXCP_NONE;
1602 }
1603 
1604 static RISCVException rmw_mvien(CPURISCVState *env, int csrno,
1605                               target_ulong *ret_val,
1606                               target_ulong new_val, target_ulong wr_mask)
1607 {
1608     uint64_t rval;
1609     RISCVException ret;
1610 
1611     ret = rmw_mvien64(env, csrno, &rval, new_val, wr_mask);
1612     if (ret_val) {
1613         *ret_val = rval;
1614     }
1615 
1616     return ret;
1617 }
1618 
1619 static RISCVException rmw_mvienh(CPURISCVState *env, int csrno,
1620                                 target_ulong *ret_val,
1621                                 target_ulong new_val, target_ulong wr_mask)
1622 {
1623     uint64_t rval;
1624     RISCVException ret;
1625 
1626     ret = rmw_mvien64(env, csrno, &rval,
1627         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
1628     if (ret_val) {
1629         *ret_val = rval >> 32;
1630     }
1631 
1632     return ret;
1633 }
1634 
1635 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val)
1636 {
1637     int irq;
1638     uint8_t iprio;
1639 
1640     irq = riscv_cpu_mirq_pending(env);
1641     if (irq <= 0 || irq > 63) {
1642         *val = 0;
1643     } else {
1644         iprio = env->miprio[irq];
1645         if (!iprio) {
1646             if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) {
1647                 iprio = IPRIO_MMAXIPRIO;
1648             }
1649         }
1650         *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT;
1651         *val |= iprio;
1652     }
1653 
1654     return RISCV_EXCP_NONE;
1655 }
1656 
1657 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno)
1658 {
1659     if (!env->virt_enabled) {
1660         return csrno;
1661     }
1662 
1663     switch (csrno) {
1664     case CSR_SISELECT:
1665         return CSR_VSISELECT;
1666     case CSR_SIREG:
1667         return CSR_VSIREG;
1668     case CSR_STOPEI:
1669         return CSR_VSTOPEI;
1670     default:
1671         return csrno;
1672     };
1673 }
1674 
1675 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val,
1676                         target_ulong new_val, target_ulong wr_mask)
1677 {
1678     target_ulong *iselect;
1679 
1680     /* Translate CSR number for VS-mode */
1681     csrno = aia_xlate_vs_csrno(env, csrno);
1682 
1683     /* Find the iselect CSR based on CSR number */
1684     switch (csrno) {
1685     case CSR_MISELECT:
1686         iselect = &env->miselect;
1687         break;
1688     case CSR_SISELECT:
1689         iselect = &env->siselect;
1690         break;
1691     case CSR_VSISELECT:
1692         iselect = &env->vsiselect;
1693         break;
1694     default:
1695          return RISCV_EXCP_ILLEGAL_INST;
1696     };
1697 
1698     if (val) {
1699         *val = *iselect;
1700     }
1701 
1702     wr_mask &= ISELECT_MASK;
1703     if (wr_mask) {
1704         *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask);
1705     }
1706 
1707     return RISCV_EXCP_NONE;
1708 }
1709 
1710 static int rmw_iprio(target_ulong xlen,
1711                      target_ulong iselect, uint8_t *iprio,
1712                      target_ulong *val, target_ulong new_val,
1713                      target_ulong wr_mask, int ext_irq_no)
1714 {
1715     int i, firq, nirqs;
1716     target_ulong old_val;
1717 
1718     if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) {
1719         return -EINVAL;
1720     }
1721     if (xlen != 32 && iselect & 0x1) {
1722         return -EINVAL;
1723     }
1724 
1725     nirqs = 4 * (xlen / 32);
1726     firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs);
1727 
1728     old_val = 0;
1729     for (i = 0; i < nirqs; i++) {
1730         old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i);
1731     }
1732 
1733     if (val) {
1734         *val = old_val;
1735     }
1736 
1737     if (wr_mask) {
1738         new_val = (old_val & ~wr_mask) | (new_val & wr_mask);
1739         for (i = 0; i < nirqs; i++) {
1740             /*
1741              * M-level and S-level external IRQ priority always read-only
1742              * zero. This means default priority order is always preferred
1743              * for M-level and S-level external IRQs.
1744              */
1745             if ((firq + i) == ext_irq_no) {
1746                 continue;
1747             }
1748             iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff;
1749         }
1750     }
1751 
1752     return 0;
1753 }
1754 
1755 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val,
1756                      target_ulong new_val, target_ulong wr_mask)
1757 {
1758     bool virt, isel_reserved;
1759     uint8_t *iprio;
1760     int ret = -EINVAL;
1761     target_ulong priv, isel, vgein;
1762 
1763     /* Translate CSR number for VS-mode */
1764     csrno = aia_xlate_vs_csrno(env, csrno);
1765 
1766     /* Decode register details from CSR number */
1767     virt = false;
1768     isel_reserved = false;
1769     switch (csrno) {
1770     case CSR_MIREG:
1771         iprio = env->miprio;
1772         isel = env->miselect;
1773         priv = PRV_M;
1774         break;
1775     case CSR_SIREG:
1776         if (env->priv == PRV_S && env->mvien & MIP_SEIP &&
1777             env->siselect >= ISELECT_IMSIC_EIDELIVERY &&
1778             env->siselect <= ISELECT_IMSIC_EIE63) {
1779             goto done;
1780         }
1781         iprio = env->siprio;
1782         isel = env->siselect;
1783         priv = PRV_S;
1784         break;
1785     case CSR_VSIREG:
1786         iprio = env->hviprio;
1787         isel = env->vsiselect;
1788         priv = PRV_S;
1789         virt = true;
1790         break;
1791     default:
1792          goto done;
1793     };
1794 
1795     /* Find the selected guest interrupt file */
1796     vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0;
1797 
1798     if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) {
1799         /* Local interrupt priority registers not available for VS-mode */
1800         if (!virt) {
1801             ret = rmw_iprio(riscv_cpu_mxl_bits(env),
1802                             isel, iprio, val, new_val, wr_mask,
1803                             (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT);
1804         }
1805     } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) {
1806         /* IMSIC registers only available when machine implements it. */
1807         if (env->aia_ireg_rmw_fn[priv]) {
1808             /* Selected guest interrupt file should not be zero */
1809             if (virt && (!vgein || env->geilen < vgein)) {
1810                 goto done;
1811             }
1812             /* Call machine specific IMSIC register emulation */
1813             ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv],
1814                                     AIA_MAKE_IREG(isel, priv, virt, vgein,
1815                                                   riscv_cpu_mxl_bits(env)),
1816                                     val, new_val, wr_mask);
1817         }
1818     } else {
1819         isel_reserved = true;
1820     }
1821 
1822 done:
1823     if (ret) {
1824         return (env->virt_enabled && virt && !isel_reserved) ?
1825                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
1826     }
1827     return RISCV_EXCP_NONE;
1828 }
1829 
1830 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val,
1831                       target_ulong new_val, target_ulong wr_mask)
1832 {
1833     bool virt;
1834     int ret = -EINVAL;
1835     target_ulong priv, vgein;
1836 
1837     /* Translate CSR number for VS-mode */
1838     csrno = aia_xlate_vs_csrno(env, csrno);
1839 
1840     /* Decode register details from CSR number */
1841     virt = false;
1842     switch (csrno) {
1843     case CSR_MTOPEI:
1844         priv = PRV_M;
1845         break;
1846     case CSR_STOPEI:
1847         if (env->mvien & MIP_SEIP && env->priv == PRV_S) {
1848             goto done;
1849         }
1850         priv = PRV_S;
1851         break;
1852     case CSR_VSTOPEI:
1853         priv = PRV_S;
1854         virt = true;
1855         break;
1856     default:
1857         goto done;
1858     };
1859 
1860     /* IMSIC CSRs only available when machine implements IMSIC. */
1861     if (!env->aia_ireg_rmw_fn[priv]) {
1862         goto done;
1863     }
1864 
1865     /* Find the selected guest interrupt file */
1866     vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0;
1867 
1868     /* Selected guest interrupt file should be valid */
1869     if (virt && (!vgein || env->geilen < vgein)) {
1870         goto done;
1871     }
1872 
1873     /* Call machine specific IMSIC register emulation for TOPEI */
1874     ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv],
1875                     AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein,
1876                                   riscv_cpu_mxl_bits(env)),
1877                     val, new_val, wr_mask);
1878 
1879 done:
1880     if (ret) {
1881         return (env->virt_enabled && virt) ?
1882                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
1883     }
1884     return RISCV_EXCP_NONE;
1885 }
1886 
1887 static RISCVException read_mtvec(CPURISCVState *env, int csrno,
1888                                  target_ulong *val)
1889 {
1890     *val = env->mtvec;
1891     return RISCV_EXCP_NONE;
1892 }
1893 
1894 static RISCVException write_mtvec(CPURISCVState *env, int csrno,
1895                                   target_ulong val)
1896 {
1897     /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
1898     if ((val & 3) < 2) {
1899         env->mtvec = val;
1900     } else {
1901         qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n");
1902     }
1903     return RISCV_EXCP_NONE;
1904 }
1905 
1906 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno,
1907                                          target_ulong *val)
1908 {
1909     *val = env->mcountinhibit;
1910     return RISCV_EXCP_NONE;
1911 }
1912 
1913 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno,
1914                                           target_ulong val)
1915 {
1916     int cidx;
1917     PMUCTRState *counter;
1918     RISCVCPU *cpu = env_archcpu(env);
1919 
1920     /* WARL register - disable unavailable counters; TM bit is always 0 */
1921     env->mcountinhibit =
1922         val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_IR);
1923 
1924     /* Check if any other counter is also monitoring cycles/instructions */
1925     for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) {
1926         if (!get_field(env->mcountinhibit, BIT(cidx))) {
1927             counter = &env->pmu_ctrs[cidx];
1928             counter->started = true;
1929         }
1930     }
1931 
1932     return RISCV_EXCP_NONE;
1933 }
1934 
1935 static RISCVException read_mcounteren(CPURISCVState *env, int csrno,
1936                                       target_ulong *val)
1937 {
1938     *val = env->mcounteren;
1939     return RISCV_EXCP_NONE;
1940 }
1941 
1942 static RISCVException write_mcounteren(CPURISCVState *env, int csrno,
1943                                        target_ulong val)
1944 {
1945     RISCVCPU *cpu = env_archcpu(env);
1946 
1947     /* WARL register - disable unavailable counters */
1948     env->mcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM |
1949                              COUNTEREN_IR);
1950     return RISCV_EXCP_NONE;
1951 }
1952 
1953 /* Machine Trap Handling */
1954 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno,
1955                                          Int128 *val)
1956 {
1957     *val = int128_make128(env->mscratch, env->mscratchh);
1958     return RISCV_EXCP_NONE;
1959 }
1960 
1961 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno,
1962                                           Int128 val)
1963 {
1964     env->mscratch = int128_getlo(val);
1965     env->mscratchh = int128_gethi(val);
1966     return RISCV_EXCP_NONE;
1967 }
1968 
1969 static RISCVException read_mscratch(CPURISCVState *env, int csrno,
1970                                     target_ulong *val)
1971 {
1972     *val = env->mscratch;
1973     return RISCV_EXCP_NONE;
1974 }
1975 
1976 static RISCVException write_mscratch(CPURISCVState *env, int csrno,
1977                                      target_ulong val)
1978 {
1979     env->mscratch = val;
1980     return RISCV_EXCP_NONE;
1981 }
1982 
1983 static RISCVException read_mepc(CPURISCVState *env, int csrno,
1984                                 target_ulong *val)
1985 {
1986     *val = env->mepc;
1987     return RISCV_EXCP_NONE;
1988 }
1989 
1990 static RISCVException write_mepc(CPURISCVState *env, int csrno,
1991                                  target_ulong val)
1992 {
1993     env->mepc = val;
1994     return RISCV_EXCP_NONE;
1995 }
1996 
1997 static RISCVException read_mcause(CPURISCVState *env, int csrno,
1998                                   target_ulong *val)
1999 {
2000     *val = env->mcause;
2001     return RISCV_EXCP_NONE;
2002 }
2003 
2004 static RISCVException write_mcause(CPURISCVState *env, int csrno,
2005                                    target_ulong val)
2006 {
2007     env->mcause = val;
2008     return RISCV_EXCP_NONE;
2009 }
2010 
2011 static RISCVException read_mtval(CPURISCVState *env, int csrno,
2012                                  target_ulong *val)
2013 {
2014     *val = env->mtval;
2015     return RISCV_EXCP_NONE;
2016 }
2017 
2018 static RISCVException write_mtval(CPURISCVState *env, int csrno,
2019                                   target_ulong val)
2020 {
2021     env->mtval = val;
2022     return RISCV_EXCP_NONE;
2023 }
2024 
2025 /* Execution environment configuration setup */
2026 static RISCVException read_menvcfg(CPURISCVState *env, int csrno,
2027                                    target_ulong *val)
2028 {
2029     *val = env->menvcfg;
2030     return RISCV_EXCP_NONE;
2031 }
2032 
2033 static RISCVException write_menvcfg(CPURISCVState *env, int csrno,
2034                                     target_ulong val)
2035 {
2036     const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
2037     uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE;
2038 
2039     if (riscv_cpu_mxl(env) == MXL_RV64) {
2040         mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) |
2041                 (cfg->ext_sstc ? MENVCFG_STCE : 0) |
2042                 (cfg->ext_svadu ? MENVCFG_ADUE : 0);
2043     }
2044     env->menvcfg = (env->menvcfg & ~mask) | (val & mask);
2045 
2046     return RISCV_EXCP_NONE;
2047 }
2048 
2049 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno,
2050                                     target_ulong *val)
2051 {
2052     *val = env->menvcfg >> 32;
2053     return RISCV_EXCP_NONE;
2054 }
2055 
2056 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno,
2057                                      target_ulong val)
2058 {
2059     const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
2060     uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) |
2061                     (cfg->ext_sstc ? MENVCFG_STCE : 0) |
2062                     (cfg->ext_svadu ? MENVCFG_ADUE : 0);
2063     uint64_t valh = (uint64_t)val << 32;
2064 
2065     env->menvcfg = (env->menvcfg & ~mask) | (valh & mask);
2066 
2067     return RISCV_EXCP_NONE;
2068 }
2069 
2070 static RISCVException read_senvcfg(CPURISCVState *env, int csrno,
2071                                    target_ulong *val)
2072 {
2073     RISCVException ret;
2074 
2075     ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG);
2076     if (ret != RISCV_EXCP_NONE) {
2077         return ret;
2078     }
2079 
2080     *val = env->senvcfg;
2081     return RISCV_EXCP_NONE;
2082 }
2083 
2084 static RISCVException write_senvcfg(CPURISCVState *env, int csrno,
2085                                     target_ulong val)
2086 {
2087     uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE;
2088     RISCVException ret;
2089 
2090     ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG);
2091     if (ret != RISCV_EXCP_NONE) {
2092         return ret;
2093     }
2094 
2095     env->senvcfg = (env->senvcfg & ~mask) | (val & mask);
2096     return RISCV_EXCP_NONE;
2097 }
2098 
2099 static RISCVException read_henvcfg(CPURISCVState *env, int csrno,
2100                                    target_ulong *val)
2101 {
2102     RISCVException ret;
2103 
2104     ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG);
2105     if (ret != RISCV_EXCP_NONE) {
2106         return ret;
2107     }
2108 
2109     /*
2110      * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0
2111      * henvcfg.stce is read_only 0 when menvcfg.stce = 0
2112      * henvcfg.hade is read_only 0 when menvcfg.hade = 0
2113      */
2114     *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) |
2115                            env->menvcfg);
2116     return RISCV_EXCP_NONE;
2117 }
2118 
2119 static RISCVException write_henvcfg(CPURISCVState *env, int csrno,
2120                                     target_ulong val)
2121 {
2122     uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE;
2123     RISCVException ret;
2124 
2125     ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG);
2126     if (ret != RISCV_EXCP_NONE) {
2127         return ret;
2128     }
2129 
2130     if (riscv_cpu_mxl(env) == MXL_RV64) {
2131         mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE);
2132     }
2133 
2134     env->henvcfg = (env->henvcfg & ~mask) | (val & mask);
2135 
2136     return RISCV_EXCP_NONE;
2137 }
2138 
2139 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno,
2140                                     target_ulong *val)
2141 {
2142     RISCVException ret;
2143 
2144     ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG);
2145     if (ret != RISCV_EXCP_NONE) {
2146         return ret;
2147     }
2148 
2149     *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) |
2150                             env->menvcfg)) >> 32;
2151     return RISCV_EXCP_NONE;
2152 }
2153 
2154 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno,
2155                                      target_ulong val)
2156 {
2157     uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE |
2158                                     HENVCFG_ADUE);
2159     uint64_t valh = (uint64_t)val << 32;
2160     RISCVException ret;
2161 
2162     ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG);
2163     if (ret != RISCV_EXCP_NONE) {
2164         return ret;
2165     }
2166 
2167     env->henvcfg = (env->henvcfg & ~mask) | (valh & mask);
2168     return RISCV_EXCP_NONE;
2169 }
2170 
2171 static RISCVException read_mstateen(CPURISCVState *env, int csrno,
2172                                     target_ulong *val)
2173 {
2174     *val = env->mstateen[csrno - CSR_MSTATEEN0];
2175 
2176     return RISCV_EXCP_NONE;
2177 }
2178 
2179 static RISCVException write_mstateen(CPURISCVState *env, int csrno,
2180                                      uint64_t wr_mask, target_ulong new_val)
2181 {
2182     uint64_t *reg;
2183 
2184     reg = &env->mstateen[csrno - CSR_MSTATEEN0];
2185     *reg = (*reg & ~wr_mask) | (new_val & wr_mask);
2186 
2187     return RISCV_EXCP_NONE;
2188 }
2189 
2190 static RISCVException write_mstateen0(CPURISCVState *env, int csrno,
2191                                       target_ulong new_val)
2192 {
2193     uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG;
2194     if (!riscv_has_ext(env, RVF)) {
2195         wr_mask |= SMSTATEEN0_FCSR;
2196     }
2197 
2198     return write_mstateen(env, csrno, wr_mask, new_val);
2199 }
2200 
2201 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno,
2202                                          target_ulong new_val)
2203 {
2204     return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val);
2205 }
2206 
2207 static RISCVException read_mstateenh(CPURISCVState *env, int csrno,
2208                                      target_ulong *val)
2209 {
2210     *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32;
2211 
2212     return RISCV_EXCP_NONE;
2213 }
2214 
2215 static RISCVException write_mstateenh(CPURISCVState *env, int csrno,
2216                                       uint64_t wr_mask, target_ulong new_val)
2217 {
2218     uint64_t *reg, val;
2219 
2220     reg = &env->mstateen[csrno - CSR_MSTATEEN0H];
2221     val = (uint64_t)new_val << 32;
2222     val |= *reg & 0xFFFFFFFF;
2223     *reg = (*reg & ~wr_mask) | (val & wr_mask);
2224 
2225     return RISCV_EXCP_NONE;
2226 }
2227 
2228 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno,
2229                                        target_ulong new_val)
2230 {
2231     uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG;
2232 
2233     return write_mstateenh(env, csrno, wr_mask, new_val);
2234 }
2235 
2236 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno,
2237                                           target_ulong new_val)
2238 {
2239     return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val);
2240 }
2241 
2242 static RISCVException read_hstateen(CPURISCVState *env, int csrno,
2243                                     target_ulong *val)
2244 {
2245     int index = csrno - CSR_HSTATEEN0;
2246 
2247     *val = env->hstateen[index] & env->mstateen[index];
2248 
2249     return RISCV_EXCP_NONE;
2250 }
2251 
2252 static RISCVException write_hstateen(CPURISCVState *env, int csrno,
2253                                      uint64_t mask, target_ulong new_val)
2254 {
2255     int index = csrno - CSR_HSTATEEN0;
2256     uint64_t *reg, wr_mask;
2257 
2258     reg = &env->hstateen[index];
2259     wr_mask = env->mstateen[index] & mask;
2260     *reg = (*reg & ~wr_mask) | (new_val & wr_mask);
2261 
2262     return RISCV_EXCP_NONE;
2263 }
2264 
2265 static RISCVException write_hstateen0(CPURISCVState *env, int csrno,
2266                                       target_ulong new_val)
2267 {
2268     uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG;
2269 
2270     if (!riscv_has_ext(env, RVF)) {
2271         wr_mask |= SMSTATEEN0_FCSR;
2272     }
2273 
2274     return write_hstateen(env, csrno, wr_mask, new_val);
2275 }
2276 
2277 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno,
2278                                          target_ulong new_val)
2279 {
2280     return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val);
2281 }
2282 
2283 static RISCVException read_hstateenh(CPURISCVState *env, int csrno,
2284                                      target_ulong *val)
2285 {
2286     int index = csrno - CSR_HSTATEEN0H;
2287 
2288     *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32);
2289 
2290     return RISCV_EXCP_NONE;
2291 }
2292 
2293 static RISCVException write_hstateenh(CPURISCVState *env, int csrno,
2294                                       uint64_t mask, target_ulong new_val)
2295 {
2296     int index = csrno - CSR_HSTATEEN0H;
2297     uint64_t *reg, wr_mask, val;
2298 
2299     reg = &env->hstateen[index];
2300     val = (uint64_t)new_val << 32;
2301     val |= *reg & 0xFFFFFFFF;
2302     wr_mask = env->mstateen[index] & mask;
2303     *reg = (*reg & ~wr_mask) | (val & wr_mask);
2304 
2305     return RISCV_EXCP_NONE;
2306 }
2307 
2308 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno,
2309                                        target_ulong new_val)
2310 {
2311     uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG;
2312 
2313     return write_hstateenh(env, csrno, wr_mask, new_val);
2314 }
2315 
2316 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno,
2317                                           target_ulong new_val)
2318 {
2319     return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val);
2320 }
2321 
2322 static RISCVException read_sstateen(CPURISCVState *env, int csrno,
2323                                     target_ulong *val)
2324 {
2325     bool virt = env->virt_enabled;
2326     int index = csrno - CSR_SSTATEEN0;
2327 
2328     *val = env->sstateen[index] & env->mstateen[index];
2329     if (virt) {
2330         *val &= env->hstateen[index];
2331     }
2332 
2333     return RISCV_EXCP_NONE;
2334 }
2335 
2336 static RISCVException write_sstateen(CPURISCVState *env, int csrno,
2337                                      uint64_t mask, target_ulong new_val)
2338 {
2339     bool virt = env->virt_enabled;
2340     int index = csrno - CSR_SSTATEEN0;
2341     uint64_t wr_mask;
2342     uint64_t *reg;
2343 
2344     wr_mask = env->mstateen[index] & mask;
2345     if (virt) {
2346         wr_mask &= env->hstateen[index];
2347     }
2348 
2349     reg = &env->sstateen[index];
2350     *reg = (*reg & ~wr_mask) | (new_val & wr_mask);
2351 
2352     return RISCV_EXCP_NONE;
2353 }
2354 
2355 static RISCVException write_sstateen0(CPURISCVState *env, int csrno,
2356                                       target_ulong new_val)
2357 {
2358     uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG;
2359 
2360     if (!riscv_has_ext(env, RVF)) {
2361         wr_mask |= SMSTATEEN0_FCSR;
2362     }
2363 
2364     return write_sstateen(env, csrno, wr_mask, new_val);
2365 }
2366 
2367 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno,
2368                                       target_ulong new_val)
2369 {
2370     return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val);
2371 }
2372 
2373 static RISCVException rmw_mip64(CPURISCVState *env, int csrno,
2374                                 uint64_t *ret_val,
2375                                 uint64_t new_val, uint64_t wr_mask)
2376 {
2377     uint64_t old_mip, mask = wr_mask & delegable_ints;
2378     uint32_t gin;
2379 
2380     if (mask & MIP_SEIP) {
2381         env->software_seip = new_val & MIP_SEIP;
2382         new_val |= env->external_seip * MIP_SEIP;
2383     }
2384 
2385     if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) &&
2386         get_field(env->menvcfg, MENVCFG_STCE)) {
2387         /* sstc extension forbids STIP & VSTIP to be writeable in mip */
2388         mask = mask & ~(MIP_STIP | MIP_VSTIP);
2389     }
2390 
2391     if (mask) {
2392         old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask));
2393     } else {
2394         old_mip = env->mip;
2395     }
2396 
2397     if (csrno != CSR_HVIP) {
2398         gin = get_field(env->hstatus, HSTATUS_VGEIN);
2399         old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0;
2400         old_mip |= env->vstime_irq ? MIP_VSTIP : 0;
2401     }
2402 
2403     if (ret_val) {
2404         *ret_val = old_mip;
2405     }
2406 
2407     return RISCV_EXCP_NONE;
2408 }
2409 
2410 static RISCVException rmw_mip(CPURISCVState *env, int csrno,
2411                               target_ulong *ret_val,
2412                               target_ulong new_val, target_ulong wr_mask)
2413 {
2414     uint64_t rval;
2415     RISCVException ret;
2416 
2417     ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask);
2418     if (ret_val) {
2419         *ret_val = rval;
2420     }
2421 
2422     return ret;
2423 }
2424 
2425 static RISCVException rmw_miph(CPURISCVState *env, int csrno,
2426                                target_ulong *ret_val,
2427                                target_ulong new_val, target_ulong wr_mask)
2428 {
2429     uint64_t rval;
2430     RISCVException ret;
2431 
2432     ret = rmw_mip64(env, csrno, &rval,
2433         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2434     if (ret_val) {
2435         *ret_val = rval >> 32;
2436     }
2437 
2438     return ret;
2439 }
2440 
2441 /*
2442  * The function is written for two use-cases:
2443  * 1- To access mvip csr as is for m-mode access.
2444  * 2- To access sip as a combination of mip and mvip for s-mode.
2445  *
2446  * Both report bits 1, 5, 9 and 13:63 but with the exception of
2447  * STIP being read-only zero in case of mvip when sstc extension
2448  * is present.
2449  * Also, sip needs to be read-only zero when both mideleg[i] and
2450  * mvien[i] are zero but mvip needs to be an alias of mip.
2451  */
2452 static RISCVException rmw_mvip64(CPURISCVState *env, int csrno,
2453                                 uint64_t *ret_val,
2454                                 uint64_t new_val, uint64_t wr_mask)
2455 {
2456     RISCVCPU *cpu = env_archcpu(env);
2457     target_ulong ret_mip = 0;
2458     RISCVException ret;
2459     uint64_t old_mvip;
2460 
2461     /*
2462      * mideleg[i]  mvien[i]
2463      *   0           0      No delegation. mvip[i] is alias of mip[i].
2464      *   0           1      mvip[i] becomes source of interrupt, mip bypassed.
2465      *   1           X      mip[i] is source of interrupt and mvip[i] aliases
2466      *                      mip[i].
2467      *
2468      *   So alias condition would be for bits:
2469      *      ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (mideleg | ~mvien)) |
2470      *          (!sstc & MIP_STIP)
2471      *
2472      *   Non-alias condition will be for bits:
2473      *      (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (~mideleg & mvien)
2474      *
2475      *  alias_mask denotes the bits that come from mip nalias_mask denotes bits
2476      *  that come from hvip.
2477      */
2478     uint64_t alias_mask = ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) &
2479         (env->mideleg | ~env->mvien)) | MIP_STIP;
2480     uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) &
2481         (~env->mideleg & env->mvien);
2482     uint64_t wr_mask_mvip;
2483     uint64_t wr_mask_mip;
2484 
2485     /*
2486      * mideleg[i]  mvien[i]
2487      *   0           0      sip[i] read-only zero.
2488      *   0           1      sip[i] alias of mvip[i].
2489      *   1           X      sip[i] alias of mip[i].
2490      *
2491      *  Both alias and non-alias mask remain same for sip except for bits
2492      *  which are zero in both mideleg and mvien.
2493      */
2494     if (csrno == CSR_SIP) {
2495         /* Remove bits that are zero in both mideleg and mvien. */
2496         alias_mask &= (env->mideleg | env->mvien);
2497         nalias_mask &= (env->mideleg | env->mvien);
2498     }
2499 
2500     /*
2501      * If sstc is present, mvip.STIP is not an alias of mip.STIP so clear
2502      * that our in mip returned value.
2503      */
2504     if (cpu->cfg.ext_sstc && (env->priv == PRV_M) &&
2505         get_field(env->menvcfg, MENVCFG_STCE)) {
2506         alias_mask &= ~MIP_STIP;
2507     }
2508 
2509     wr_mask_mip = wr_mask & alias_mask & mvip_writable_mask;
2510     wr_mask_mvip = wr_mask & nalias_mask & mvip_writable_mask;
2511 
2512     /*
2513      * For bits set in alias_mask, mvip needs to be alias of mip, so forward
2514      * this to rmw_mip.
2515      */
2516     ret = rmw_mip(env, CSR_MIP, &ret_mip, new_val, wr_mask_mip);
2517     if (ret != RISCV_EXCP_NONE) {
2518         return ret;
2519     }
2520 
2521     old_mvip = env->mvip;
2522 
2523     /*
2524      * Write to mvip. Update only non-alias bits. Alias bits were updated
2525      * in mip in rmw_mip above.
2526      */
2527     if (wr_mask_mvip) {
2528         env->mvip = (env->mvip & ~wr_mask_mvip) | (new_val & wr_mask_mvip);
2529 
2530         /*
2531          * Given mvip is separate source from mip, we need to trigger interrupt
2532          * from here separately. Normally this happen from riscv_cpu_update_mip.
2533          */
2534         riscv_cpu_interrupt(env);
2535     }
2536 
2537     if (ret_val) {
2538         ret_mip &= alias_mask;
2539         old_mvip &= nalias_mask;
2540 
2541         *ret_val = old_mvip | ret_mip;
2542     }
2543 
2544     return RISCV_EXCP_NONE;
2545 }
2546 
2547 static RISCVException rmw_mvip(CPURISCVState *env, int csrno,
2548                               target_ulong *ret_val,
2549                               target_ulong new_val, target_ulong wr_mask)
2550 {
2551     uint64_t rval;
2552     RISCVException ret;
2553 
2554     ret = rmw_mvip64(env, csrno, &rval, new_val, wr_mask);
2555     if (ret_val) {
2556         *ret_val = rval;
2557     }
2558 
2559     return ret;
2560 }
2561 
2562 static RISCVException rmw_mviph(CPURISCVState *env, int csrno,
2563                                target_ulong *ret_val,
2564                                target_ulong new_val, target_ulong wr_mask)
2565 {
2566     uint64_t rval;
2567     RISCVException ret;
2568 
2569     ret = rmw_mvip64(env, csrno, &rval,
2570         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2571     if (ret_val) {
2572         *ret_val = rval >> 32;
2573     }
2574 
2575     return ret;
2576 }
2577 
2578 /* Supervisor Trap Setup */
2579 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno,
2580                                         Int128 *val)
2581 {
2582     uint64_t mask = sstatus_v1_10_mask;
2583     uint64_t sstatus = env->mstatus & mask;
2584     if (env->xl != MXL_RV32 || env->debugger) {
2585         mask |= SSTATUS64_UXL;
2586     }
2587 
2588     *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus));
2589     return RISCV_EXCP_NONE;
2590 }
2591 
2592 static RISCVException read_sstatus(CPURISCVState *env, int csrno,
2593                                    target_ulong *val)
2594 {
2595     target_ulong mask = (sstatus_v1_10_mask);
2596     if (env->xl != MXL_RV32 || env->debugger) {
2597         mask |= SSTATUS64_UXL;
2598     }
2599     /* TODO: Use SXL not MXL. */
2600     *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask);
2601     return RISCV_EXCP_NONE;
2602 }
2603 
2604 static RISCVException write_sstatus(CPURISCVState *env, int csrno,
2605                                     target_ulong val)
2606 {
2607     target_ulong mask = (sstatus_v1_10_mask);
2608 
2609     if (env->xl != MXL_RV32 || env->debugger) {
2610         if ((val & SSTATUS64_UXL) != 0) {
2611             mask |= SSTATUS64_UXL;
2612         }
2613     }
2614     target_ulong newval = (env->mstatus & ~mask) | (val & mask);
2615     return write_mstatus(env, CSR_MSTATUS, newval);
2616 }
2617 
2618 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno,
2619                                  uint64_t *ret_val,
2620                                  uint64_t new_val, uint64_t wr_mask)
2621 {
2622     uint64_t alias_mask = (LOCAL_INTERRUPTS | VS_MODE_INTERRUPTS) &
2623                             env->hideleg;
2624     uint64_t nalias_mask = LOCAL_INTERRUPTS & (~env->hideleg & env->hvien);
2625     uint64_t rval, rval_vs, vsbits;
2626     uint64_t wr_mask_vsie;
2627     uint64_t wr_mask_mie;
2628     RISCVException ret;
2629 
2630     /* Bring VS-level bits to correct position */
2631     vsbits = new_val & (VS_MODE_INTERRUPTS >> 1);
2632     new_val &= ~(VS_MODE_INTERRUPTS >> 1);
2633     new_val |= vsbits << 1;
2634 
2635     vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1);
2636     wr_mask &= ~(VS_MODE_INTERRUPTS >> 1);
2637     wr_mask |= vsbits << 1;
2638 
2639     wr_mask_mie = wr_mask & alias_mask;
2640     wr_mask_vsie = wr_mask & nalias_mask;
2641 
2642     ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask_mie);
2643 
2644     rval_vs = env->vsie & nalias_mask;
2645     env->vsie = (env->vsie & ~wr_mask_vsie) | (new_val & wr_mask_vsie);
2646 
2647     if (ret_val) {
2648         rval &= alias_mask;
2649         vsbits = rval & VS_MODE_INTERRUPTS;
2650         rval &= ~VS_MODE_INTERRUPTS;
2651         *ret_val = rval | (vsbits >> 1) | rval_vs;
2652     }
2653 
2654     return ret;
2655 }
2656 
2657 static RISCVException rmw_vsie(CPURISCVState *env, int csrno,
2658                                target_ulong *ret_val,
2659                                target_ulong new_val, target_ulong wr_mask)
2660 {
2661     uint64_t rval;
2662     RISCVException ret;
2663 
2664     ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask);
2665     if (ret_val) {
2666         *ret_val = rval;
2667     }
2668 
2669     return ret;
2670 }
2671 
2672 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno,
2673                                 target_ulong *ret_val,
2674                                 target_ulong new_val, target_ulong wr_mask)
2675 {
2676     uint64_t rval;
2677     RISCVException ret;
2678 
2679     ret = rmw_vsie64(env, csrno, &rval,
2680         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2681     if (ret_val) {
2682         *ret_val = rval >> 32;
2683     }
2684 
2685     return ret;
2686 }
2687 
2688 static RISCVException rmw_sie64(CPURISCVState *env, int csrno,
2689                                 uint64_t *ret_val,
2690                                 uint64_t new_val, uint64_t wr_mask)
2691 {
2692     uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) &
2693         (~env->mideleg & env->mvien);
2694     uint64_t alias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & env->mideleg;
2695     uint64_t sie_mask = wr_mask & nalias_mask;
2696     RISCVException ret;
2697 
2698     /*
2699      * mideleg[i]  mvien[i]
2700      *   0           0      sie[i] read-only zero.
2701      *   0           1      sie[i] is a separate writable bit.
2702      *   1           X      sie[i] alias of mie[i].
2703      *
2704      *  Both alias and non-alias mask remain same for sip except for bits
2705      *  which are zero in both mideleg and mvien.
2706      */
2707     if (env->virt_enabled) {
2708         if (env->hvictl & HVICTL_VTI) {
2709             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
2710         }
2711         ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask);
2712         if (ret_val) {
2713             *ret_val &= alias_mask;
2714         }
2715     } else {
2716         ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & alias_mask);
2717         if (ret_val) {
2718             *ret_val &= alias_mask;
2719             *ret_val |= env->sie & nalias_mask;
2720         }
2721 
2722         env->sie = (env->sie & ~sie_mask) | (new_val & sie_mask);
2723     }
2724 
2725     return ret;
2726 }
2727 
2728 static RISCVException rmw_sie(CPURISCVState *env, int csrno,
2729                               target_ulong *ret_val,
2730                               target_ulong new_val, target_ulong wr_mask)
2731 {
2732     uint64_t rval;
2733     RISCVException ret;
2734 
2735     ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask);
2736     if (ret == RISCV_EXCP_NONE && ret_val) {
2737         *ret_val = rval;
2738     }
2739 
2740     return ret;
2741 }
2742 
2743 static RISCVException rmw_sieh(CPURISCVState *env, int csrno,
2744                                target_ulong *ret_val,
2745                                target_ulong new_val, target_ulong wr_mask)
2746 {
2747     uint64_t rval;
2748     RISCVException ret;
2749 
2750     ret = rmw_sie64(env, csrno, &rval,
2751         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2752     if (ret_val) {
2753         *ret_val = rval >> 32;
2754     }
2755 
2756     return ret;
2757 }
2758 
2759 static RISCVException read_stvec(CPURISCVState *env, int csrno,
2760                                  target_ulong *val)
2761 {
2762     *val = env->stvec;
2763     return RISCV_EXCP_NONE;
2764 }
2765 
2766 static RISCVException write_stvec(CPURISCVState *env, int csrno,
2767                                   target_ulong val)
2768 {
2769     /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
2770     if ((val & 3) < 2) {
2771         env->stvec = val;
2772     } else {
2773         qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n");
2774     }
2775     return RISCV_EXCP_NONE;
2776 }
2777 
2778 static RISCVException read_scounteren(CPURISCVState *env, int csrno,
2779                                       target_ulong *val)
2780 {
2781     *val = env->scounteren;
2782     return RISCV_EXCP_NONE;
2783 }
2784 
2785 static RISCVException write_scounteren(CPURISCVState *env, int csrno,
2786                                        target_ulong val)
2787 {
2788     env->scounteren = val;
2789     return RISCV_EXCP_NONE;
2790 }
2791 
2792 /* Supervisor Trap Handling */
2793 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno,
2794                                          Int128 *val)
2795 {
2796     *val = int128_make128(env->sscratch, env->sscratchh);
2797     return RISCV_EXCP_NONE;
2798 }
2799 
2800 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno,
2801                                           Int128 val)
2802 {
2803     env->sscratch = int128_getlo(val);
2804     env->sscratchh = int128_gethi(val);
2805     return RISCV_EXCP_NONE;
2806 }
2807 
2808 static RISCVException read_sscratch(CPURISCVState *env, int csrno,
2809                                     target_ulong *val)
2810 {
2811     *val = env->sscratch;
2812     return RISCV_EXCP_NONE;
2813 }
2814 
2815 static RISCVException write_sscratch(CPURISCVState *env, int csrno,
2816                                      target_ulong val)
2817 {
2818     env->sscratch = val;
2819     return RISCV_EXCP_NONE;
2820 }
2821 
2822 static RISCVException read_sepc(CPURISCVState *env, int csrno,
2823                                 target_ulong *val)
2824 {
2825     *val = env->sepc;
2826     return RISCV_EXCP_NONE;
2827 }
2828 
2829 static RISCVException write_sepc(CPURISCVState *env, int csrno,
2830                                  target_ulong val)
2831 {
2832     env->sepc = val;
2833     return RISCV_EXCP_NONE;
2834 }
2835 
2836 static RISCVException read_scause(CPURISCVState *env, int csrno,
2837                                   target_ulong *val)
2838 {
2839     *val = env->scause;
2840     return RISCV_EXCP_NONE;
2841 }
2842 
2843 static RISCVException write_scause(CPURISCVState *env, int csrno,
2844                                    target_ulong val)
2845 {
2846     env->scause = val;
2847     return RISCV_EXCP_NONE;
2848 }
2849 
2850 static RISCVException read_stval(CPURISCVState *env, int csrno,
2851                                  target_ulong *val)
2852 {
2853     *val = env->stval;
2854     return RISCV_EXCP_NONE;
2855 }
2856 
2857 static RISCVException write_stval(CPURISCVState *env, int csrno,
2858                                   target_ulong val)
2859 {
2860     env->stval = val;
2861     return RISCV_EXCP_NONE;
2862 }
2863 
2864 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno,
2865                                  uint64_t *ret_val,
2866                                  uint64_t new_val, uint64_t wr_mask);
2867 
2868 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno,
2869                                  uint64_t *ret_val,
2870                                  uint64_t new_val, uint64_t wr_mask)
2871 {
2872     RISCVException ret;
2873     uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS;
2874     uint64_t vsbits;
2875 
2876     /* Add virtualized bits into vsip mask. */
2877     mask |= env->hvien & ~env->hideleg;
2878 
2879     /* Bring VS-level bits to correct position */
2880     vsbits = new_val & (VS_MODE_INTERRUPTS >> 1);
2881     new_val &= ~(VS_MODE_INTERRUPTS >> 1);
2882     new_val |= vsbits << 1;
2883     vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1);
2884     wr_mask &= ~(VS_MODE_INTERRUPTS >> 1);
2885     wr_mask |= vsbits << 1;
2886 
2887     ret = rmw_hvip64(env, csrno, &rval, new_val,
2888                      wr_mask & mask & vsip_writable_mask);
2889     if (ret_val) {
2890         rval &= mask;
2891         vsbits = rval & VS_MODE_INTERRUPTS;
2892         rval &= ~VS_MODE_INTERRUPTS;
2893         *ret_val = rval | (vsbits >> 1);
2894     }
2895 
2896     return ret;
2897 }
2898 
2899 static RISCVException rmw_vsip(CPURISCVState *env, int csrno,
2900                                target_ulong *ret_val,
2901                                target_ulong new_val, target_ulong wr_mask)
2902 {
2903     uint64_t rval;
2904     RISCVException ret;
2905 
2906     ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask);
2907     if (ret_val) {
2908         *ret_val = rval;
2909     }
2910 
2911     return ret;
2912 }
2913 
2914 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno,
2915                                 target_ulong *ret_val,
2916                                 target_ulong new_val, target_ulong wr_mask)
2917 {
2918     uint64_t rval;
2919     RISCVException ret;
2920 
2921     ret = rmw_vsip64(env, csrno, &rval,
2922         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2923     if (ret_val) {
2924         *ret_val = rval >> 32;
2925     }
2926 
2927     return ret;
2928 }
2929 
2930 static RISCVException rmw_sip64(CPURISCVState *env, int csrno,
2931                                 uint64_t *ret_val,
2932                                 uint64_t new_val, uint64_t wr_mask)
2933 {
2934     RISCVException ret;
2935     uint64_t mask = (env->mideleg | env->mvien) & sip_writable_mask;
2936 
2937     if (env->virt_enabled) {
2938         if (env->hvictl & HVICTL_VTI) {
2939             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
2940         }
2941         ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask);
2942     } else {
2943         ret = rmw_mvip64(env, csrno, ret_val, new_val, wr_mask & mask);
2944     }
2945 
2946     if (ret_val) {
2947         *ret_val &= (env->mideleg | env->mvien) &
2948             (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS);
2949     }
2950 
2951     return ret;
2952 }
2953 
2954 static RISCVException rmw_sip(CPURISCVState *env, int csrno,
2955                               target_ulong *ret_val,
2956                               target_ulong new_val, target_ulong wr_mask)
2957 {
2958     uint64_t rval;
2959     RISCVException ret;
2960 
2961     ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask);
2962     if (ret_val) {
2963         *ret_val = rval;
2964     }
2965 
2966     return ret;
2967 }
2968 
2969 static RISCVException rmw_siph(CPURISCVState *env, int csrno,
2970                                target_ulong *ret_val,
2971                                target_ulong new_val, target_ulong wr_mask)
2972 {
2973     uint64_t rval;
2974     RISCVException ret;
2975 
2976     ret = rmw_sip64(env, csrno, &rval,
2977         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2978     if (ret_val) {
2979         *ret_val = rval >> 32;
2980     }
2981 
2982     return ret;
2983 }
2984 
2985 /* Supervisor Protection and Translation */
2986 static RISCVException read_satp(CPURISCVState *env, int csrno,
2987                                 target_ulong *val)
2988 {
2989     if (!riscv_cpu_cfg(env)->mmu) {
2990         *val = 0;
2991         return RISCV_EXCP_NONE;
2992     }
2993     *val = env->satp;
2994     return RISCV_EXCP_NONE;
2995 }
2996 
2997 static RISCVException write_satp(CPURISCVState *env, int csrno,
2998                                  target_ulong val)
2999 {
3000     target_ulong mask;
3001     bool vm;
3002 
3003     if (!riscv_cpu_cfg(env)->mmu) {
3004         return RISCV_EXCP_NONE;
3005     }
3006 
3007     if (riscv_cpu_mxl(env) == MXL_RV32) {
3008         vm = validate_vm(env, get_field(val, SATP32_MODE));
3009         mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN);
3010     } else {
3011         vm = validate_vm(env, get_field(val, SATP64_MODE));
3012         mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN);
3013     }
3014 
3015     if (vm && mask) {
3016         /*
3017          * The ISA defines SATP.MODE=Bare as "no translation", but we still
3018          * pass these through QEMU's TLB emulation as it improves
3019          * performance.  Flushing the TLB on SATP writes with paging
3020          * enabled avoids leaking those invalid cached mappings.
3021          */
3022         tlb_flush(env_cpu(env));
3023         env->satp = val;
3024     }
3025     return RISCV_EXCP_NONE;
3026 }
3027 
3028 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val)
3029 {
3030     int irq, ret;
3031     target_ulong topei;
3032     uint64_t vseip, vsgein;
3033     uint32_t iid, iprio, hviid, hviprio, gein;
3034     uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS];
3035 
3036     gein = get_field(env->hstatus, HSTATUS_VGEIN);
3037     hviid = get_field(env->hvictl, HVICTL_IID);
3038     hviprio = get_field(env->hvictl, HVICTL_IPRIO);
3039 
3040     if (gein) {
3041         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
3042         vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP;
3043         if (gein <= env->geilen && vseip) {
3044             siid[scount] = IRQ_S_EXT;
3045             siprio[scount] = IPRIO_MMAXIPRIO + 1;
3046             if (env->aia_ireg_rmw_fn[PRV_S]) {
3047                 /*
3048                  * Call machine specific IMSIC register emulation for
3049                  * reading TOPEI.
3050                  */
3051                 ret = env->aia_ireg_rmw_fn[PRV_S](
3052                         env->aia_ireg_rmw_fn_arg[PRV_S],
3053                         AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein,
3054                                       riscv_cpu_mxl_bits(env)),
3055                         &topei, 0, 0);
3056                 if (!ret && topei) {
3057                     siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK;
3058                 }
3059             }
3060             scount++;
3061         }
3062     } else {
3063         if (hviid == IRQ_S_EXT && hviprio) {
3064             siid[scount] = IRQ_S_EXT;
3065             siprio[scount] = hviprio;
3066             scount++;
3067         }
3068     }
3069 
3070     if (env->hvictl & HVICTL_VTI) {
3071         if (hviid != IRQ_S_EXT) {
3072             siid[scount] = hviid;
3073             siprio[scount] = hviprio;
3074             scount++;
3075         }
3076     } else {
3077         irq = riscv_cpu_vsirq_pending(env);
3078         if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) {
3079             siid[scount] = irq;
3080             siprio[scount] = env->hviprio[irq];
3081             scount++;
3082         }
3083     }
3084 
3085     iid = 0;
3086     iprio = UINT_MAX;
3087     for (s = 0; s < scount; s++) {
3088         if (siprio[s] < iprio) {
3089             iid = siid[s];
3090             iprio = siprio[s];
3091         }
3092     }
3093 
3094     if (iid) {
3095         if (env->hvictl & HVICTL_IPRIOM) {
3096             if (iprio > IPRIO_MMAXIPRIO) {
3097                 iprio = IPRIO_MMAXIPRIO;
3098             }
3099             if (!iprio) {
3100                 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) {
3101                     iprio = IPRIO_MMAXIPRIO;
3102                 }
3103             }
3104         } else {
3105             iprio = 1;
3106         }
3107     } else {
3108         iprio = 0;
3109     }
3110 
3111     *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT;
3112     *val |= iprio;
3113 
3114     return RISCV_EXCP_NONE;
3115 }
3116 
3117 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val)
3118 {
3119     int irq;
3120     uint8_t iprio;
3121 
3122     if (env->virt_enabled) {
3123         return read_vstopi(env, CSR_VSTOPI, val);
3124     }
3125 
3126     irq = riscv_cpu_sirq_pending(env);
3127     if (irq <= 0 || irq > 63) {
3128         *val = 0;
3129     } else {
3130         iprio = env->siprio[irq];
3131         if (!iprio) {
3132             if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) {
3133                 iprio = IPRIO_MMAXIPRIO;
3134            }
3135         }
3136         *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT;
3137         *val |= iprio;
3138     }
3139 
3140     return RISCV_EXCP_NONE;
3141 }
3142 
3143 /* Hypervisor Extensions */
3144 static RISCVException read_hstatus(CPURISCVState *env, int csrno,
3145                                    target_ulong *val)
3146 {
3147     *val = env->hstatus;
3148     if (riscv_cpu_mxl(env) != MXL_RV32) {
3149         /* We only support 64-bit VSXL */
3150         *val = set_field(*val, HSTATUS_VSXL, 2);
3151     }
3152     /* We only support little endian */
3153     *val = set_field(*val, HSTATUS_VSBE, 0);
3154     return RISCV_EXCP_NONE;
3155 }
3156 
3157 static RISCVException write_hstatus(CPURISCVState *env, int csrno,
3158                                     target_ulong val)
3159 {
3160     env->hstatus = val;
3161     if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) {
3162         qemu_log_mask(LOG_UNIMP,
3163                       "QEMU does not support mixed HSXLEN options.");
3164     }
3165     if (get_field(val, HSTATUS_VSBE) != 0) {
3166         qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests.");
3167     }
3168     return RISCV_EXCP_NONE;
3169 }
3170 
3171 static RISCVException read_hedeleg(CPURISCVState *env, int csrno,
3172                                    target_ulong *val)
3173 {
3174     *val = env->hedeleg;
3175     return RISCV_EXCP_NONE;
3176 }
3177 
3178 static RISCVException write_hedeleg(CPURISCVState *env, int csrno,
3179                                     target_ulong val)
3180 {
3181     env->hedeleg = val & vs_delegable_excps;
3182     return RISCV_EXCP_NONE;
3183 }
3184 
3185 static RISCVException rmw_hvien64(CPURISCVState *env, int csrno,
3186                                     uint64_t *ret_val,
3187                                     uint64_t new_val, uint64_t wr_mask)
3188 {
3189     uint64_t mask = wr_mask & hvien_writable_mask;
3190 
3191     if (ret_val) {
3192         *ret_val = env->hvien;
3193     }
3194 
3195     env->hvien = (env->hvien & ~mask) | (new_val & mask);
3196 
3197     return RISCV_EXCP_NONE;
3198 }
3199 
3200 static RISCVException rmw_hvien(CPURISCVState *env, int csrno,
3201                                target_ulong *ret_val,
3202                                target_ulong new_val, target_ulong wr_mask)
3203 {
3204     uint64_t rval;
3205     RISCVException ret;
3206 
3207     ret = rmw_hvien64(env, csrno, &rval, new_val, wr_mask);
3208     if (ret_val) {
3209         *ret_val = rval;
3210     }
3211 
3212     return ret;
3213 }
3214 
3215 static RISCVException rmw_hvienh(CPURISCVState *env, int csrno,
3216                                    target_ulong *ret_val,
3217                                    target_ulong new_val, target_ulong wr_mask)
3218 {
3219     uint64_t rval;
3220     RISCVException ret;
3221 
3222     ret = rmw_hvien64(env, csrno, &rval,
3223         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
3224     if (ret_val) {
3225         *ret_val = rval >> 32;
3226     }
3227 
3228     return ret;
3229 }
3230 
3231 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno,
3232                                     uint64_t *ret_val,
3233                                     uint64_t new_val, uint64_t wr_mask)
3234 {
3235     uint64_t mask = wr_mask & vs_delegable_ints;
3236 
3237     if (ret_val) {
3238         *ret_val = env->hideleg & vs_delegable_ints;
3239     }
3240 
3241     env->hideleg = (env->hideleg & ~mask) | (new_val & mask);
3242     return RISCV_EXCP_NONE;
3243 }
3244 
3245 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno,
3246                                   target_ulong *ret_val,
3247                                   target_ulong new_val, target_ulong wr_mask)
3248 {
3249     uint64_t rval;
3250     RISCVException ret;
3251 
3252     ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask);
3253     if (ret_val) {
3254         *ret_val = rval;
3255     }
3256 
3257     return ret;
3258 }
3259 
3260 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno,
3261                                    target_ulong *ret_val,
3262                                    target_ulong new_val, target_ulong wr_mask)
3263 {
3264     uint64_t rval;
3265     RISCVException ret;
3266 
3267     ret = rmw_hideleg64(env, csrno, &rval,
3268         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
3269     if (ret_val) {
3270         *ret_val = rval >> 32;
3271     }
3272 
3273     return ret;
3274 }
3275 
3276 /*
3277  * The function is written for two use-cases:
3278  * 1- To access hvip csr as is for HS-mode access.
3279  * 2- To access vsip as a combination of hvip, and mip for vs-mode.
3280  *
3281  * Both report bits 2, 6, 10 and 13:63.
3282  * vsip needs to be read-only zero when both hideleg[i] and
3283  * hvien[i] are zero.
3284  */
3285 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno,
3286                                  uint64_t *ret_val,
3287                                  uint64_t new_val, uint64_t wr_mask)
3288 {
3289     RISCVException ret;
3290     uint64_t old_hvip;
3291     uint64_t ret_mip;
3292 
3293     /*
3294      * For bits 10, 6 and 2, vsip[i] is an alias of hip[i]. These bits are
3295      * present in hip, hvip and mip. Where mip[i] is alias of hip[i] and hvip[i]
3296      * is OR'ed in hip[i] to inject virtual interrupts from hypervisor. These
3297      * bits are actually being maintained in mip so we read them from there.
3298      * This way we have a single source of truth and allows for easier
3299      * implementation.
3300      *
3301      * For bits 13:63 we have:
3302      *
3303      * hideleg[i]  hvien[i]
3304      *   0           0      No delegation. vsip[i] readonly zero.
3305      *   0           1      vsip[i] is alias of hvip[i], sip bypassed.
3306      *   1           X      vsip[i] is alias of sip[i], hvip bypassed.
3307      *
3308      *  alias_mask denotes the bits that come from sip (mip here given we
3309      *  maintain all bits there). nalias_mask denotes bits that come from
3310      *  hvip.
3311      */
3312     uint64_t alias_mask = (env->hideleg | ~env->hvien) | VS_MODE_INTERRUPTS;
3313     uint64_t nalias_mask = (~env->hideleg & env->hvien);
3314     uint64_t wr_mask_hvip;
3315     uint64_t wr_mask_mip;
3316 
3317     /*
3318      * Both alias and non-alias mask remain same for vsip except:
3319      *  1- For VS* bits if they are zero in hideleg.
3320      *  2- For 13:63 bits if they are zero in both hideleg and hvien.
3321      */
3322     if (csrno == CSR_VSIP) {
3323         /* zero-out VS* bits that are not delegated to VS mode. */
3324         alias_mask &= (env->hideleg | ~VS_MODE_INTERRUPTS);
3325 
3326         /*
3327          * zero-out 13:63 bits that are zero in both hideleg and hvien.
3328          * nalias_mask mask can not contain any VS* bits so only second
3329          * condition applies on it.
3330          */
3331         nalias_mask &= (env->hideleg | env->hvien);
3332         alias_mask &= (env->hideleg | env->hvien);
3333     }
3334 
3335     wr_mask_hvip = wr_mask & nalias_mask & hvip_writable_mask;
3336     wr_mask_mip = wr_mask & alias_mask & hvip_writable_mask;
3337 
3338     /* Aliased bits, bits 10, 6, 2 need to come from mip. */
3339     ret = rmw_mip64(env, csrno, &ret_mip, new_val, wr_mask_mip);
3340     if (ret != RISCV_EXCP_NONE) {
3341         return ret;
3342     }
3343 
3344     old_hvip = env->hvip;
3345 
3346     if (wr_mask_hvip) {
3347         env->hvip = (env->hvip & ~wr_mask_hvip) | (new_val & wr_mask_hvip);
3348 
3349         /*
3350          * Given hvip is separate source from mip, we need to trigger interrupt
3351          * from here separately. Normally this happen from riscv_cpu_update_mip.
3352          */
3353         riscv_cpu_interrupt(env);
3354     }
3355 
3356     if (ret_val) {
3357         /* Only take VS* bits from mip. */
3358         ret_mip &= alias_mask;
3359 
3360         /* Take in non-delegated 13:63 bits from hvip. */
3361         old_hvip &= nalias_mask;
3362 
3363         *ret_val = ret_mip | old_hvip;
3364     }
3365 
3366     return ret;
3367 }
3368 
3369 static RISCVException rmw_hvip(CPURISCVState *env, int csrno,
3370                                target_ulong *ret_val,
3371                                target_ulong new_val, target_ulong wr_mask)
3372 {
3373     uint64_t rval;
3374     RISCVException ret;
3375 
3376     ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask);
3377     if (ret_val) {
3378         *ret_val = rval;
3379     }
3380 
3381     return ret;
3382 }
3383 
3384 static RISCVException rmw_hviph(CPURISCVState *env, int csrno,
3385                                 target_ulong *ret_val,
3386                                 target_ulong new_val, target_ulong wr_mask)
3387 {
3388     uint64_t rval;
3389     RISCVException ret;
3390 
3391     ret = rmw_hvip64(env, csrno, &rval,
3392         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
3393     if (ret_val) {
3394         *ret_val = rval >> 32;
3395     }
3396 
3397     return ret;
3398 }
3399 
3400 static RISCVException rmw_hip(CPURISCVState *env, int csrno,
3401                               target_ulong *ret_value,
3402                               target_ulong new_value, target_ulong write_mask)
3403 {
3404     int ret = rmw_mip(env, csrno, ret_value, new_value,
3405                       write_mask & hip_writable_mask);
3406 
3407     if (ret_value) {
3408         *ret_value &= HS_MODE_INTERRUPTS;
3409     }
3410     return ret;
3411 }
3412 
3413 static RISCVException rmw_hie(CPURISCVState *env, int csrno,
3414                               target_ulong *ret_val,
3415                               target_ulong new_val, target_ulong wr_mask)
3416 {
3417     uint64_t rval;
3418     RISCVException ret;
3419 
3420     ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS);
3421     if (ret_val) {
3422         *ret_val = rval & HS_MODE_INTERRUPTS;
3423     }
3424 
3425     return ret;
3426 }
3427 
3428 static RISCVException read_hcounteren(CPURISCVState *env, int csrno,
3429                                       target_ulong *val)
3430 {
3431     *val = env->hcounteren;
3432     return RISCV_EXCP_NONE;
3433 }
3434 
3435 static RISCVException write_hcounteren(CPURISCVState *env, int csrno,
3436                                        target_ulong val)
3437 {
3438     env->hcounteren = val;
3439     return RISCV_EXCP_NONE;
3440 }
3441 
3442 static RISCVException read_hgeie(CPURISCVState *env, int csrno,
3443                                  target_ulong *val)
3444 {
3445     if (val) {
3446         *val = env->hgeie;
3447     }
3448     return RISCV_EXCP_NONE;
3449 }
3450 
3451 static RISCVException write_hgeie(CPURISCVState *env, int csrno,
3452                                   target_ulong val)
3453 {
3454     /* Only GEILEN:1 bits implemented and BIT0 is never implemented */
3455     val &= ((((target_ulong)1) << env->geilen) - 1) << 1;
3456     env->hgeie = val;
3457     /* Update mip.SGEIP bit */
3458     riscv_cpu_update_mip(env, MIP_SGEIP,
3459                          BOOL_TO_MASK(!!(env->hgeie & env->hgeip)));
3460     return RISCV_EXCP_NONE;
3461 }
3462 
3463 static RISCVException read_htval(CPURISCVState *env, int csrno,
3464                                  target_ulong *val)
3465 {
3466     *val = env->htval;
3467     return RISCV_EXCP_NONE;
3468 }
3469 
3470 static RISCVException write_htval(CPURISCVState *env, int csrno,
3471                                   target_ulong val)
3472 {
3473     env->htval = val;
3474     return RISCV_EXCP_NONE;
3475 }
3476 
3477 static RISCVException read_htinst(CPURISCVState *env, int csrno,
3478                                   target_ulong *val)
3479 {
3480     *val = env->htinst;
3481     return RISCV_EXCP_NONE;
3482 }
3483 
3484 static RISCVException write_htinst(CPURISCVState *env, int csrno,
3485                                    target_ulong val)
3486 {
3487     return RISCV_EXCP_NONE;
3488 }
3489 
3490 static RISCVException read_hgeip(CPURISCVState *env, int csrno,
3491                                  target_ulong *val)
3492 {
3493     if (val) {
3494         *val = env->hgeip;
3495     }
3496     return RISCV_EXCP_NONE;
3497 }
3498 
3499 static RISCVException read_hgatp(CPURISCVState *env, int csrno,
3500                                  target_ulong *val)
3501 {
3502     *val = env->hgatp;
3503     return RISCV_EXCP_NONE;
3504 }
3505 
3506 static RISCVException write_hgatp(CPURISCVState *env, int csrno,
3507                                   target_ulong val)
3508 {
3509     env->hgatp = val;
3510     return RISCV_EXCP_NONE;
3511 }
3512 
3513 static RISCVException read_htimedelta(CPURISCVState *env, int csrno,
3514                                       target_ulong *val)
3515 {
3516     if (!env->rdtime_fn) {
3517         return RISCV_EXCP_ILLEGAL_INST;
3518     }
3519 
3520     *val = env->htimedelta;
3521     return RISCV_EXCP_NONE;
3522 }
3523 
3524 static RISCVException write_htimedelta(CPURISCVState *env, int csrno,
3525                                        target_ulong val)
3526 {
3527     if (!env->rdtime_fn) {
3528         return RISCV_EXCP_ILLEGAL_INST;
3529     }
3530 
3531     if (riscv_cpu_mxl(env) == MXL_RV32) {
3532         env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val);
3533     } else {
3534         env->htimedelta = val;
3535     }
3536 
3537     if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) {
3538         riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp,
3539                                   env->htimedelta, MIP_VSTIP);
3540     }
3541 
3542     return RISCV_EXCP_NONE;
3543 }
3544 
3545 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno,
3546                                        target_ulong *val)
3547 {
3548     if (!env->rdtime_fn) {
3549         return RISCV_EXCP_ILLEGAL_INST;
3550     }
3551 
3552     *val = env->htimedelta >> 32;
3553     return RISCV_EXCP_NONE;
3554 }
3555 
3556 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno,
3557                                         target_ulong val)
3558 {
3559     if (!env->rdtime_fn) {
3560         return RISCV_EXCP_ILLEGAL_INST;
3561     }
3562 
3563     env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val);
3564 
3565     if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) {
3566         riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp,
3567                                   env->htimedelta, MIP_VSTIP);
3568     }
3569 
3570     return RISCV_EXCP_NONE;
3571 }
3572 
3573 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val)
3574 {
3575     *val = env->hvictl;
3576     return RISCV_EXCP_NONE;
3577 }
3578 
3579 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val)
3580 {
3581     env->hvictl = val & HVICTL_VALID_MASK;
3582     return RISCV_EXCP_NONE;
3583 }
3584 
3585 static int read_hvipriox(CPURISCVState *env, int first_index,
3586                          uint8_t *iprio, target_ulong *val)
3587 {
3588     int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32);
3589 
3590     /* First index has to be a multiple of number of irqs per register */
3591     if (first_index % num_irqs) {
3592         return (env->virt_enabled) ?
3593                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
3594     }
3595 
3596     /* Fill-up return value */
3597     *val = 0;
3598     for (i = 0; i < num_irqs; i++) {
3599         if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) {
3600             continue;
3601         }
3602         if (rdzero) {
3603             continue;
3604         }
3605         *val |= ((target_ulong)iprio[irq]) << (i * 8);
3606     }
3607 
3608     return RISCV_EXCP_NONE;
3609 }
3610 
3611 static int write_hvipriox(CPURISCVState *env, int first_index,
3612                           uint8_t *iprio, target_ulong val)
3613 {
3614     int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32);
3615 
3616     /* First index has to be a multiple of number of irqs per register */
3617     if (first_index % num_irqs) {
3618         return (env->virt_enabled) ?
3619                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
3620     }
3621 
3622     /* Fill-up priority array */
3623     for (i = 0; i < num_irqs; i++) {
3624         if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) {
3625             continue;
3626         }
3627         if (rdzero) {
3628             iprio[irq] = 0;
3629         } else {
3630             iprio[irq] = (val >> (i * 8)) & 0xff;
3631         }
3632     }
3633 
3634     return RISCV_EXCP_NONE;
3635 }
3636 
3637 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val)
3638 {
3639     return read_hvipriox(env, 0, env->hviprio, val);
3640 }
3641 
3642 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val)
3643 {
3644     return write_hvipriox(env, 0, env->hviprio, val);
3645 }
3646 
3647 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val)
3648 {
3649     return read_hvipriox(env, 4, env->hviprio, val);
3650 }
3651 
3652 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val)
3653 {
3654     return write_hvipriox(env, 4, env->hviprio, val);
3655 }
3656 
3657 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val)
3658 {
3659     return read_hvipriox(env, 8, env->hviprio, val);
3660 }
3661 
3662 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val)
3663 {
3664     return write_hvipriox(env, 8, env->hviprio, val);
3665 }
3666 
3667 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val)
3668 {
3669     return read_hvipriox(env, 12, env->hviprio, val);
3670 }
3671 
3672 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val)
3673 {
3674     return write_hvipriox(env, 12, env->hviprio, val);
3675 }
3676 
3677 /* Virtual CSR Registers */
3678 static RISCVException read_vsstatus(CPURISCVState *env, int csrno,
3679                                     target_ulong *val)
3680 {
3681     *val = env->vsstatus;
3682     return RISCV_EXCP_NONE;
3683 }
3684 
3685 static RISCVException write_vsstatus(CPURISCVState *env, int csrno,
3686                                      target_ulong val)
3687 {
3688     uint64_t mask = (target_ulong)-1;
3689     if ((val & VSSTATUS64_UXL) == 0) {
3690         mask &= ~VSSTATUS64_UXL;
3691     }
3692     env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val;
3693     return RISCV_EXCP_NONE;
3694 }
3695 
3696 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val)
3697 {
3698     *val = env->vstvec;
3699     return RISCV_EXCP_NONE;
3700 }
3701 
3702 static RISCVException write_vstvec(CPURISCVState *env, int csrno,
3703                                    target_ulong val)
3704 {
3705     env->vstvec = val;
3706     return RISCV_EXCP_NONE;
3707 }
3708 
3709 static RISCVException read_vsscratch(CPURISCVState *env, int csrno,
3710                                      target_ulong *val)
3711 {
3712     *val = env->vsscratch;
3713     return RISCV_EXCP_NONE;
3714 }
3715 
3716 static RISCVException write_vsscratch(CPURISCVState *env, int csrno,
3717                                       target_ulong val)
3718 {
3719     env->vsscratch = val;
3720     return RISCV_EXCP_NONE;
3721 }
3722 
3723 static RISCVException read_vsepc(CPURISCVState *env, int csrno,
3724                                  target_ulong *val)
3725 {
3726     *val = env->vsepc;
3727     return RISCV_EXCP_NONE;
3728 }
3729 
3730 static RISCVException write_vsepc(CPURISCVState *env, int csrno,
3731                                   target_ulong val)
3732 {
3733     env->vsepc = val;
3734     return RISCV_EXCP_NONE;
3735 }
3736 
3737 static RISCVException read_vscause(CPURISCVState *env, int csrno,
3738                                    target_ulong *val)
3739 {
3740     *val = env->vscause;
3741     return RISCV_EXCP_NONE;
3742 }
3743 
3744 static RISCVException write_vscause(CPURISCVState *env, int csrno,
3745                                     target_ulong val)
3746 {
3747     env->vscause = val;
3748     return RISCV_EXCP_NONE;
3749 }
3750 
3751 static RISCVException read_vstval(CPURISCVState *env, int csrno,
3752                                   target_ulong *val)
3753 {
3754     *val = env->vstval;
3755     return RISCV_EXCP_NONE;
3756 }
3757 
3758 static RISCVException write_vstval(CPURISCVState *env, int csrno,
3759                                    target_ulong val)
3760 {
3761     env->vstval = val;
3762     return RISCV_EXCP_NONE;
3763 }
3764 
3765 static RISCVException read_vsatp(CPURISCVState *env, int csrno,
3766                                  target_ulong *val)
3767 {
3768     *val = env->vsatp;
3769     return RISCV_EXCP_NONE;
3770 }
3771 
3772 static RISCVException write_vsatp(CPURISCVState *env, int csrno,
3773                                   target_ulong val)
3774 {
3775     env->vsatp = val;
3776     return RISCV_EXCP_NONE;
3777 }
3778 
3779 static RISCVException read_mtval2(CPURISCVState *env, int csrno,
3780                                   target_ulong *val)
3781 {
3782     *val = env->mtval2;
3783     return RISCV_EXCP_NONE;
3784 }
3785 
3786 static RISCVException write_mtval2(CPURISCVState *env, int csrno,
3787                                    target_ulong val)
3788 {
3789     env->mtval2 = val;
3790     return RISCV_EXCP_NONE;
3791 }
3792 
3793 static RISCVException read_mtinst(CPURISCVState *env, int csrno,
3794                                   target_ulong *val)
3795 {
3796     *val = env->mtinst;
3797     return RISCV_EXCP_NONE;
3798 }
3799 
3800 static RISCVException write_mtinst(CPURISCVState *env, int csrno,
3801                                    target_ulong val)
3802 {
3803     env->mtinst = val;
3804     return RISCV_EXCP_NONE;
3805 }
3806 
3807 /* Physical Memory Protection */
3808 static RISCVException read_mseccfg(CPURISCVState *env, int csrno,
3809                                    target_ulong *val)
3810 {
3811     *val = mseccfg_csr_read(env);
3812     return RISCV_EXCP_NONE;
3813 }
3814 
3815 static RISCVException write_mseccfg(CPURISCVState *env, int csrno,
3816                                     target_ulong val)
3817 {
3818     mseccfg_csr_write(env, val);
3819     return RISCV_EXCP_NONE;
3820 }
3821 
3822 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno,
3823                                   target_ulong *val)
3824 {
3825     uint32_t reg_index = csrno - CSR_PMPCFG0;
3826 
3827     *val = pmpcfg_csr_read(env, reg_index);
3828     return RISCV_EXCP_NONE;
3829 }
3830 
3831 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno,
3832                                    target_ulong val)
3833 {
3834     uint32_t reg_index = csrno - CSR_PMPCFG0;
3835 
3836     pmpcfg_csr_write(env, reg_index, val);
3837     return RISCV_EXCP_NONE;
3838 }
3839 
3840 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno,
3841                                    target_ulong *val)
3842 {
3843     *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0);
3844     return RISCV_EXCP_NONE;
3845 }
3846 
3847 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno,
3848                                     target_ulong val)
3849 {
3850     pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val);
3851     return RISCV_EXCP_NONE;
3852 }
3853 
3854 static RISCVException read_tselect(CPURISCVState *env, int csrno,
3855                                    target_ulong *val)
3856 {
3857     *val = tselect_csr_read(env);
3858     return RISCV_EXCP_NONE;
3859 }
3860 
3861 static RISCVException write_tselect(CPURISCVState *env, int csrno,
3862                                     target_ulong val)
3863 {
3864     tselect_csr_write(env, val);
3865     return RISCV_EXCP_NONE;
3866 }
3867 
3868 static RISCVException read_tdata(CPURISCVState *env, int csrno,
3869                                  target_ulong *val)
3870 {
3871     /* return 0 in tdata1 to end the trigger enumeration */
3872     if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) {
3873         *val = 0;
3874         return RISCV_EXCP_NONE;
3875     }
3876 
3877     if (!tdata_available(env, csrno - CSR_TDATA1)) {
3878         return RISCV_EXCP_ILLEGAL_INST;
3879     }
3880 
3881     *val = tdata_csr_read(env, csrno - CSR_TDATA1);
3882     return RISCV_EXCP_NONE;
3883 }
3884 
3885 static RISCVException write_tdata(CPURISCVState *env, int csrno,
3886                                   target_ulong val)
3887 {
3888     if (!tdata_available(env, csrno - CSR_TDATA1)) {
3889         return RISCV_EXCP_ILLEGAL_INST;
3890     }
3891 
3892     tdata_csr_write(env, csrno - CSR_TDATA1, val);
3893     return RISCV_EXCP_NONE;
3894 }
3895 
3896 static RISCVException read_tinfo(CPURISCVState *env, int csrno,
3897                                  target_ulong *val)
3898 {
3899     *val = tinfo_csr_read(env);
3900     return RISCV_EXCP_NONE;
3901 }
3902 
3903 /*
3904  * Functions to access Pointer Masking feature registers
3905  * We have to check if current priv lvl could modify
3906  * csr in given mode
3907  */
3908 static bool check_pm_current_disabled(CPURISCVState *env, int csrno)
3909 {
3910     int csr_priv = get_field(csrno, 0x300);
3911     int pm_current;
3912 
3913     if (env->debugger) {
3914         return false;
3915     }
3916     /*
3917      * If priv lvls differ that means we're accessing csr from higher priv lvl,
3918      * so allow the access
3919      */
3920     if (env->priv != csr_priv) {
3921         return false;
3922     }
3923     switch (env->priv) {
3924     case PRV_M:
3925         pm_current = get_field(env->mmte, M_PM_CURRENT);
3926         break;
3927     case PRV_S:
3928         pm_current = get_field(env->mmte, S_PM_CURRENT);
3929         break;
3930     case PRV_U:
3931         pm_current = get_field(env->mmte, U_PM_CURRENT);
3932         break;
3933     default:
3934         g_assert_not_reached();
3935     }
3936     /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */
3937     return !pm_current;
3938 }
3939 
3940 static RISCVException read_mmte(CPURISCVState *env, int csrno,
3941                                 target_ulong *val)
3942 {
3943     *val = env->mmte & MMTE_MASK;
3944     return RISCV_EXCP_NONE;
3945 }
3946 
3947 static RISCVException write_mmte(CPURISCVState *env, int csrno,
3948                                  target_ulong val)
3949 {
3950     uint64_t mstatus;
3951     target_ulong wpri_val = val & MMTE_MASK;
3952 
3953     if (val != wpri_val) {
3954         qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s"
3955                       TARGET_FMT_lx "\n", "MMTE: WPRI violation written 0x",
3956                       val, "vs expected 0x", wpri_val);
3957     }
3958     /* for machine mode pm.current is hardwired to 1 */
3959     wpri_val |= MMTE_M_PM_CURRENT;
3960 
3961     /* hardwiring pm.instruction bit to 0, since it's not supported yet */
3962     wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN);
3963     env->mmte = wpri_val | EXT_STATUS_DIRTY;
3964     riscv_cpu_update_mask(env);
3965 
3966     /* Set XS and SD bits, since PM CSRs are dirty */
3967     mstatus = env->mstatus | MSTATUS_XS;
3968     write_mstatus(env, csrno, mstatus);
3969     return RISCV_EXCP_NONE;
3970 }
3971 
3972 static RISCVException read_smte(CPURISCVState *env, int csrno,
3973                                 target_ulong *val)
3974 {
3975     *val = env->mmte & SMTE_MASK;
3976     return RISCV_EXCP_NONE;
3977 }
3978 
3979 static RISCVException write_smte(CPURISCVState *env, int csrno,
3980                                  target_ulong val)
3981 {
3982     target_ulong wpri_val = val & SMTE_MASK;
3983 
3984     if (val != wpri_val) {
3985         qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s"
3986                       TARGET_FMT_lx "\n", "SMTE: WPRI violation written 0x",
3987                       val, "vs expected 0x", wpri_val);
3988     }
3989 
3990     /* if pm.current==0 we can't modify current PM CSRs */
3991     if (check_pm_current_disabled(env, csrno)) {
3992         return RISCV_EXCP_NONE;
3993     }
3994 
3995     wpri_val |= (env->mmte & ~SMTE_MASK);
3996     write_mmte(env, csrno, wpri_val);
3997     return RISCV_EXCP_NONE;
3998 }
3999 
4000 static RISCVException read_umte(CPURISCVState *env, int csrno,
4001                                 target_ulong *val)
4002 {
4003     *val = env->mmte & UMTE_MASK;
4004     return RISCV_EXCP_NONE;
4005 }
4006 
4007 static RISCVException write_umte(CPURISCVState *env, int csrno,
4008                                  target_ulong val)
4009 {
4010     target_ulong wpri_val = val & UMTE_MASK;
4011 
4012     if (val != wpri_val) {
4013         qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s"
4014                       TARGET_FMT_lx "\n", "UMTE: WPRI violation written 0x",
4015                       val, "vs expected 0x", wpri_val);
4016     }
4017 
4018     if (check_pm_current_disabled(env, csrno)) {
4019         return RISCV_EXCP_NONE;
4020     }
4021 
4022     wpri_val |= (env->mmte & ~UMTE_MASK);
4023     write_mmte(env, csrno, wpri_val);
4024     return RISCV_EXCP_NONE;
4025 }
4026 
4027 static RISCVException read_mpmmask(CPURISCVState *env, int csrno,
4028                                    target_ulong *val)
4029 {
4030     *val = env->mpmmask;
4031     return RISCV_EXCP_NONE;
4032 }
4033 
4034 static RISCVException write_mpmmask(CPURISCVState *env, int csrno,
4035                                     target_ulong val)
4036 {
4037     uint64_t mstatus;
4038 
4039     env->mpmmask = val;
4040     if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) {
4041         env->cur_pmmask = val;
4042     }
4043     env->mmte |= EXT_STATUS_DIRTY;
4044 
4045     /* Set XS and SD bits, since PM CSRs are dirty */
4046     mstatus = env->mstatus | MSTATUS_XS;
4047     write_mstatus(env, csrno, mstatus);
4048     return RISCV_EXCP_NONE;
4049 }
4050 
4051 static RISCVException read_spmmask(CPURISCVState *env, int csrno,
4052                                    target_ulong *val)
4053 {
4054     *val = env->spmmask;
4055     return RISCV_EXCP_NONE;
4056 }
4057 
4058 static RISCVException write_spmmask(CPURISCVState *env, int csrno,
4059                                     target_ulong val)
4060 {
4061     uint64_t mstatus;
4062 
4063     /* if pm.current==0 we can't modify current PM CSRs */
4064     if (check_pm_current_disabled(env, csrno)) {
4065         return RISCV_EXCP_NONE;
4066     }
4067     env->spmmask = val;
4068     if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) {
4069         env->cur_pmmask = val;
4070         if (cpu_get_xl(env, PRV_S) == MXL_RV32) {
4071             env->cur_pmmask &= UINT32_MAX;
4072         }
4073     }
4074     env->mmte |= EXT_STATUS_DIRTY;
4075 
4076     /* Set XS and SD bits, since PM CSRs are dirty */
4077     mstatus = env->mstatus | MSTATUS_XS;
4078     write_mstatus(env, csrno, mstatus);
4079     return RISCV_EXCP_NONE;
4080 }
4081 
4082 static RISCVException read_upmmask(CPURISCVState *env, int csrno,
4083                                    target_ulong *val)
4084 {
4085     *val = env->upmmask;
4086     return RISCV_EXCP_NONE;
4087 }
4088 
4089 static RISCVException write_upmmask(CPURISCVState *env, int csrno,
4090                                     target_ulong val)
4091 {
4092     uint64_t mstatus;
4093 
4094     /* if pm.current==0 we can't modify current PM CSRs */
4095     if (check_pm_current_disabled(env, csrno)) {
4096         return RISCV_EXCP_NONE;
4097     }
4098     env->upmmask = val;
4099     if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) {
4100         env->cur_pmmask = val;
4101         if (cpu_get_xl(env, PRV_U) == MXL_RV32) {
4102             env->cur_pmmask &= UINT32_MAX;
4103         }
4104     }
4105     env->mmte |= EXT_STATUS_DIRTY;
4106 
4107     /* Set XS and SD bits, since PM CSRs are dirty */
4108     mstatus = env->mstatus | MSTATUS_XS;
4109     write_mstatus(env, csrno, mstatus);
4110     return RISCV_EXCP_NONE;
4111 }
4112 
4113 static RISCVException read_mpmbase(CPURISCVState *env, int csrno,
4114                                    target_ulong *val)
4115 {
4116     *val = env->mpmbase;
4117     return RISCV_EXCP_NONE;
4118 }
4119 
4120 static RISCVException write_mpmbase(CPURISCVState *env, int csrno,
4121                                     target_ulong val)
4122 {
4123     uint64_t mstatus;
4124 
4125     env->mpmbase = val;
4126     if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) {
4127         env->cur_pmbase = val;
4128     }
4129     env->mmte |= EXT_STATUS_DIRTY;
4130 
4131     /* Set XS and SD bits, since PM CSRs are dirty */
4132     mstatus = env->mstatus | MSTATUS_XS;
4133     write_mstatus(env, csrno, mstatus);
4134     return RISCV_EXCP_NONE;
4135 }
4136 
4137 static RISCVException read_spmbase(CPURISCVState *env, int csrno,
4138                                    target_ulong *val)
4139 {
4140     *val = env->spmbase;
4141     return RISCV_EXCP_NONE;
4142 }
4143 
4144 static RISCVException write_spmbase(CPURISCVState *env, int csrno,
4145                                     target_ulong val)
4146 {
4147     uint64_t mstatus;
4148 
4149     /* if pm.current==0 we can't modify current PM CSRs */
4150     if (check_pm_current_disabled(env, csrno)) {
4151         return RISCV_EXCP_NONE;
4152     }
4153     env->spmbase = val;
4154     if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) {
4155         env->cur_pmbase = val;
4156         if (cpu_get_xl(env, PRV_S) == MXL_RV32) {
4157             env->cur_pmbase &= UINT32_MAX;
4158         }
4159     }
4160     env->mmte |= EXT_STATUS_DIRTY;
4161 
4162     /* Set XS and SD bits, since PM CSRs are dirty */
4163     mstatus = env->mstatus | MSTATUS_XS;
4164     write_mstatus(env, csrno, mstatus);
4165     return RISCV_EXCP_NONE;
4166 }
4167 
4168 static RISCVException read_upmbase(CPURISCVState *env, int csrno,
4169                                    target_ulong *val)
4170 {
4171     *val = env->upmbase;
4172     return RISCV_EXCP_NONE;
4173 }
4174 
4175 static RISCVException write_upmbase(CPURISCVState *env, int csrno,
4176                                     target_ulong val)
4177 {
4178     uint64_t mstatus;
4179 
4180     /* if pm.current==0 we can't modify current PM CSRs */
4181     if (check_pm_current_disabled(env, csrno)) {
4182         return RISCV_EXCP_NONE;
4183     }
4184     env->upmbase = val;
4185     if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) {
4186         env->cur_pmbase = val;
4187         if (cpu_get_xl(env, PRV_U) == MXL_RV32) {
4188             env->cur_pmbase &= UINT32_MAX;
4189         }
4190     }
4191     env->mmte |= EXT_STATUS_DIRTY;
4192 
4193     /* Set XS and SD bits, since PM CSRs are dirty */
4194     mstatus = env->mstatus | MSTATUS_XS;
4195     write_mstatus(env, csrno, mstatus);
4196     return RISCV_EXCP_NONE;
4197 }
4198 
4199 #endif
4200 
4201 /* Crypto Extension */
4202 static RISCVException rmw_seed(CPURISCVState *env, int csrno,
4203                                target_ulong *ret_value,
4204                                target_ulong new_value,
4205                                target_ulong write_mask)
4206 {
4207     uint16_t random_v;
4208     Error *random_e = NULL;
4209     int random_r;
4210     target_ulong rval;
4211 
4212     random_r = qemu_guest_getrandom(&random_v, 2, &random_e);
4213     if (unlikely(random_r < 0)) {
4214         /*
4215          * Failed, for unknown reasons in the crypto subsystem.
4216          * The best we can do is log the reason and return a
4217          * failure indication to the guest.  There is no reason
4218          * we know to expect the failure to be transitory, so
4219          * indicate DEAD to avoid having the guest spin on WAIT.
4220          */
4221         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
4222                       __func__, error_get_pretty(random_e));
4223         error_free(random_e);
4224         rval = SEED_OPST_DEAD;
4225     } else {
4226         rval = random_v | SEED_OPST_ES16;
4227     }
4228 
4229     if (ret_value) {
4230         *ret_value = rval;
4231     }
4232 
4233     return RISCV_EXCP_NONE;
4234 }
4235 
4236 /*
4237  * riscv_csrrw - read and/or update control and status register
4238  *
4239  * csrr   <->  riscv_csrrw(env, csrno, ret_value, 0, 0);
4240  * csrrw  <->  riscv_csrrw(env, csrno, ret_value, value, -1);
4241  * csrrs  <->  riscv_csrrw(env, csrno, ret_value, -1, value);
4242  * csrrc  <->  riscv_csrrw(env, csrno, ret_value, 0, value);
4243  */
4244 
4245 static inline RISCVException riscv_csrrw_check(CPURISCVState *env,
4246                                                int csrno,
4247                                                bool write_mask)
4248 {
4249     /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */
4250     bool read_only = get_field(csrno, 0xC00) == 3;
4251     int csr_min_priv = csr_ops[csrno].min_priv_ver;
4252 
4253     /* ensure the CSR extension is enabled */
4254     if (!riscv_cpu_cfg(env)->ext_zicsr) {
4255         return RISCV_EXCP_ILLEGAL_INST;
4256     }
4257 
4258     /* ensure CSR is implemented by checking predicate */
4259     if (!csr_ops[csrno].predicate) {
4260         return RISCV_EXCP_ILLEGAL_INST;
4261     }
4262 
4263     /* privileged spec version check */
4264     if (env->priv_ver < csr_min_priv) {
4265         return RISCV_EXCP_ILLEGAL_INST;
4266     }
4267 
4268     /* read / write check */
4269     if (write_mask && read_only) {
4270         return RISCV_EXCP_ILLEGAL_INST;
4271     }
4272 
4273     /*
4274      * The predicate() not only does existence check but also does some
4275      * access control check which triggers for example virtual instruction
4276      * exception in some cases. When writing read-only CSRs in those cases
4277      * illegal instruction exception should be triggered instead of virtual
4278      * instruction exception. Hence this comes after the read / write check.
4279      */
4280     RISCVException ret = csr_ops[csrno].predicate(env, csrno);
4281     if (ret != RISCV_EXCP_NONE) {
4282         return ret;
4283     }
4284 
4285 #if !defined(CONFIG_USER_ONLY)
4286     int csr_priv, effective_priv = env->priv;
4287 
4288     if (riscv_has_ext(env, RVH) && env->priv == PRV_S &&
4289         !env->virt_enabled) {
4290         /*
4291          * We are in HS mode. Add 1 to the effective privilege level to
4292          * allow us to access the Hypervisor CSRs.
4293          */
4294         effective_priv++;
4295     }
4296 
4297     csr_priv = get_field(csrno, 0x300);
4298     if (!env->debugger && (effective_priv < csr_priv)) {
4299         if (csr_priv == (PRV_S + 1) && env->virt_enabled) {
4300             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
4301         }
4302         return RISCV_EXCP_ILLEGAL_INST;
4303     }
4304 #endif
4305     return RISCV_EXCP_NONE;
4306 }
4307 
4308 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno,
4309                                        target_ulong *ret_value,
4310                                        target_ulong new_value,
4311                                        target_ulong write_mask)
4312 {
4313     RISCVException ret;
4314     target_ulong old_value = 0;
4315 
4316     /* execute combined read/write operation if it exists */
4317     if (csr_ops[csrno].op) {
4318         return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask);
4319     }
4320 
4321     /*
4322      * ret_value == NULL means that rd=x0 and we're coming from helper_csrw()
4323      * and we can't throw side effects caused by CSR reads.
4324      */
4325     if (ret_value) {
4326         /* if no accessor exists then return failure */
4327         if (!csr_ops[csrno].read) {
4328             return RISCV_EXCP_ILLEGAL_INST;
4329         }
4330         /* read old value */
4331         ret = csr_ops[csrno].read(env, csrno, &old_value);
4332         if (ret != RISCV_EXCP_NONE) {
4333             return ret;
4334         }
4335     }
4336 
4337     /* write value if writable and write mask set, otherwise drop writes */
4338     if (write_mask) {
4339         new_value = (old_value & ~write_mask) | (new_value & write_mask);
4340         if (csr_ops[csrno].write) {
4341             ret = csr_ops[csrno].write(env, csrno, new_value);
4342             if (ret != RISCV_EXCP_NONE) {
4343                 return ret;
4344             }
4345         }
4346     }
4347 
4348     /* return old value */
4349     if (ret_value) {
4350         *ret_value = old_value;
4351     }
4352 
4353     return RISCV_EXCP_NONE;
4354 }
4355 
4356 RISCVException riscv_csrrw(CPURISCVState *env, int csrno,
4357                            target_ulong *ret_value,
4358                            target_ulong new_value, target_ulong write_mask)
4359 {
4360     RISCVException ret = riscv_csrrw_check(env, csrno, write_mask);
4361     if (ret != RISCV_EXCP_NONE) {
4362         return ret;
4363     }
4364 
4365     return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask);
4366 }
4367 
4368 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno,
4369                                         Int128 *ret_value,
4370                                         Int128 new_value,
4371                                         Int128 write_mask)
4372 {
4373     RISCVException ret;
4374     Int128 old_value;
4375 
4376     /* read old value */
4377     ret = csr_ops[csrno].read128(env, csrno, &old_value);
4378     if (ret != RISCV_EXCP_NONE) {
4379         return ret;
4380     }
4381 
4382     /* write value if writable and write mask set, otherwise drop writes */
4383     if (int128_nz(write_mask)) {
4384         new_value = int128_or(int128_and(old_value, int128_not(write_mask)),
4385                               int128_and(new_value, write_mask));
4386         if (csr_ops[csrno].write128) {
4387             ret = csr_ops[csrno].write128(env, csrno, new_value);
4388             if (ret != RISCV_EXCP_NONE) {
4389                 return ret;
4390             }
4391         } else if (csr_ops[csrno].write) {
4392             /* avoids having to write wrappers for all registers */
4393             ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value));
4394             if (ret != RISCV_EXCP_NONE) {
4395                 return ret;
4396             }
4397         }
4398     }
4399 
4400     /* return old value */
4401     if (ret_value) {
4402         *ret_value = old_value;
4403     }
4404 
4405     return RISCV_EXCP_NONE;
4406 }
4407 
4408 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno,
4409                                 Int128 *ret_value,
4410                                 Int128 new_value, Int128 write_mask)
4411 {
4412     RISCVException ret;
4413 
4414     ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask));
4415     if (ret != RISCV_EXCP_NONE) {
4416         return ret;
4417     }
4418 
4419     if (csr_ops[csrno].read128) {
4420         return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask);
4421     }
4422 
4423     /*
4424      * Fall back to 64-bit version for now, if the 128-bit alternative isn't
4425      * at all defined.
4426      * Note, some CSRs don't need to extend to MXLEN (64 upper bits non
4427      * significant), for those, this fallback is correctly handling the
4428      * accesses
4429      */
4430     target_ulong old_value;
4431     ret = riscv_csrrw_do64(env, csrno, &old_value,
4432                            int128_getlo(new_value),
4433                            int128_getlo(write_mask));
4434     if (ret == RISCV_EXCP_NONE && ret_value) {
4435         *ret_value = int128_make64(old_value);
4436     }
4437     return ret;
4438 }
4439 
4440 /*
4441  * Debugger support.  If not in user mode, set env->debugger before the
4442  * riscv_csrrw call and clear it after the call.
4443  */
4444 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno,
4445                                  target_ulong *ret_value,
4446                                  target_ulong new_value,
4447                                  target_ulong write_mask)
4448 {
4449     RISCVException ret;
4450 #if !defined(CONFIG_USER_ONLY)
4451     env->debugger = true;
4452 #endif
4453     ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask);
4454 #if !defined(CONFIG_USER_ONLY)
4455     env->debugger = false;
4456 #endif
4457     return ret;
4458 }
4459 
4460 static RISCVException read_jvt(CPURISCVState *env, int csrno,
4461                                target_ulong *val)
4462 {
4463     *val = env->jvt;
4464     return RISCV_EXCP_NONE;
4465 }
4466 
4467 static RISCVException write_jvt(CPURISCVState *env, int csrno,
4468                                 target_ulong val)
4469 {
4470     env->jvt = val;
4471     return RISCV_EXCP_NONE;
4472 }
4473 
4474 /*
4475  * Control and Status Register function table
4476  * riscv_csr_operations::predicate() must be provided for an implemented CSR
4477  */
4478 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = {
4479     /* User Floating-Point CSRs */
4480     [CSR_FFLAGS]   = { "fflags",   fs,     read_fflags,  write_fflags },
4481     [CSR_FRM]      = { "frm",      fs,     read_frm,     write_frm    },
4482     [CSR_FCSR]     = { "fcsr",     fs,     read_fcsr,    write_fcsr   },
4483     /* Vector CSRs */
4484     [CSR_VSTART]   = { "vstart",   vs,     read_vstart,  write_vstart },
4485     [CSR_VXSAT]    = { "vxsat",    vs,     read_vxsat,   write_vxsat  },
4486     [CSR_VXRM]     = { "vxrm",     vs,     read_vxrm,    write_vxrm   },
4487     [CSR_VCSR]     = { "vcsr",     vs,     read_vcsr,    write_vcsr   },
4488     [CSR_VL]       = { "vl",       vs,     read_vl                    },
4489     [CSR_VTYPE]    = { "vtype",    vs,     read_vtype                 },
4490     [CSR_VLENB]    = { "vlenb",    vs,     read_vlenb                 },
4491     /* User Timers and Counters */
4492     [CSR_CYCLE]    = { "cycle",    ctr,    read_hpmcounter  },
4493     [CSR_INSTRET]  = { "instret",  ctr,    read_hpmcounter  },
4494     [CSR_CYCLEH]   = { "cycleh",   ctr32,  read_hpmcounterh },
4495     [CSR_INSTRETH] = { "instreth", ctr32,  read_hpmcounterh },
4496 
4497     /*
4498      * In privileged mode, the monitor will have to emulate TIME CSRs only if
4499      * rdtime callback is not provided by machine/platform emulation.
4500      */
4501     [CSR_TIME]  = { "time",  ctr,   read_time  },
4502     [CSR_TIMEH] = { "timeh", ctr32, read_timeh },
4503 
4504     /* Crypto Extension */
4505     [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed },
4506 
4507     /* Zcmt Extension */
4508     [CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt},
4509 
4510 #if !defined(CONFIG_USER_ONLY)
4511     /* Machine Timers and Counters */
4512     [CSR_MCYCLE]    = { "mcycle",    any,   read_hpmcounter,
4513                         write_mhpmcounter                    },
4514     [CSR_MINSTRET]  = { "minstret",  any,   read_hpmcounter,
4515                         write_mhpmcounter                    },
4516     [CSR_MCYCLEH]   = { "mcycleh",   any32, read_hpmcounterh,
4517                         write_mhpmcounterh                   },
4518     [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh,
4519                         write_mhpmcounterh                   },
4520 
4521     /* Machine Information Registers */
4522     [CSR_MVENDORID] = { "mvendorid", any,   read_mvendorid },
4523     [CSR_MARCHID]   = { "marchid",   any,   read_marchid   },
4524     [CSR_MIMPID]    = { "mimpid",    any,   read_mimpid    },
4525     [CSR_MHARTID]   = { "mhartid",   any,   read_mhartid   },
4526 
4527     [CSR_MCONFIGPTR]  = { "mconfigptr", any,   read_zero,
4528                           .min_priv_ver = PRIV_VERSION_1_12_0 },
4529     /* Machine Trap Setup */
4530     [CSR_MSTATUS]     = { "mstatus",    any,   read_mstatus, write_mstatus,
4531                           NULL,                read_mstatus_i128           },
4532     [CSR_MISA]        = { "misa",       any,   read_misa,    write_misa,
4533                           NULL,                read_misa_i128              },
4534     [CSR_MIDELEG]     = { "mideleg",    any,   NULL, NULL,   rmw_mideleg   },
4535     [CSR_MEDELEG]     = { "medeleg",    any,   read_medeleg, write_medeleg },
4536     [CSR_MIE]         = { "mie",        any,   NULL, NULL,   rmw_mie       },
4537     [CSR_MTVEC]       = { "mtvec",      any,   read_mtvec,   write_mtvec   },
4538     [CSR_MCOUNTEREN]  = { "mcounteren", umode, read_mcounteren,
4539                           write_mcounteren                                 },
4540 
4541     [CSR_MSTATUSH]    = { "mstatush",   any32, read_mstatush,
4542                           write_mstatush                                   },
4543 
4544     /* Machine Trap Handling */
4545     [CSR_MSCRATCH] = { "mscratch", any,  read_mscratch, write_mscratch,
4546                        NULL, read_mscratch_i128, write_mscratch_i128   },
4547     [CSR_MEPC]     = { "mepc",     any,  read_mepc,     write_mepc     },
4548     [CSR_MCAUSE]   = { "mcause",   any,  read_mcause,   write_mcause   },
4549     [CSR_MTVAL]    = { "mtval",    any,  read_mtval,    write_mtval    },
4550     [CSR_MIP]      = { "mip",      any,  NULL,    NULL, rmw_mip        },
4551 
4552     /* Machine-Level Window to Indirectly Accessed Registers (AIA) */
4553     [CSR_MISELECT] = { "miselect", aia_any,   NULL, NULL,    rmw_xiselect },
4554     [CSR_MIREG]    = { "mireg",    aia_any,   NULL, NULL,    rmw_xireg },
4555 
4556     /* Machine-Level Interrupts (AIA) */
4557     [CSR_MTOPEI]   = { "mtopei",   aia_any, NULL, NULL, rmw_xtopei },
4558     [CSR_MTOPI]    = { "mtopi",    aia_any, read_mtopi },
4559 
4560     /* Virtual Interrupts for Supervisor Level (AIA) */
4561     [CSR_MVIEN]    = { "mvien",    aia_any, NULL, NULL, rmw_mvien   },
4562     [CSR_MVIP]     = { "mvip",     aia_any, NULL, NULL, rmw_mvip    },
4563 
4564     /* Machine-Level High-Half CSRs (AIA) */
4565     [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh },
4566     [CSR_MIEH]     = { "mieh",     aia_any32, NULL, NULL, rmw_mieh     },
4567     [CSR_MVIENH]   = { "mvienh",   aia_any32, NULL, NULL, rmw_mvienh   },
4568     [CSR_MVIPH]    = { "mviph",    aia_any32, NULL, NULL, rmw_mviph    },
4569     [CSR_MIPH]     = { "miph",     aia_any32, NULL, NULL, rmw_miph     },
4570 
4571     /* Execution environment configuration */
4572     [CSR_MENVCFG]  = { "menvcfg",  umode, read_menvcfg,  write_menvcfg,
4573                        .min_priv_ver = PRIV_VERSION_1_12_0              },
4574     [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh,
4575                        .min_priv_ver = PRIV_VERSION_1_12_0              },
4576     [CSR_SENVCFG]  = { "senvcfg",  smode, read_senvcfg,  write_senvcfg,
4577                        .min_priv_ver = PRIV_VERSION_1_12_0              },
4578     [CSR_HENVCFG]  = { "henvcfg",  hmode, read_henvcfg, write_henvcfg,
4579                        .min_priv_ver = PRIV_VERSION_1_12_0              },
4580     [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh,
4581                        .min_priv_ver = PRIV_VERSION_1_12_0              },
4582 
4583     /* Smstateen extension CSRs */
4584     [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0,
4585                         .min_priv_ver = PRIV_VERSION_1_12_0 },
4586     [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh,
4587                           write_mstateen0h,
4588                          .min_priv_ver = PRIV_VERSION_1_12_0 },
4589     [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen,
4590                         write_mstateen_1_3,
4591                         .min_priv_ver = PRIV_VERSION_1_12_0 },
4592     [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh,
4593                          write_mstateenh_1_3,
4594                          .min_priv_ver = PRIV_VERSION_1_12_0 },
4595     [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen,
4596                         write_mstateen_1_3,
4597                         .min_priv_ver = PRIV_VERSION_1_12_0 },
4598     [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh,
4599                          write_mstateenh_1_3,
4600                          .min_priv_ver = PRIV_VERSION_1_12_0 },
4601     [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen,
4602                         write_mstateen_1_3,
4603                         .min_priv_ver = PRIV_VERSION_1_12_0 },
4604     [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh,
4605                          write_mstateenh_1_3,
4606                          .min_priv_ver = PRIV_VERSION_1_12_0 },
4607     [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0,
4608                         .min_priv_ver = PRIV_VERSION_1_12_0 },
4609     [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh,
4610                          write_hstateen0h,
4611                          .min_priv_ver = PRIV_VERSION_1_12_0 },
4612     [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen,
4613                         write_hstateen_1_3,
4614                         .min_priv_ver = PRIV_VERSION_1_12_0 },
4615     [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh,
4616                          write_hstateenh_1_3,
4617                          .min_priv_ver = PRIV_VERSION_1_12_0 },
4618     [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen,
4619                         write_hstateen_1_3,
4620                         .min_priv_ver = PRIV_VERSION_1_12_0 },
4621     [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh,
4622                          write_hstateenh_1_3,
4623                          .min_priv_ver = PRIV_VERSION_1_12_0 },
4624     [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen,
4625                         write_hstateen_1_3,
4626                         .min_priv_ver = PRIV_VERSION_1_12_0 },
4627     [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh,
4628                          write_hstateenh_1_3,
4629                          .min_priv_ver = PRIV_VERSION_1_12_0 },
4630     [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0,
4631                         .min_priv_ver = PRIV_VERSION_1_12_0 },
4632     [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen,
4633                         write_sstateen_1_3,
4634                         .min_priv_ver = PRIV_VERSION_1_12_0 },
4635     [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen,
4636                         write_sstateen_1_3,
4637                         .min_priv_ver = PRIV_VERSION_1_12_0 },
4638     [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen,
4639                         write_sstateen_1_3,
4640                         .min_priv_ver = PRIV_VERSION_1_12_0 },
4641 
4642     /* Supervisor Trap Setup */
4643     [CSR_SSTATUS]    = { "sstatus",    smode, read_sstatus,    write_sstatus,
4644                          NULL,                read_sstatus_i128              },
4645     [CSR_SIE]        = { "sie",        smode, NULL,   NULL,    rmw_sie       },
4646     [CSR_STVEC]      = { "stvec",      smode, read_stvec,      write_stvec   },
4647     [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren,
4648                          write_scounteren                                    },
4649 
4650     /* Supervisor Trap Handling */
4651     [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch,
4652                        NULL, read_sscratch_i128, write_sscratch_i128    },
4653     [CSR_SEPC]     = { "sepc",     smode, read_sepc,     write_sepc     },
4654     [CSR_SCAUSE]   = { "scause",   smode, read_scause,   write_scause   },
4655     [CSR_STVAL]    = { "stval",    smode, read_stval,    write_stval    },
4656     [CSR_SIP]      = { "sip",      smode, NULL,    NULL, rmw_sip        },
4657     [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp,
4658                        .min_priv_ver = PRIV_VERSION_1_12_0 },
4659     [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph,
4660                         .min_priv_ver = PRIV_VERSION_1_12_0 },
4661     [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp,
4662                         write_vstimecmp,
4663                         .min_priv_ver = PRIV_VERSION_1_12_0 },
4664     [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph,
4665                          write_vstimecmph,
4666                          .min_priv_ver = PRIV_VERSION_1_12_0 },
4667 
4668     /* Supervisor Protection and Translation */
4669     [CSR_SATP]     = { "satp",     satp, read_satp,     write_satp     },
4670 
4671     /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */
4672     [CSR_SISELECT]   = { "siselect",   aia_smode, NULL, NULL, rmw_xiselect },
4673     [CSR_SIREG]      = { "sireg",      aia_smode, NULL, NULL, rmw_xireg },
4674 
4675     /* Supervisor-Level Interrupts (AIA) */
4676     [CSR_STOPEI]     = { "stopei",     aia_smode, NULL, NULL, rmw_xtopei },
4677     [CSR_STOPI]      = { "stopi",      aia_smode, read_stopi },
4678 
4679     /* Supervisor-Level High-Half CSRs (AIA) */
4680     [CSR_SIEH]       = { "sieh",   aia_smode32, NULL, NULL, rmw_sieh },
4681     [CSR_SIPH]       = { "siph",   aia_smode32, NULL, NULL, rmw_siph },
4682 
4683     [CSR_HSTATUS]     = { "hstatus",     hmode,   read_hstatus, write_hstatus,
4684                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4685     [CSR_HEDELEG]     = { "hedeleg",     hmode,   read_hedeleg, write_hedeleg,
4686                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4687     [CSR_HIDELEG]     = { "hideleg",     hmode,   NULL,   NULL, rmw_hideleg,
4688                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4689     [CSR_HVIP]        = { "hvip",        hmode,   NULL,   NULL, rmw_hvip,
4690                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4691     [CSR_HIP]         = { "hip",         hmode,   NULL,   NULL, rmw_hip,
4692                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4693     [CSR_HIE]         = { "hie",         hmode,   NULL,   NULL, rmw_hie,
4694                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4695     [CSR_HCOUNTEREN]  = { "hcounteren",  hmode,   read_hcounteren,
4696                           write_hcounteren,
4697                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4698     [CSR_HGEIE]       = { "hgeie",       hmode,   read_hgeie,   write_hgeie,
4699                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4700     [CSR_HTVAL]       = { "htval",       hmode,   read_htval,   write_htval,
4701                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4702     [CSR_HTINST]      = { "htinst",      hmode,   read_htinst,  write_htinst,
4703                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4704     [CSR_HGEIP]       = { "hgeip",       hmode,   read_hgeip,
4705                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4706     [CSR_HGATP]       = { "hgatp",       hgatp,   read_hgatp,   write_hgatp,
4707                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4708     [CSR_HTIMEDELTA]  = { "htimedelta",  hmode,   read_htimedelta,
4709                           write_htimedelta,
4710                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4711     [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah,
4712                           write_htimedeltah,
4713                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4714 
4715     [CSR_VSSTATUS]    = { "vsstatus",    hmode,   read_vsstatus,
4716                           write_vsstatus,
4717                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4718     [CSR_VSIP]        = { "vsip",        hmode,   NULL,    NULL, rmw_vsip,
4719                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4720     [CSR_VSIE]        = { "vsie",        hmode,   NULL,    NULL, rmw_vsie ,
4721                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4722     [CSR_VSTVEC]      = { "vstvec",      hmode,   read_vstvec,   write_vstvec,
4723                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4724     [CSR_VSSCRATCH]   = { "vsscratch",   hmode,   read_vsscratch,
4725                           write_vsscratch,
4726                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4727     [CSR_VSEPC]       = { "vsepc",       hmode,   read_vsepc,    write_vsepc,
4728                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4729     [CSR_VSCAUSE]     = { "vscause",     hmode,   read_vscause,  write_vscause,
4730                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4731     [CSR_VSTVAL]      = { "vstval",      hmode,   read_vstval,   write_vstval,
4732                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4733     [CSR_VSATP]       = { "vsatp",       hmode,   read_vsatp,    write_vsatp,
4734                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4735 
4736     [CSR_MTVAL2]      = { "mtval2",      hmode,   read_mtval2,   write_mtval2,
4737                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4738     [CSR_MTINST]      = { "mtinst",      hmode,   read_mtinst,   write_mtinst,
4739                           .min_priv_ver = PRIV_VERSION_1_12_0                },
4740 
4741     /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */
4742     [CSR_HVIEN]       = { "hvien",       aia_hmode, NULL, NULL, rmw_hvien },
4743     [CSR_HVICTL]      = { "hvictl",      aia_hmode, read_hvictl,
4744                           write_hvictl                                      },
4745     [CSR_HVIPRIO1]    = { "hviprio1",    aia_hmode, read_hviprio1,
4746                           write_hviprio1                                    },
4747     [CSR_HVIPRIO2]    = { "hviprio2",    aia_hmode, read_hviprio2,
4748                           write_hviprio2                                    },
4749     /*
4750      * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA)
4751      */
4752     [CSR_VSISELECT]   = { "vsiselect",   aia_hmode, NULL, NULL,
4753                           rmw_xiselect                                     },
4754     [CSR_VSIREG]      = { "vsireg",      aia_hmode, NULL, NULL, rmw_xireg  },
4755 
4756     /* VS-Level Interrupts (H-extension with AIA) */
4757     [CSR_VSTOPEI]     = { "vstopei",     aia_hmode, NULL, NULL, rmw_xtopei },
4758     [CSR_VSTOPI]      = { "vstopi",      aia_hmode, read_vstopi },
4759 
4760     /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */
4761     [CSR_HIDELEGH]    = { "hidelegh",    aia_hmode32, NULL, NULL,
4762                           rmw_hidelegh                                      },
4763     [CSR_HVIENH]      = { "hvienh",      aia_hmode32, NULL, NULL, rmw_hvienh },
4764     [CSR_HVIPH]       = { "hviph",       aia_hmode32, NULL, NULL, rmw_hviph },
4765     [CSR_HVIPRIO1H]   = { "hviprio1h",   aia_hmode32, read_hviprio1h,
4766                           write_hviprio1h                                   },
4767     [CSR_HVIPRIO2H]   = { "hviprio2h",   aia_hmode32, read_hviprio2h,
4768                           write_hviprio2h                                   },
4769     [CSR_VSIEH]       = { "vsieh",       aia_hmode32, NULL, NULL, rmw_vsieh },
4770     [CSR_VSIPH]       = { "vsiph",       aia_hmode32, NULL, NULL, rmw_vsiph },
4771 
4772     /* Physical Memory Protection */
4773     [CSR_MSECCFG]    = { "mseccfg",   have_mseccfg, read_mseccfg, write_mseccfg,
4774                          .min_priv_ver = PRIV_VERSION_1_11_0           },
4775     [CSR_PMPCFG0]    = { "pmpcfg0",   pmp, read_pmpcfg,  write_pmpcfg  },
4776     [CSR_PMPCFG1]    = { "pmpcfg1",   pmp, read_pmpcfg,  write_pmpcfg  },
4777     [CSR_PMPCFG2]    = { "pmpcfg2",   pmp, read_pmpcfg,  write_pmpcfg  },
4778     [CSR_PMPCFG3]    = { "pmpcfg3",   pmp, read_pmpcfg,  write_pmpcfg  },
4779     [CSR_PMPADDR0]   = { "pmpaddr0",  pmp, read_pmpaddr, write_pmpaddr },
4780     [CSR_PMPADDR1]   = { "pmpaddr1",  pmp, read_pmpaddr, write_pmpaddr },
4781     [CSR_PMPADDR2]   = { "pmpaddr2",  pmp, read_pmpaddr, write_pmpaddr },
4782     [CSR_PMPADDR3]   = { "pmpaddr3",  pmp, read_pmpaddr, write_pmpaddr },
4783     [CSR_PMPADDR4]   = { "pmpaddr4",  pmp, read_pmpaddr, write_pmpaddr },
4784     [CSR_PMPADDR5]   = { "pmpaddr5",  pmp, read_pmpaddr, write_pmpaddr },
4785     [CSR_PMPADDR6]   = { "pmpaddr6",  pmp, read_pmpaddr, write_pmpaddr },
4786     [CSR_PMPADDR7]   = { "pmpaddr7",  pmp, read_pmpaddr, write_pmpaddr },
4787     [CSR_PMPADDR8]   = { "pmpaddr8",  pmp, read_pmpaddr, write_pmpaddr },
4788     [CSR_PMPADDR9]   = { "pmpaddr9",  pmp, read_pmpaddr, write_pmpaddr },
4789     [CSR_PMPADDR10]  = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr },
4790     [CSR_PMPADDR11]  = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr },
4791     [CSR_PMPADDR12]  = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr },
4792     [CSR_PMPADDR13]  = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr },
4793     [CSR_PMPADDR14] =  { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr },
4794     [CSR_PMPADDR15] =  { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr },
4795 
4796     /* Debug CSRs */
4797     [CSR_TSELECT]   =  { "tselect", debug, read_tselect, write_tselect },
4798     [CSR_TDATA1]    =  { "tdata1",  debug, read_tdata,   write_tdata   },
4799     [CSR_TDATA2]    =  { "tdata2",  debug, read_tdata,   write_tdata   },
4800     [CSR_TDATA3]    =  { "tdata3",  debug, read_tdata,   write_tdata   },
4801     [CSR_TINFO]     =  { "tinfo",   debug, read_tinfo,   write_ignore  },
4802 
4803     /* User Pointer Masking */
4804     [CSR_UMTE]    =    { "umte",    pointer_masking, read_umte,  write_umte },
4805     [CSR_UPMMASK] =    { "upmmask", pointer_masking, read_upmmask,
4806                          write_upmmask                                      },
4807     [CSR_UPMBASE] =    { "upmbase", pointer_masking, read_upmbase,
4808                          write_upmbase                                      },
4809     /* Machine Pointer Masking */
4810     [CSR_MMTE]    =    { "mmte",    pointer_masking, read_mmte,  write_mmte },
4811     [CSR_MPMMASK] =    { "mpmmask", pointer_masking, read_mpmmask,
4812                          write_mpmmask                                      },
4813     [CSR_MPMBASE] =    { "mpmbase", pointer_masking, read_mpmbase,
4814                          write_mpmbase                                      },
4815     /* Supervisor Pointer Masking */
4816     [CSR_SMTE]    =    { "smte",    pointer_masking, read_smte,  write_smte },
4817     [CSR_SPMMASK] =    { "spmmask", pointer_masking, read_spmmask,
4818                          write_spmmask                                      },
4819     [CSR_SPMBASE] =    { "spmbase", pointer_masking, read_spmbase,
4820                          write_spmbase                                      },
4821 
4822     /* Performance Counters */
4823     [CSR_HPMCOUNTER3]    = { "hpmcounter3",    ctr,    read_hpmcounter },
4824     [CSR_HPMCOUNTER4]    = { "hpmcounter4",    ctr,    read_hpmcounter },
4825     [CSR_HPMCOUNTER5]    = { "hpmcounter5",    ctr,    read_hpmcounter },
4826     [CSR_HPMCOUNTER6]    = { "hpmcounter6",    ctr,    read_hpmcounter },
4827     [CSR_HPMCOUNTER7]    = { "hpmcounter7",    ctr,    read_hpmcounter },
4828     [CSR_HPMCOUNTER8]    = { "hpmcounter8",    ctr,    read_hpmcounter },
4829     [CSR_HPMCOUNTER9]    = { "hpmcounter9",    ctr,    read_hpmcounter },
4830     [CSR_HPMCOUNTER10]   = { "hpmcounter10",   ctr,    read_hpmcounter },
4831     [CSR_HPMCOUNTER11]   = { "hpmcounter11",   ctr,    read_hpmcounter },
4832     [CSR_HPMCOUNTER12]   = { "hpmcounter12",   ctr,    read_hpmcounter },
4833     [CSR_HPMCOUNTER13]   = { "hpmcounter13",   ctr,    read_hpmcounter },
4834     [CSR_HPMCOUNTER14]   = { "hpmcounter14",   ctr,    read_hpmcounter },
4835     [CSR_HPMCOUNTER15]   = { "hpmcounter15",   ctr,    read_hpmcounter },
4836     [CSR_HPMCOUNTER16]   = { "hpmcounter16",   ctr,    read_hpmcounter },
4837     [CSR_HPMCOUNTER17]   = { "hpmcounter17",   ctr,    read_hpmcounter },
4838     [CSR_HPMCOUNTER18]   = { "hpmcounter18",   ctr,    read_hpmcounter },
4839     [CSR_HPMCOUNTER19]   = { "hpmcounter19",   ctr,    read_hpmcounter },
4840     [CSR_HPMCOUNTER20]   = { "hpmcounter20",   ctr,    read_hpmcounter },
4841     [CSR_HPMCOUNTER21]   = { "hpmcounter21",   ctr,    read_hpmcounter },
4842     [CSR_HPMCOUNTER22]   = { "hpmcounter22",   ctr,    read_hpmcounter },
4843     [CSR_HPMCOUNTER23]   = { "hpmcounter23",   ctr,    read_hpmcounter },
4844     [CSR_HPMCOUNTER24]   = { "hpmcounter24",   ctr,    read_hpmcounter },
4845     [CSR_HPMCOUNTER25]   = { "hpmcounter25",   ctr,    read_hpmcounter },
4846     [CSR_HPMCOUNTER26]   = { "hpmcounter26",   ctr,    read_hpmcounter },
4847     [CSR_HPMCOUNTER27]   = { "hpmcounter27",   ctr,    read_hpmcounter },
4848     [CSR_HPMCOUNTER28]   = { "hpmcounter28",   ctr,    read_hpmcounter },
4849     [CSR_HPMCOUNTER29]   = { "hpmcounter29",   ctr,    read_hpmcounter },
4850     [CSR_HPMCOUNTER30]   = { "hpmcounter30",   ctr,    read_hpmcounter },
4851     [CSR_HPMCOUNTER31]   = { "hpmcounter31",   ctr,    read_hpmcounter },
4852 
4853     [CSR_MHPMCOUNTER3]   = { "mhpmcounter3",   mctr,    read_hpmcounter,
4854                              write_mhpmcounter                         },
4855     [CSR_MHPMCOUNTER4]   = { "mhpmcounter4",   mctr,    read_hpmcounter,
4856                              write_mhpmcounter                         },
4857     [CSR_MHPMCOUNTER5]   = { "mhpmcounter5",   mctr,    read_hpmcounter,
4858                              write_mhpmcounter                         },
4859     [CSR_MHPMCOUNTER6]   = { "mhpmcounter6",   mctr,    read_hpmcounter,
4860                              write_mhpmcounter                         },
4861     [CSR_MHPMCOUNTER7]   = { "mhpmcounter7",   mctr,    read_hpmcounter,
4862                              write_mhpmcounter                         },
4863     [CSR_MHPMCOUNTER8]   = { "mhpmcounter8",   mctr,    read_hpmcounter,
4864                              write_mhpmcounter                         },
4865     [CSR_MHPMCOUNTER9]   = { "mhpmcounter9",   mctr,    read_hpmcounter,
4866                              write_mhpmcounter                         },
4867     [CSR_MHPMCOUNTER10]  = { "mhpmcounter10",  mctr,    read_hpmcounter,
4868                              write_mhpmcounter                         },
4869     [CSR_MHPMCOUNTER11]  = { "mhpmcounter11",  mctr,    read_hpmcounter,
4870                              write_mhpmcounter                         },
4871     [CSR_MHPMCOUNTER12]  = { "mhpmcounter12",  mctr,    read_hpmcounter,
4872                              write_mhpmcounter                         },
4873     [CSR_MHPMCOUNTER13]  = { "mhpmcounter13",  mctr,    read_hpmcounter,
4874                              write_mhpmcounter                         },
4875     [CSR_MHPMCOUNTER14]  = { "mhpmcounter14",  mctr,    read_hpmcounter,
4876                              write_mhpmcounter                         },
4877     [CSR_MHPMCOUNTER15]  = { "mhpmcounter15",  mctr,    read_hpmcounter,
4878                              write_mhpmcounter                         },
4879     [CSR_MHPMCOUNTER16]  = { "mhpmcounter16",  mctr,    read_hpmcounter,
4880                              write_mhpmcounter                         },
4881     [CSR_MHPMCOUNTER17]  = { "mhpmcounter17",  mctr,    read_hpmcounter,
4882                              write_mhpmcounter                         },
4883     [CSR_MHPMCOUNTER18]  = { "mhpmcounter18",  mctr,    read_hpmcounter,
4884                              write_mhpmcounter                         },
4885     [CSR_MHPMCOUNTER19]  = { "mhpmcounter19",  mctr,    read_hpmcounter,
4886                              write_mhpmcounter                         },
4887     [CSR_MHPMCOUNTER20]  = { "mhpmcounter20",  mctr,    read_hpmcounter,
4888                              write_mhpmcounter                         },
4889     [CSR_MHPMCOUNTER21]  = { "mhpmcounter21",  mctr,    read_hpmcounter,
4890                              write_mhpmcounter                         },
4891     [CSR_MHPMCOUNTER22]  = { "mhpmcounter22",  mctr,    read_hpmcounter,
4892                              write_mhpmcounter                         },
4893     [CSR_MHPMCOUNTER23]  = { "mhpmcounter23",  mctr,    read_hpmcounter,
4894                              write_mhpmcounter                         },
4895     [CSR_MHPMCOUNTER24]  = { "mhpmcounter24",  mctr,    read_hpmcounter,
4896                              write_mhpmcounter                         },
4897     [CSR_MHPMCOUNTER25]  = { "mhpmcounter25",  mctr,    read_hpmcounter,
4898                              write_mhpmcounter                         },
4899     [CSR_MHPMCOUNTER26]  = { "mhpmcounter26",  mctr,    read_hpmcounter,
4900                              write_mhpmcounter                         },
4901     [CSR_MHPMCOUNTER27]  = { "mhpmcounter27",  mctr,    read_hpmcounter,
4902                              write_mhpmcounter                         },
4903     [CSR_MHPMCOUNTER28]  = { "mhpmcounter28",  mctr,    read_hpmcounter,
4904                              write_mhpmcounter                         },
4905     [CSR_MHPMCOUNTER29]  = { "mhpmcounter29",  mctr,    read_hpmcounter,
4906                              write_mhpmcounter                         },
4907     [CSR_MHPMCOUNTER30]  = { "mhpmcounter30",  mctr,    read_hpmcounter,
4908                              write_mhpmcounter                         },
4909     [CSR_MHPMCOUNTER31]  = { "mhpmcounter31",  mctr,    read_hpmcounter,
4910                              write_mhpmcounter                         },
4911 
4912     [CSR_MCOUNTINHIBIT]  = { "mcountinhibit",  any, read_mcountinhibit,
4913                              write_mcountinhibit,
4914                              .min_priv_ver = PRIV_VERSION_1_11_0       },
4915 
4916     [CSR_MHPMEVENT3]     = { "mhpmevent3",     any,    read_mhpmevent,
4917                              write_mhpmevent                           },
4918     [CSR_MHPMEVENT4]     = { "mhpmevent4",     any,    read_mhpmevent,
4919                              write_mhpmevent                           },
4920     [CSR_MHPMEVENT5]     = { "mhpmevent5",     any,    read_mhpmevent,
4921                              write_mhpmevent                           },
4922     [CSR_MHPMEVENT6]     = { "mhpmevent6",     any,    read_mhpmevent,
4923                              write_mhpmevent                           },
4924     [CSR_MHPMEVENT7]     = { "mhpmevent7",     any,    read_mhpmevent,
4925                              write_mhpmevent                           },
4926     [CSR_MHPMEVENT8]     = { "mhpmevent8",     any,    read_mhpmevent,
4927                              write_mhpmevent                           },
4928     [CSR_MHPMEVENT9]     = { "mhpmevent9",     any,    read_mhpmevent,
4929                              write_mhpmevent                           },
4930     [CSR_MHPMEVENT10]    = { "mhpmevent10",    any,    read_mhpmevent,
4931                              write_mhpmevent                           },
4932     [CSR_MHPMEVENT11]    = { "mhpmevent11",    any,    read_mhpmevent,
4933                              write_mhpmevent                           },
4934     [CSR_MHPMEVENT12]    = { "mhpmevent12",    any,    read_mhpmevent,
4935                              write_mhpmevent                           },
4936     [CSR_MHPMEVENT13]    = { "mhpmevent13",    any,    read_mhpmevent,
4937                              write_mhpmevent                           },
4938     [CSR_MHPMEVENT14]    = { "mhpmevent14",    any,    read_mhpmevent,
4939                              write_mhpmevent                           },
4940     [CSR_MHPMEVENT15]    = { "mhpmevent15",    any,    read_mhpmevent,
4941                              write_mhpmevent                           },
4942     [CSR_MHPMEVENT16]    = { "mhpmevent16",    any,    read_mhpmevent,
4943                              write_mhpmevent                           },
4944     [CSR_MHPMEVENT17]    = { "mhpmevent17",    any,    read_mhpmevent,
4945                              write_mhpmevent                           },
4946     [CSR_MHPMEVENT18]    = { "mhpmevent18",    any,    read_mhpmevent,
4947                              write_mhpmevent                           },
4948     [CSR_MHPMEVENT19]    = { "mhpmevent19",    any,    read_mhpmevent,
4949                              write_mhpmevent                           },
4950     [CSR_MHPMEVENT20]    = { "mhpmevent20",    any,    read_mhpmevent,
4951                              write_mhpmevent                           },
4952     [CSR_MHPMEVENT21]    = { "mhpmevent21",    any,    read_mhpmevent,
4953                              write_mhpmevent                           },
4954     [CSR_MHPMEVENT22]    = { "mhpmevent22",    any,    read_mhpmevent,
4955                              write_mhpmevent                           },
4956     [CSR_MHPMEVENT23]    = { "mhpmevent23",    any,    read_mhpmevent,
4957                              write_mhpmevent                           },
4958     [CSR_MHPMEVENT24]    = { "mhpmevent24",    any,    read_mhpmevent,
4959                              write_mhpmevent                           },
4960     [CSR_MHPMEVENT25]    = { "mhpmevent25",    any,    read_mhpmevent,
4961                              write_mhpmevent                           },
4962     [CSR_MHPMEVENT26]    = { "mhpmevent26",    any,    read_mhpmevent,
4963                              write_mhpmevent                           },
4964     [CSR_MHPMEVENT27]    = { "mhpmevent27",    any,    read_mhpmevent,
4965                              write_mhpmevent                           },
4966     [CSR_MHPMEVENT28]    = { "mhpmevent28",    any,    read_mhpmevent,
4967                              write_mhpmevent                           },
4968     [CSR_MHPMEVENT29]    = { "mhpmevent29",    any,    read_mhpmevent,
4969                              write_mhpmevent                           },
4970     [CSR_MHPMEVENT30]    = { "mhpmevent30",    any,    read_mhpmevent,
4971                              write_mhpmevent                           },
4972     [CSR_MHPMEVENT31]    = { "mhpmevent31",    any,    read_mhpmevent,
4973                              write_mhpmevent                           },
4974 
4975     [CSR_MHPMEVENT3H]    = { "mhpmevent3h",    sscofpmf,  read_mhpmeventh,
4976                              write_mhpmeventh,
4977                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4978     [CSR_MHPMEVENT4H]    = { "mhpmevent4h",    sscofpmf,  read_mhpmeventh,
4979                              write_mhpmeventh,
4980                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4981     [CSR_MHPMEVENT5H]    = { "mhpmevent5h",    sscofpmf,  read_mhpmeventh,
4982                              write_mhpmeventh,
4983                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4984     [CSR_MHPMEVENT6H]    = { "mhpmevent6h",    sscofpmf,  read_mhpmeventh,
4985                              write_mhpmeventh,
4986                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4987     [CSR_MHPMEVENT7H]    = { "mhpmevent7h",    sscofpmf,  read_mhpmeventh,
4988                              write_mhpmeventh,
4989                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4990     [CSR_MHPMEVENT8H]    = { "mhpmevent8h",    sscofpmf,  read_mhpmeventh,
4991                              write_mhpmeventh,
4992                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4993     [CSR_MHPMEVENT9H]    = { "mhpmevent9h",    sscofpmf,  read_mhpmeventh,
4994                              write_mhpmeventh,
4995                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4996     [CSR_MHPMEVENT10H]   = { "mhpmevent10h",    sscofpmf,  read_mhpmeventh,
4997                              write_mhpmeventh,
4998                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4999     [CSR_MHPMEVENT11H]   = { "mhpmevent11h",    sscofpmf,  read_mhpmeventh,
5000                              write_mhpmeventh,
5001                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5002     [CSR_MHPMEVENT12H]   = { "mhpmevent12h",    sscofpmf,  read_mhpmeventh,
5003                              write_mhpmeventh,
5004                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5005     [CSR_MHPMEVENT13H]   = { "mhpmevent13h",    sscofpmf,  read_mhpmeventh,
5006                              write_mhpmeventh,
5007                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5008     [CSR_MHPMEVENT14H]   = { "mhpmevent14h",    sscofpmf,  read_mhpmeventh,
5009                              write_mhpmeventh,
5010                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5011     [CSR_MHPMEVENT15H]   = { "mhpmevent15h",    sscofpmf,  read_mhpmeventh,
5012                              write_mhpmeventh,
5013                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5014     [CSR_MHPMEVENT16H]   = { "mhpmevent16h",    sscofpmf,  read_mhpmeventh,
5015                              write_mhpmeventh,
5016                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5017     [CSR_MHPMEVENT17H]   = { "mhpmevent17h",    sscofpmf,  read_mhpmeventh,
5018                              write_mhpmeventh,
5019                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5020     [CSR_MHPMEVENT18H]   = { "mhpmevent18h",    sscofpmf,  read_mhpmeventh,
5021                              write_mhpmeventh,
5022                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5023     [CSR_MHPMEVENT19H]   = { "mhpmevent19h",    sscofpmf,  read_mhpmeventh,
5024                              write_mhpmeventh,
5025                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5026     [CSR_MHPMEVENT20H]   = { "mhpmevent20h",    sscofpmf,  read_mhpmeventh,
5027                              write_mhpmeventh,
5028                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5029     [CSR_MHPMEVENT21H]   = { "mhpmevent21h",    sscofpmf,  read_mhpmeventh,
5030                              write_mhpmeventh,
5031                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5032     [CSR_MHPMEVENT22H]   = { "mhpmevent22h",    sscofpmf,  read_mhpmeventh,
5033                              write_mhpmeventh,
5034                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5035     [CSR_MHPMEVENT23H]   = { "mhpmevent23h",    sscofpmf,  read_mhpmeventh,
5036                              write_mhpmeventh,
5037                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5038     [CSR_MHPMEVENT24H]   = { "mhpmevent24h",    sscofpmf,  read_mhpmeventh,
5039                              write_mhpmeventh,
5040                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5041     [CSR_MHPMEVENT25H]   = { "mhpmevent25h",    sscofpmf,  read_mhpmeventh,
5042                              write_mhpmeventh,
5043                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5044     [CSR_MHPMEVENT26H]   = { "mhpmevent26h",    sscofpmf,  read_mhpmeventh,
5045                              write_mhpmeventh,
5046                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5047     [CSR_MHPMEVENT27H]   = { "mhpmevent27h",    sscofpmf,  read_mhpmeventh,
5048                              write_mhpmeventh,
5049                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5050     [CSR_MHPMEVENT28H]   = { "mhpmevent28h",    sscofpmf,  read_mhpmeventh,
5051                              write_mhpmeventh,
5052                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5053     [CSR_MHPMEVENT29H]   = { "mhpmevent29h",    sscofpmf,  read_mhpmeventh,
5054                              write_mhpmeventh,
5055                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5056     [CSR_MHPMEVENT30H]   = { "mhpmevent30h",    sscofpmf,  read_mhpmeventh,
5057                              write_mhpmeventh,
5058                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5059     [CSR_MHPMEVENT31H]   = { "mhpmevent31h",    sscofpmf,  read_mhpmeventh,
5060                              write_mhpmeventh,
5061                              .min_priv_ver = PRIV_VERSION_1_12_0        },
5062 
5063     [CSR_HPMCOUNTER3H]   = { "hpmcounter3h",   ctr32,  read_hpmcounterh },
5064     [CSR_HPMCOUNTER4H]   = { "hpmcounter4h",   ctr32,  read_hpmcounterh },
5065     [CSR_HPMCOUNTER5H]   = { "hpmcounter5h",   ctr32,  read_hpmcounterh },
5066     [CSR_HPMCOUNTER6H]   = { "hpmcounter6h",   ctr32,  read_hpmcounterh },
5067     [CSR_HPMCOUNTER7H]   = { "hpmcounter7h",   ctr32,  read_hpmcounterh },
5068     [CSR_HPMCOUNTER8H]   = { "hpmcounter8h",   ctr32,  read_hpmcounterh },
5069     [CSR_HPMCOUNTER9H]   = { "hpmcounter9h",   ctr32,  read_hpmcounterh },
5070     [CSR_HPMCOUNTER10H]  = { "hpmcounter10h",  ctr32,  read_hpmcounterh },
5071     [CSR_HPMCOUNTER11H]  = { "hpmcounter11h",  ctr32,  read_hpmcounterh },
5072     [CSR_HPMCOUNTER12H]  = { "hpmcounter12h",  ctr32,  read_hpmcounterh },
5073     [CSR_HPMCOUNTER13H]  = { "hpmcounter13h",  ctr32,  read_hpmcounterh },
5074     [CSR_HPMCOUNTER14H]  = { "hpmcounter14h",  ctr32,  read_hpmcounterh },
5075     [CSR_HPMCOUNTER15H]  = { "hpmcounter15h",  ctr32,  read_hpmcounterh },
5076     [CSR_HPMCOUNTER16H]  = { "hpmcounter16h",  ctr32,  read_hpmcounterh },
5077     [CSR_HPMCOUNTER17H]  = { "hpmcounter17h",  ctr32,  read_hpmcounterh },
5078     [CSR_HPMCOUNTER18H]  = { "hpmcounter18h",  ctr32,  read_hpmcounterh },
5079     [CSR_HPMCOUNTER19H]  = { "hpmcounter19h",  ctr32,  read_hpmcounterh },
5080     [CSR_HPMCOUNTER20H]  = { "hpmcounter20h",  ctr32,  read_hpmcounterh },
5081     [CSR_HPMCOUNTER21H]  = { "hpmcounter21h",  ctr32,  read_hpmcounterh },
5082     [CSR_HPMCOUNTER22H]  = { "hpmcounter22h",  ctr32,  read_hpmcounterh },
5083     [CSR_HPMCOUNTER23H]  = { "hpmcounter23h",  ctr32,  read_hpmcounterh },
5084     [CSR_HPMCOUNTER24H]  = { "hpmcounter24h",  ctr32,  read_hpmcounterh },
5085     [CSR_HPMCOUNTER25H]  = { "hpmcounter25h",  ctr32,  read_hpmcounterh },
5086     [CSR_HPMCOUNTER26H]  = { "hpmcounter26h",  ctr32,  read_hpmcounterh },
5087     [CSR_HPMCOUNTER27H]  = { "hpmcounter27h",  ctr32,  read_hpmcounterh },
5088     [CSR_HPMCOUNTER28H]  = { "hpmcounter28h",  ctr32,  read_hpmcounterh },
5089     [CSR_HPMCOUNTER29H]  = { "hpmcounter29h",  ctr32,  read_hpmcounterh },
5090     [CSR_HPMCOUNTER30H]  = { "hpmcounter30h",  ctr32,  read_hpmcounterh },
5091     [CSR_HPMCOUNTER31H]  = { "hpmcounter31h",  ctr32,  read_hpmcounterh },
5092 
5093     [CSR_MHPMCOUNTER3H]  = { "mhpmcounter3h",  mctr32,  read_hpmcounterh,
5094                              write_mhpmcounterh                         },
5095     [CSR_MHPMCOUNTER4H]  = { "mhpmcounter4h",  mctr32,  read_hpmcounterh,
5096                              write_mhpmcounterh                         },
5097     [CSR_MHPMCOUNTER5H]  = { "mhpmcounter5h",  mctr32,  read_hpmcounterh,
5098                              write_mhpmcounterh                         },
5099     [CSR_MHPMCOUNTER6H]  = { "mhpmcounter6h",  mctr32,  read_hpmcounterh,
5100                              write_mhpmcounterh                         },
5101     [CSR_MHPMCOUNTER7H]  = { "mhpmcounter7h",  mctr32,  read_hpmcounterh,
5102                              write_mhpmcounterh                         },
5103     [CSR_MHPMCOUNTER8H]  = { "mhpmcounter8h",  mctr32,  read_hpmcounterh,
5104                              write_mhpmcounterh                         },
5105     [CSR_MHPMCOUNTER9H]  = { "mhpmcounter9h",  mctr32,  read_hpmcounterh,
5106                              write_mhpmcounterh                         },
5107     [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32,  read_hpmcounterh,
5108                              write_mhpmcounterh                         },
5109     [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32,  read_hpmcounterh,
5110                              write_mhpmcounterh                         },
5111     [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32,  read_hpmcounterh,
5112                              write_mhpmcounterh                         },
5113     [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32,  read_hpmcounterh,
5114                              write_mhpmcounterh                         },
5115     [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32,  read_hpmcounterh,
5116                              write_mhpmcounterh                         },
5117     [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32,  read_hpmcounterh,
5118                              write_mhpmcounterh                         },
5119     [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32,  read_hpmcounterh,
5120                              write_mhpmcounterh                         },
5121     [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32,  read_hpmcounterh,
5122                              write_mhpmcounterh                         },
5123     [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32,  read_hpmcounterh,
5124                              write_mhpmcounterh                         },
5125     [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32,  read_hpmcounterh,
5126                              write_mhpmcounterh                         },
5127     [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32,  read_hpmcounterh,
5128                              write_mhpmcounterh                         },
5129     [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32,  read_hpmcounterh,
5130                              write_mhpmcounterh                         },
5131     [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32,  read_hpmcounterh,
5132                              write_mhpmcounterh                         },
5133     [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32,  read_hpmcounterh,
5134                              write_mhpmcounterh                         },
5135     [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32,  read_hpmcounterh,
5136                              write_mhpmcounterh                         },
5137     [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32,  read_hpmcounterh,
5138                              write_mhpmcounterh                         },
5139     [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32,  read_hpmcounterh,
5140                              write_mhpmcounterh                         },
5141     [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32,  read_hpmcounterh,
5142                              write_mhpmcounterh                         },
5143     [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32,  read_hpmcounterh,
5144                              write_mhpmcounterh                         },
5145     [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32,  read_hpmcounterh,
5146                              write_mhpmcounterh                         },
5147     [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32,  read_hpmcounterh,
5148                              write_mhpmcounterh                         },
5149     [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32,  read_hpmcounterh,
5150                              write_mhpmcounterh                         },
5151     [CSR_SCOUNTOVF]      = { "scountovf", sscofpmf,  read_scountovf,
5152                              .min_priv_ver = PRIV_VERSION_1_12_0 },
5153 
5154 #endif /* !CONFIG_USER_ONLY */
5155 };
5156