xref: /qemu/target/riscv/csr.c (revision 727385c4)
1 /*
2  * RISC-V Control and Status Registers.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "qemu/main-loop.h"
24 #include "exec/exec-all.h"
25 
26 /* CSR function table public API */
27 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops)
28 {
29     *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)];
30 }
31 
32 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops)
33 {
34     csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops;
35 }
36 
37 /* Predicates */
38 static RISCVException fs(CPURISCVState *env, int csrno)
39 {
40 #if !defined(CONFIG_USER_ONLY)
41     /* loose check condition for fcsr in vector extension */
42     if ((csrno == CSR_FCSR) && (env->misa_ext & RVV)) {
43         return RISCV_EXCP_NONE;
44     }
45     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
46         return RISCV_EXCP_ILLEGAL_INST;
47     }
48 #endif
49     return RISCV_EXCP_NONE;
50 }
51 
52 static RISCVException vs(CPURISCVState *env, int csrno)
53 {
54     if (env->misa_ext & RVV) {
55         return RISCV_EXCP_NONE;
56     }
57     return RISCV_EXCP_ILLEGAL_INST;
58 }
59 
60 static RISCVException ctr(CPURISCVState *env, int csrno)
61 {
62 #if !defined(CONFIG_USER_ONLY)
63     CPUState *cs = env_cpu(env);
64     RISCVCPU *cpu = RISCV_CPU(cs);
65 
66     if (!cpu->cfg.ext_counters) {
67         /* The Counters extensions is not enabled */
68         return RISCV_EXCP_ILLEGAL_INST;
69     }
70 
71     if (riscv_cpu_virt_enabled(env)) {
72         switch (csrno) {
73         case CSR_CYCLE:
74             if (!get_field(env->hcounteren, COUNTEREN_CY) &&
75                 get_field(env->mcounteren, COUNTEREN_CY)) {
76                 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
77             }
78             break;
79         case CSR_TIME:
80             if (!get_field(env->hcounteren, COUNTEREN_TM) &&
81                 get_field(env->mcounteren, COUNTEREN_TM)) {
82                 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
83             }
84             break;
85         case CSR_INSTRET:
86             if (!get_field(env->hcounteren, COUNTEREN_IR) &&
87                 get_field(env->mcounteren, COUNTEREN_IR)) {
88                 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
89             }
90             break;
91         case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31:
92             if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3)) &&
93                 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3))) {
94                 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
95             }
96             break;
97         }
98         if (riscv_cpu_mxl(env) == MXL_RV32) {
99             switch (csrno) {
100             case CSR_CYCLEH:
101                 if (!get_field(env->hcounteren, COUNTEREN_CY) &&
102                     get_field(env->mcounteren, COUNTEREN_CY)) {
103                     return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
104                 }
105                 break;
106             case CSR_TIMEH:
107                 if (!get_field(env->hcounteren, COUNTEREN_TM) &&
108                     get_field(env->mcounteren, COUNTEREN_TM)) {
109                     return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
110                 }
111                 break;
112             case CSR_INSTRETH:
113                 if (!get_field(env->hcounteren, COUNTEREN_IR) &&
114                     get_field(env->mcounteren, COUNTEREN_IR)) {
115                     return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
116                 }
117                 break;
118             case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H:
119                 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3H)) &&
120                     get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3H))) {
121                     return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
122                 }
123                 break;
124             }
125         }
126     }
127 #endif
128     return RISCV_EXCP_NONE;
129 }
130 
131 static RISCVException ctr32(CPURISCVState *env, int csrno)
132 {
133     if (riscv_cpu_mxl(env) != MXL_RV32) {
134         return RISCV_EXCP_ILLEGAL_INST;
135     }
136 
137     return ctr(env, csrno);
138 }
139 
140 #if !defined(CONFIG_USER_ONLY)
141 static RISCVException any(CPURISCVState *env, int csrno)
142 {
143     return RISCV_EXCP_NONE;
144 }
145 
146 static RISCVException any32(CPURISCVState *env, int csrno)
147 {
148     if (riscv_cpu_mxl(env) != MXL_RV32) {
149         return RISCV_EXCP_ILLEGAL_INST;
150     }
151 
152     return any(env, csrno);
153 
154 }
155 
156 static RISCVException smode(CPURISCVState *env, int csrno)
157 {
158     if (riscv_has_ext(env, RVS)) {
159         return RISCV_EXCP_NONE;
160     }
161 
162     return RISCV_EXCP_ILLEGAL_INST;
163 }
164 
165 static RISCVException hmode(CPURISCVState *env, int csrno)
166 {
167     if (riscv_has_ext(env, RVS) &&
168         riscv_has_ext(env, RVH)) {
169         /* Hypervisor extension is supported */
170         if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
171             env->priv == PRV_M) {
172             return RISCV_EXCP_NONE;
173         } else {
174             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
175         }
176     }
177 
178     return RISCV_EXCP_ILLEGAL_INST;
179 }
180 
181 static RISCVException hmode32(CPURISCVState *env, int csrno)
182 {
183     if (riscv_cpu_mxl(env) != MXL_RV32) {
184         if (riscv_cpu_virt_enabled(env)) {
185             return RISCV_EXCP_ILLEGAL_INST;
186         } else {
187             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
188         }
189     }
190 
191     return hmode(env, csrno);
192 
193 }
194 
195 /* Checks if PointerMasking registers could be accessed */
196 static RISCVException pointer_masking(CPURISCVState *env, int csrno)
197 {
198     /* Check if j-ext is present */
199     if (riscv_has_ext(env, RVJ)) {
200         return RISCV_EXCP_NONE;
201     }
202     return RISCV_EXCP_ILLEGAL_INST;
203 }
204 
205 static RISCVException pmp(CPURISCVState *env, int csrno)
206 {
207     if (riscv_feature(env, RISCV_FEATURE_PMP)) {
208         return RISCV_EXCP_NONE;
209     }
210 
211     return RISCV_EXCP_ILLEGAL_INST;
212 }
213 
214 static RISCVException epmp(CPURISCVState *env, int csrno)
215 {
216     if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) {
217         return RISCV_EXCP_NONE;
218     }
219 
220     return RISCV_EXCP_ILLEGAL_INST;
221 }
222 #endif
223 
224 /* User Floating-Point CSRs */
225 static RISCVException read_fflags(CPURISCVState *env, int csrno,
226                                   target_ulong *val)
227 {
228     *val = riscv_cpu_get_fflags(env);
229     return RISCV_EXCP_NONE;
230 }
231 
232 static RISCVException write_fflags(CPURISCVState *env, int csrno,
233                                    target_ulong val)
234 {
235 #if !defined(CONFIG_USER_ONLY)
236     env->mstatus |= MSTATUS_FS;
237 #endif
238     riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT));
239     return RISCV_EXCP_NONE;
240 }
241 
242 static RISCVException read_frm(CPURISCVState *env, int csrno,
243                                target_ulong *val)
244 {
245     *val = env->frm;
246     return RISCV_EXCP_NONE;
247 }
248 
249 static RISCVException write_frm(CPURISCVState *env, int csrno,
250                                 target_ulong val)
251 {
252 #if !defined(CONFIG_USER_ONLY)
253     env->mstatus |= MSTATUS_FS;
254 #endif
255     env->frm = val & (FSR_RD >> FSR_RD_SHIFT);
256     return RISCV_EXCP_NONE;
257 }
258 
259 static RISCVException read_fcsr(CPURISCVState *env, int csrno,
260                                 target_ulong *val)
261 {
262     *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT)
263         | (env->frm << FSR_RD_SHIFT);
264     if (vs(env, csrno) >= 0) {
265         *val |= (env->vxrm << FSR_VXRM_SHIFT)
266                 | (env->vxsat << FSR_VXSAT_SHIFT);
267     }
268     return RISCV_EXCP_NONE;
269 }
270 
271 static RISCVException write_fcsr(CPURISCVState *env, int csrno,
272                                  target_ulong val)
273 {
274 #if !defined(CONFIG_USER_ONLY)
275     env->mstatus |= MSTATUS_FS;
276 #endif
277     env->frm = (val & FSR_RD) >> FSR_RD_SHIFT;
278     if (vs(env, csrno) >= 0) {
279         env->vxrm = (val & FSR_VXRM) >> FSR_VXRM_SHIFT;
280         env->vxsat = (val & FSR_VXSAT) >> FSR_VXSAT_SHIFT;
281     }
282     riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT);
283     return RISCV_EXCP_NONE;
284 }
285 
286 static RISCVException read_vtype(CPURISCVState *env, int csrno,
287                                  target_ulong *val)
288 {
289     *val = env->vtype;
290     return RISCV_EXCP_NONE;
291 }
292 
293 static RISCVException read_vl(CPURISCVState *env, int csrno,
294                               target_ulong *val)
295 {
296     *val = env->vl;
297     return RISCV_EXCP_NONE;
298 }
299 
300 static RISCVException read_vxrm(CPURISCVState *env, int csrno,
301                                 target_ulong *val)
302 {
303     *val = env->vxrm;
304     return RISCV_EXCP_NONE;
305 }
306 
307 static RISCVException write_vxrm(CPURISCVState *env, int csrno,
308                                  target_ulong val)
309 {
310     env->vxrm = val;
311     return RISCV_EXCP_NONE;
312 }
313 
314 static RISCVException read_vxsat(CPURISCVState *env, int csrno,
315                                  target_ulong *val)
316 {
317     *val = env->vxsat;
318     return RISCV_EXCP_NONE;
319 }
320 
321 static RISCVException write_vxsat(CPURISCVState *env, int csrno,
322                                   target_ulong val)
323 {
324     env->vxsat = val;
325     return RISCV_EXCP_NONE;
326 }
327 
328 static RISCVException read_vstart(CPURISCVState *env, int csrno,
329                                   target_ulong *val)
330 {
331     *val = env->vstart;
332     return RISCV_EXCP_NONE;
333 }
334 
335 static RISCVException write_vstart(CPURISCVState *env, int csrno,
336                                    target_ulong val)
337 {
338     env->vstart = val;
339     return RISCV_EXCP_NONE;
340 }
341 
342 /* User Timers and Counters */
343 static RISCVException read_instret(CPURISCVState *env, int csrno,
344                                    target_ulong *val)
345 {
346 #if !defined(CONFIG_USER_ONLY)
347     if (icount_enabled()) {
348         *val = icount_get();
349     } else {
350         *val = cpu_get_host_ticks();
351     }
352 #else
353     *val = cpu_get_host_ticks();
354 #endif
355     return RISCV_EXCP_NONE;
356 }
357 
358 static RISCVException read_instreth(CPURISCVState *env, int csrno,
359                                     target_ulong *val)
360 {
361 #if !defined(CONFIG_USER_ONLY)
362     if (icount_enabled()) {
363         *val = icount_get() >> 32;
364     } else {
365         *val = cpu_get_host_ticks() >> 32;
366     }
367 #else
368     *val = cpu_get_host_ticks() >> 32;
369 #endif
370     return RISCV_EXCP_NONE;
371 }
372 
373 #if defined(CONFIG_USER_ONLY)
374 static RISCVException read_time(CPURISCVState *env, int csrno,
375                                 target_ulong *val)
376 {
377     *val = cpu_get_host_ticks();
378     return RISCV_EXCP_NONE;
379 }
380 
381 static RISCVException read_timeh(CPURISCVState *env, int csrno,
382                                  target_ulong *val)
383 {
384     *val = cpu_get_host_ticks() >> 32;
385     return RISCV_EXCP_NONE;
386 }
387 
388 #else /* CONFIG_USER_ONLY */
389 
390 static RISCVException read_time(CPURISCVState *env, int csrno,
391                                 target_ulong *val)
392 {
393     uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0;
394 
395     if (!env->rdtime_fn) {
396         return RISCV_EXCP_ILLEGAL_INST;
397     }
398 
399     *val = env->rdtime_fn(env->rdtime_fn_arg) + delta;
400     return RISCV_EXCP_NONE;
401 }
402 
403 static RISCVException read_timeh(CPURISCVState *env, int csrno,
404                                  target_ulong *val)
405 {
406     uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0;
407 
408     if (!env->rdtime_fn) {
409         return RISCV_EXCP_ILLEGAL_INST;
410     }
411 
412     *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32;
413     return RISCV_EXCP_NONE;
414 }
415 
416 /* Machine constants */
417 
418 #define M_MODE_INTERRUPTS  (MIP_MSIP | MIP_MTIP | MIP_MEIP)
419 #define S_MODE_INTERRUPTS  (MIP_SSIP | MIP_STIP | MIP_SEIP)
420 #define VS_MODE_INTERRUPTS (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)
421 
422 static const target_ulong delegable_ints = S_MODE_INTERRUPTS |
423                                            VS_MODE_INTERRUPTS;
424 static const target_ulong vs_delegable_ints = VS_MODE_INTERRUPTS;
425 static const target_ulong all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS |
426                                      VS_MODE_INTERRUPTS;
427 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \
428                          (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \
429                          (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \
430                          (1ULL << (RISCV_EXCP_BREAKPOINT)) | \
431                          (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \
432                          (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \
433                          (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \
434                          (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \
435                          (1ULL << (RISCV_EXCP_U_ECALL)) | \
436                          (1ULL << (RISCV_EXCP_S_ECALL)) | \
437                          (1ULL << (RISCV_EXCP_VS_ECALL)) | \
438                          (1ULL << (RISCV_EXCP_M_ECALL)) | \
439                          (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \
440                          (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \
441                          (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \
442                          (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \
443                          (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \
444                          (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \
445                          (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT)))
446 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS &
447     ~((1ULL << (RISCV_EXCP_S_ECALL)) |
448       (1ULL << (RISCV_EXCP_VS_ECALL)) |
449       (1ULL << (RISCV_EXCP_M_ECALL)) |
450       (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) |
451       (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) |
452       (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) |
453       (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT)));
454 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE |
455     SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS |
456     SSTATUS_SUM | SSTATUS_MXR;
457 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP;
458 static const target_ulong hip_writable_mask = MIP_VSSIP;
459 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP;
460 static const target_ulong vsip_writable_mask = MIP_VSSIP;
461 
462 static const char valid_vm_1_10_32[16] = {
463     [VM_1_10_MBARE] = 1,
464     [VM_1_10_SV32] = 1
465 };
466 
467 static const char valid_vm_1_10_64[16] = {
468     [VM_1_10_MBARE] = 1,
469     [VM_1_10_SV39] = 1,
470     [VM_1_10_SV48] = 1,
471     [VM_1_10_SV57] = 1
472 };
473 
474 /* Machine Information Registers */
475 static RISCVException read_zero(CPURISCVState *env, int csrno,
476                                 target_ulong *val)
477 {
478     *val = 0;
479     return RISCV_EXCP_NONE;
480 }
481 
482 static RISCVException read_mhartid(CPURISCVState *env, int csrno,
483                                    target_ulong *val)
484 {
485     *val = env->mhartid;
486     return RISCV_EXCP_NONE;
487 }
488 
489 /* Machine Trap Setup */
490 
491 /* We do not store SD explicitly, only compute it on demand. */
492 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status)
493 {
494     if ((status & MSTATUS_FS) == MSTATUS_FS ||
495         (status & MSTATUS_XS) == MSTATUS_XS) {
496         switch (xl) {
497         case MXL_RV32:
498             return status | MSTATUS32_SD;
499         case MXL_RV64:
500             return status | MSTATUS64_SD;
501         default:
502             g_assert_not_reached();
503         }
504     }
505     return status;
506 }
507 
508 static RISCVException read_mstatus(CPURISCVState *env, int csrno,
509                                    target_ulong *val)
510 {
511     *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus);
512     return RISCV_EXCP_NONE;
513 }
514 
515 static int validate_vm(CPURISCVState *env, target_ulong vm)
516 {
517     if (riscv_cpu_mxl(env) == MXL_RV32) {
518         return valid_vm_1_10_32[vm & 0xf];
519     } else {
520         return valid_vm_1_10_64[vm & 0xf];
521     }
522 }
523 
524 static RISCVException write_mstatus(CPURISCVState *env, int csrno,
525                                     target_ulong val)
526 {
527     uint64_t mstatus = env->mstatus;
528     uint64_t mask = 0;
529 
530     /* flush tlb on mstatus fields that affect VM */
531     if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV |
532             MSTATUS_MPRV | MSTATUS_SUM)) {
533         tlb_flush(env_cpu(env));
534     }
535     mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE |
536         MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM |
537         MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR |
538         MSTATUS_TW;
539 
540     if (riscv_cpu_mxl(env) != MXL_RV32) {
541         /*
542          * RV32: MPV and GVA are not in mstatus. The current plan is to
543          * add them to mstatush. For now, we just don't support it.
544          */
545         mask |= MSTATUS_MPV | MSTATUS_GVA;
546     }
547 
548     mstatus = (mstatus & ~mask) | (val & mask);
549 
550     if (riscv_cpu_mxl(env) == MXL_RV64) {
551         /* SXL and UXL fields are for now read only */
552         mstatus = set_field(mstatus, MSTATUS64_SXL, MXL_RV64);
553         mstatus = set_field(mstatus, MSTATUS64_UXL, MXL_RV64);
554     }
555     env->mstatus = mstatus;
556 
557     return RISCV_EXCP_NONE;
558 }
559 
560 static RISCVException read_mstatush(CPURISCVState *env, int csrno,
561                                     target_ulong *val)
562 {
563     *val = env->mstatus >> 32;
564     return RISCV_EXCP_NONE;
565 }
566 
567 static RISCVException write_mstatush(CPURISCVState *env, int csrno,
568                                      target_ulong val)
569 {
570     uint64_t valh = (uint64_t)val << 32;
571     uint64_t mask = MSTATUS_MPV | MSTATUS_GVA;
572 
573     if ((valh ^ env->mstatus) & (MSTATUS_MPV)) {
574         tlb_flush(env_cpu(env));
575     }
576 
577     env->mstatus = (env->mstatus & ~mask) | (valh & mask);
578 
579     return RISCV_EXCP_NONE;
580 }
581 
582 static RISCVException read_misa(CPURISCVState *env, int csrno,
583                                 target_ulong *val)
584 {
585     target_ulong misa;
586 
587     switch (env->misa_mxl) {
588     case MXL_RV32:
589         misa = (target_ulong)MXL_RV32 << 30;
590         break;
591 #ifdef TARGET_RISCV64
592     case MXL_RV64:
593         misa = (target_ulong)MXL_RV64 << 62;
594         break;
595 #endif
596     default:
597         g_assert_not_reached();
598     }
599 
600     *val = misa | env->misa_ext;
601     return RISCV_EXCP_NONE;
602 }
603 
604 static RISCVException write_misa(CPURISCVState *env, int csrno,
605                                  target_ulong val)
606 {
607     if (!riscv_feature(env, RISCV_FEATURE_MISA)) {
608         /* drop write to misa */
609         return RISCV_EXCP_NONE;
610     }
611 
612     /* 'I' or 'E' must be present */
613     if (!(val & (RVI | RVE))) {
614         /* It is not, drop write to misa */
615         return RISCV_EXCP_NONE;
616     }
617 
618     /* 'E' excludes all other extensions */
619     if (val & RVE) {
620         /* when we support 'E' we can do "val = RVE;" however
621          * for now we just drop writes if 'E' is present.
622          */
623         return RISCV_EXCP_NONE;
624     }
625 
626     /*
627      * misa.MXL writes are not supported by QEMU.
628      * Drop writes to those bits.
629      */
630 
631     /* Mask extensions that are not supported by this hart */
632     val &= env->misa_ext_mask;
633 
634     /* Mask extensions that are not supported by QEMU */
635     val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU);
636 
637     /* 'D' depends on 'F', so clear 'D' if 'F' is not present */
638     if ((val & RVD) && !(val & RVF)) {
639         val &= ~RVD;
640     }
641 
642     /* Suppress 'C' if next instruction is not aligned
643      * TODO: this should check next_pc
644      */
645     if ((val & RVC) && (GETPC() & ~3) != 0) {
646         val &= ~RVC;
647     }
648 
649     /* If nothing changed, do nothing. */
650     if (val == env->misa_ext) {
651         return RISCV_EXCP_NONE;
652     }
653 
654     /* flush translation cache */
655     tb_flush(env_cpu(env));
656     env->misa_ext = val;
657     return RISCV_EXCP_NONE;
658 }
659 
660 static RISCVException read_medeleg(CPURISCVState *env, int csrno,
661                                    target_ulong *val)
662 {
663     *val = env->medeleg;
664     return RISCV_EXCP_NONE;
665 }
666 
667 static RISCVException write_medeleg(CPURISCVState *env, int csrno,
668                                     target_ulong val)
669 {
670     env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS);
671     return RISCV_EXCP_NONE;
672 }
673 
674 static RISCVException read_mideleg(CPURISCVState *env, int csrno,
675                                    target_ulong *val)
676 {
677     *val = env->mideleg;
678     return RISCV_EXCP_NONE;
679 }
680 
681 static RISCVException write_mideleg(CPURISCVState *env, int csrno,
682                                     target_ulong val)
683 {
684     env->mideleg = (env->mideleg & ~delegable_ints) | (val & delegable_ints);
685     if (riscv_has_ext(env, RVH)) {
686         env->mideleg |= VS_MODE_INTERRUPTS;
687     }
688     return RISCV_EXCP_NONE;
689 }
690 
691 static RISCVException read_mie(CPURISCVState *env, int csrno,
692                                target_ulong *val)
693 {
694     *val = env->mie;
695     return RISCV_EXCP_NONE;
696 }
697 
698 static RISCVException write_mie(CPURISCVState *env, int csrno,
699                                 target_ulong val)
700 {
701     env->mie = (env->mie & ~all_ints) | (val & all_ints);
702     return RISCV_EXCP_NONE;
703 }
704 
705 static RISCVException read_mtvec(CPURISCVState *env, int csrno,
706                                  target_ulong *val)
707 {
708     *val = env->mtvec;
709     return RISCV_EXCP_NONE;
710 }
711 
712 static RISCVException write_mtvec(CPURISCVState *env, int csrno,
713                                   target_ulong val)
714 {
715     /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
716     if ((val & 3) < 2) {
717         env->mtvec = val;
718     } else {
719         qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n");
720     }
721     return RISCV_EXCP_NONE;
722 }
723 
724 static RISCVException read_mcounteren(CPURISCVState *env, int csrno,
725                                       target_ulong *val)
726 {
727     *val = env->mcounteren;
728     return RISCV_EXCP_NONE;
729 }
730 
731 static RISCVException write_mcounteren(CPURISCVState *env, int csrno,
732                                        target_ulong val)
733 {
734     env->mcounteren = val;
735     return RISCV_EXCP_NONE;
736 }
737 
738 /* Machine Trap Handling */
739 static RISCVException read_mscratch(CPURISCVState *env, int csrno,
740                                     target_ulong *val)
741 {
742     *val = env->mscratch;
743     return RISCV_EXCP_NONE;
744 }
745 
746 static RISCVException write_mscratch(CPURISCVState *env, int csrno,
747                                      target_ulong val)
748 {
749     env->mscratch = val;
750     return RISCV_EXCP_NONE;
751 }
752 
753 static RISCVException read_mepc(CPURISCVState *env, int csrno,
754                                      target_ulong *val)
755 {
756     *val = env->mepc;
757     return RISCV_EXCP_NONE;
758 }
759 
760 static RISCVException write_mepc(CPURISCVState *env, int csrno,
761                                      target_ulong val)
762 {
763     env->mepc = val;
764     return RISCV_EXCP_NONE;
765 }
766 
767 static RISCVException read_mcause(CPURISCVState *env, int csrno,
768                                      target_ulong *val)
769 {
770     *val = env->mcause;
771     return RISCV_EXCP_NONE;
772 }
773 
774 static RISCVException write_mcause(CPURISCVState *env, int csrno,
775                                      target_ulong val)
776 {
777     env->mcause = val;
778     return RISCV_EXCP_NONE;
779 }
780 
781 static RISCVException read_mtval(CPURISCVState *env, int csrno,
782                                  target_ulong *val)
783 {
784     *val = env->mtval;
785     return RISCV_EXCP_NONE;
786 }
787 
788 static RISCVException write_mtval(CPURISCVState *env, int csrno,
789                                   target_ulong val)
790 {
791     env->mtval = val;
792     return RISCV_EXCP_NONE;
793 }
794 
795 static RISCVException rmw_mip(CPURISCVState *env, int csrno,
796                               target_ulong *ret_value,
797                               target_ulong new_value, target_ulong write_mask)
798 {
799     RISCVCPU *cpu = env_archcpu(env);
800     /* Allow software control of delegable interrupts not claimed by hardware */
801     target_ulong mask = write_mask & delegable_ints & ~env->miclaim;
802     uint32_t old_mip;
803 
804     if (mask) {
805         old_mip = riscv_cpu_update_mip(cpu, mask, (new_value & mask));
806     } else {
807         old_mip = env->mip;
808     }
809 
810     if (ret_value) {
811         *ret_value = old_mip;
812     }
813 
814     return RISCV_EXCP_NONE;
815 }
816 
817 /* Supervisor Trap Setup */
818 static RISCVException read_sstatus(CPURISCVState *env, int csrno,
819                                    target_ulong *val)
820 {
821     target_ulong mask = (sstatus_v1_10_mask);
822 
823     /* TODO: Use SXL not MXL. */
824     *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask);
825     return RISCV_EXCP_NONE;
826 }
827 
828 static RISCVException write_sstatus(CPURISCVState *env, int csrno,
829                                     target_ulong val)
830 {
831     target_ulong mask = (sstatus_v1_10_mask);
832     target_ulong newval = (env->mstatus & ~mask) | (val & mask);
833     return write_mstatus(env, CSR_MSTATUS, newval);
834 }
835 
836 static RISCVException read_vsie(CPURISCVState *env, int csrno,
837                                 target_ulong *val)
838 {
839     /* Shift the VS bits to their S bit location in vsie */
840     *val = (env->mie & env->hideleg & VS_MODE_INTERRUPTS) >> 1;
841     return RISCV_EXCP_NONE;
842 }
843 
844 static RISCVException read_sie(CPURISCVState *env, int csrno,
845                                target_ulong *val)
846 {
847     if (riscv_cpu_virt_enabled(env)) {
848         read_vsie(env, CSR_VSIE, val);
849     } else {
850         *val = env->mie & env->mideleg;
851     }
852     return RISCV_EXCP_NONE;
853 }
854 
855 static RISCVException write_vsie(CPURISCVState *env, int csrno,
856                                  target_ulong val)
857 {
858     /* Shift the S bits to their VS bit location in mie */
859     target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) |
860                           ((val << 1) & env->hideleg & VS_MODE_INTERRUPTS);
861     return write_mie(env, CSR_MIE, newval);
862 }
863 
864 static int write_sie(CPURISCVState *env, int csrno, target_ulong val)
865 {
866     if (riscv_cpu_virt_enabled(env)) {
867         write_vsie(env, CSR_VSIE, val);
868     } else {
869         target_ulong newval = (env->mie & ~S_MODE_INTERRUPTS) |
870                               (val & S_MODE_INTERRUPTS);
871         write_mie(env, CSR_MIE, newval);
872     }
873 
874     return RISCV_EXCP_NONE;
875 }
876 
877 static RISCVException read_stvec(CPURISCVState *env, int csrno,
878                                  target_ulong *val)
879 {
880     *val = env->stvec;
881     return RISCV_EXCP_NONE;
882 }
883 
884 static RISCVException write_stvec(CPURISCVState *env, int csrno,
885                                   target_ulong val)
886 {
887     /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
888     if ((val & 3) < 2) {
889         env->stvec = val;
890     } else {
891         qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n");
892     }
893     return RISCV_EXCP_NONE;
894 }
895 
896 static RISCVException read_scounteren(CPURISCVState *env, int csrno,
897                                       target_ulong *val)
898 {
899     *val = env->scounteren;
900     return RISCV_EXCP_NONE;
901 }
902 
903 static RISCVException write_scounteren(CPURISCVState *env, int csrno,
904                                        target_ulong val)
905 {
906     env->scounteren = val;
907     return RISCV_EXCP_NONE;
908 }
909 
910 /* Supervisor Trap Handling */
911 static RISCVException read_sscratch(CPURISCVState *env, int csrno,
912                                     target_ulong *val)
913 {
914     *val = env->sscratch;
915     return RISCV_EXCP_NONE;
916 }
917 
918 static RISCVException write_sscratch(CPURISCVState *env, int csrno,
919                                      target_ulong val)
920 {
921     env->sscratch = val;
922     return RISCV_EXCP_NONE;
923 }
924 
925 static RISCVException read_sepc(CPURISCVState *env, int csrno,
926                                 target_ulong *val)
927 {
928     *val = env->sepc;
929     return RISCV_EXCP_NONE;
930 }
931 
932 static RISCVException write_sepc(CPURISCVState *env, int csrno,
933                                  target_ulong val)
934 {
935     env->sepc = val;
936     return RISCV_EXCP_NONE;
937 }
938 
939 static RISCVException read_scause(CPURISCVState *env, int csrno,
940                                   target_ulong *val)
941 {
942     *val = env->scause;
943     return RISCV_EXCP_NONE;
944 }
945 
946 static RISCVException write_scause(CPURISCVState *env, int csrno,
947                                    target_ulong val)
948 {
949     env->scause = val;
950     return RISCV_EXCP_NONE;
951 }
952 
953 static RISCVException read_stval(CPURISCVState *env, int csrno,
954                                  target_ulong *val)
955 {
956     *val = env->stval;
957     return RISCV_EXCP_NONE;
958 }
959 
960 static RISCVException write_stval(CPURISCVState *env, int csrno,
961                                   target_ulong val)
962 {
963     env->stval = val;
964     return RISCV_EXCP_NONE;
965 }
966 
967 static RISCVException rmw_vsip(CPURISCVState *env, int csrno,
968                                target_ulong *ret_value,
969                                target_ulong new_value, target_ulong write_mask)
970 {
971     /* Shift the S bits to their VS bit location in mip */
972     int ret = rmw_mip(env, 0, ret_value, new_value << 1,
973                       (write_mask << 1) & vsip_writable_mask & env->hideleg);
974 
975     if (ret_value) {
976         *ret_value &= VS_MODE_INTERRUPTS;
977         /* Shift the VS bits to their S bit location in vsip */
978         *ret_value >>= 1;
979     }
980     return ret;
981 }
982 
983 static RISCVException rmw_sip(CPURISCVState *env, int csrno,
984                               target_ulong *ret_value,
985                               target_ulong new_value, target_ulong write_mask)
986 {
987     int ret;
988 
989     if (riscv_cpu_virt_enabled(env)) {
990         ret = rmw_vsip(env, CSR_VSIP, ret_value, new_value, write_mask);
991     } else {
992         ret = rmw_mip(env, CSR_MSTATUS, ret_value, new_value,
993                       write_mask & env->mideleg & sip_writable_mask);
994     }
995 
996     if (ret_value) {
997         *ret_value &= env->mideleg;
998     }
999     return ret;
1000 }
1001 
1002 /* Supervisor Protection and Translation */
1003 static RISCVException read_satp(CPURISCVState *env, int csrno,
1004                                 target_ulong *val)
1005 {
1006     if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
1007         *val = 0;
1008         return RISCV_EXCP_NONE;
1009     }
1010 
1011     if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) {
1012         return RISCV_EXCP_ILLEGAL_INST;
1013     } else {
1014         *val = env->satp;
1015     }
1016 
1017     return RISCV_EXCP_NONE;
1018 }
1019 
1020 static RISCVException write_satp(CPURISCVState *env, int csrno,
1021                                  target_ulong val)
1022 {
1023     target_ulong vm, mask, asid;
1024 
1025     if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
1026         return RISCV_EXCP_NONE;
1027     }
1028 
1029     if (riscv_cpu_mxl(env) == MXL_RV32) {
1030         vm = validate_vm(env, get_field(val, SATP32_MODE));
1031         mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN);
1032         asid = (val ^ env->satp) & SATP32_ASID;
1033     } else {
1034         vm = validate_vm(env, get_field(val, SATP64_MODE));
1035         mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN);
1036         asid = (val ^ env->satp) & SATP64_ASID;
1037     }
1038 
1039     if (vm && mask) {
1040         if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) {
1041             return RISCV_EXCP_ILLEGAL_INST;
1042         } else {
1043             if (asid) {
1044                 tlb_flush(env_cpu(env));
1045             }
1046             env->satp = val;
1047         }
1048     }
1049     return RISCV_EXCP_NONE;
1050 }
1051 
1052 /* Hypervisor Extensions */
1053 static RISCVException read_hstatus(CPURISCVState *env, int csrno,
1054                                    target_ulong *val)
1055 {
1056     *val = env->hstatus;
1057     if (riscv_cpu_mxl(env) != MXL_RV32) {
1058         /* We only support 64-bit VSXL */
1059         *val = set_field(*val, HSTATUS_VSXL, 2);
1060     }
1061     /* We only support little endian */
1062     *val = set_field(*val, HSTATUS_VSBE, 0);
1063     return RISCV_EXCP_NONE;
1064 }
1065 
1066 static RISCVException write_hstatus(CPURISCVState *env, int csrno,
1067                                     target_ulong val)
1068 {
1069     env->hstatus = val;
1070     if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) {
1071         qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options.");
1072     }
1073     if (get_field(val, HSTATUS_VSBE) != 0) {
1074         qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests.");
1075     }
1076     return RISCV_EXCP_NONE;
1077 }
1078 
1079 static RISCVException read_hedeleg(CPURISCVState *env, int csrno,
1080                                    target_ulong *val)
1081 {
1082     *val = env->hedeleg;
1083     return RISCV_EXCP_NONE;
1084 }
1085 
1086 static RISCVException write_hedeleg(CPURISCVState *env, int csrno,
1087                                     target_ulong val)
1088 {
1089     env->hedeleg = val & vs_delegable_excps;
1090     return RISCV_EXCP_NONE;
1091 }
1092 
1093 static RISCVException read_hideleg(CPURISCVState *env, int csrno,
1094                                    target_ulong *val)
1095 {
1096     *val = env->hideleg;
1097     return RISCV_EXCP_NONE;
1098 }
1099 
1100 static RISCVException write_hideleg(CPURISCVState *env, int csrno,
1101                                     target_ulong val)
1102 {
1103     env->hideleg = val & vs_delegable_ints;
1104     return RISCV_EXCP_NONE;
1105 }
1106 
1107 static RISCVException rmw_hvip(CPURISCVState *env, int csrno,
1108                                target_ulong *ret_value,
1109                                target_ulong new_value, target_ulong write_mask)
1110 {
1111     int ret = rmw_mip(env, 0, ret_value, new_value,
1112                       write_mask & hvip_writable_mask);
1113 
1114     if (ret_value) {
1115         *ret_value &= hvip_writable_mask;
1116     }
1117     return ret;
1118 }
1119 
1120 static RISCVException rmw_hip(CPURISCVState *env, int csrno,
1121                               target_ulong *ret_value,
1122                               target_ulong new_value, target_ulong write_mask)
1123 {
1124     int ret = rmw_mip(env, 0, ret_value, new_value,
1125                       write_mask & hip_writable_mask);
1126 
1127     if (ret_value) {
1128         *ret_value &= hip_writable_mask;
1129     }
1130     return ret;
1131 }
1132 
1133 static RISCVException read_hie(CPURISCVState *env, int csrno,
1134                                target_ulong *val)
1135 {
1136     *val = env->mie & VS_MODE_INTERRUPTS;
1137     return RISCV_EXCP_NONE;
1138 }
1139 
1140 static RISCVException write_hie(CPURISCVState *env, int csrno,
1141                                 target_ulong val)
1142 {
1143     target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) | (val & VS_MODE_INTERRUPTS);
1144     return write_mie(env, CSR_MIE, newval);
1145 }
1146 
1147 static RISCVException read_hcounteren(CPURISCVState *env, int csrno,
1148                                       target_ulong *val)
1149 {
1150     *val = env->hcounteren;
1151     return RISCV_EXCP_NONE;
1152 }
1153 
1154 static RISCVException write_hcounteren(CPURISCVState *env, int csrno,
1155                                        target_ulong val)
1156 {
1157     env->hcounteren = val;
1158     return RISCV_EXCP_NONE;
1159 }
1160 
1161 static RISCVException write_hgeie(CPURISCVState *env, int csrno,
1162                                   target_ulong val)
1163 {
1164     if (val) {
1165         qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN.");
1166     }
1167     return RISCV_EXCP_NONE;
1168 }
1169 
1170 static RISCVException read_htval(CPURISCVState *env, int csrno,
1171                                  target_ulong *val)
1172 {
1173     *val = env->htval;
1174     return RISCV_EXCP_NONE;
1175 }
1176 
1177 static RISCVException write_htval(CPURISCVState *env, int csrno,
1178                                   target_ulong val)
1179 {
1180     env->htval = val;
1181     return RISCV_EXCP_NONE;
1182 }
1183 
1184 static RISCVException read_htinst(CPURISCVState *env, int csrno,
1185                                   target_ulong *val)
1186 {
1187     *val = env->htinst;
1188     return RISCV_EXCP_NONE;
1189 }
1190 
1191 static RISCVException write_htinst(CPURISCVState *env, int csrno,
1192                                    target_ulong val)
1193 {
1194     return RISCV_EXCP_NONE;
1195 }
1196 
1197 static RISCVException write_hgeip(CPURISCVState *env, int csrno,
1198                                   target_ulong val)
1199 {
1200     if (val) {
1201         qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN.");
1202     }
1203     return RISCV_EXCP_NONE;
1204 }
1205 
1206 static RISCVException read_hgatp(CPURISCVState *env, int csrno,
1207                                  target_ulong *val)
1208 {
1209     *val = env->hgatp;
1210     return RISCV_EXCP_NONE;
1211 }
1212 
1213 static RISCVException write_hgatp(CPURISCVState *env, int csrno,
1214                                   target_ulong val)
1215 {
1216     env->hgatp = val;
1217     return RISCV_EXCP_NONE;
1218 }
1219 
1220 static RISCVException read_htimedelta(CPURISCVState *env, int csrno,
1221                                       target_ulong *val)
1222 {
1223     if (!env->rdtime_fn) {
1224         return RISCV_EXCP_ILLEGAL_INST;
1225     }
1226 
1227     *val = env->htimedelta;
1228     return RISCV_EXCP_NONE;
1229 }
1230 
1231 static RISCVException write_htimedelta(CPURISCVState *env, int csrno,
1232                                        target_ulong val)
1233 {
1234     if (!env->rdtime_fn) {
1235         return RISCV_EXCP_ILLEGAL_INST;
1236     }
1237 
1238     if (riscv_cpu_mxl(env) == MXL_RV32) {
1239         env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val);
1240     } else {
1241         env->htimedelta = val;
1242     }
1243     return RISCV_EXCP_NONE;
1244 }
1245 
1246 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno,
1247                                        target_ulong *val)
1248 {
1249     if (!env->rdtime_fn) {
1250         return RISCV_EXCP_ILLEGAL_INST;
1251     }
1252 
1253     *val = env->htimedelta >> 32;
1254     return RISCV_EXCP_NONE;
1255 }
1256 
1257 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno,
1258                                         target_ulong val)
1259 {
1260     if (!env->rdtime_fn) {
1261         return RISCV_EXCP_ILLEGAL_INST;
1262     }
1263 
1264     env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val);
1265     return RISCV_EXCP_NONE;
1266 }
1267 
1268 /* Virtual CSR Registers */
1269 static RISCVException read_vsstatus(CPURISCVState *env, int csrno,
1270                                     target_ulong *val)
1271 {
1272     *val = env->vsstatus;
1273     return RISCV_EXCP_NONE;
1274 }
1275 
1276 static RISCVException write_vsstatus(CPURISCVState *env, int csrno,
1277                                      target_ulong val)
1278 {
1279     uint64_t mask = (target_ulong)-1;
1280     env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val;
1281     return RISCV_EXCP_NONE;
1282 }
1283 
1284 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val)
1285 {
1286     *val = env->vstvec;
1287     return RISCV_EXCP_NONE;
1288 }
1289 
1290 static RISCVException write_vstvec(CPURISCVState *env, int csrno,
1291                                    target_ulong val)
1292 {
1293     env->vstvec = val;
1294     return RISCV_EXCP_NONE;
1295 }
1296 
1297 static RISCVException read_vsscratch(CPURISCVState *env, int csrno,
1298                                      target_ulong *val)
1299 {
1300     *val = env->vsscratch;
1301     return RISCV_EXCP_NONE;
1302 }
1303 
1304 static RISCVException write_vsscratch(CPURISCVState *env, int csrno,
1305                                       target_ulong val)
1306 {
1307     env->vsscratch = val;
1308     return RISCV_EXCP_NONE;
1309 }
1310 
1311 static RISCVException read_vsepc(CPURISCVState *env, int csrno,
1312                                  target_ulong *val)
1313 {
1314     *val = env->vsepc;
1315     return RISCV_EXCP_NONE;
1316 }
1317 
1318 static RISCVException write_vsepc(CPURISCVState *env, int csrno,
1319                                   target_ulong val)
1320 {
1321     env->vsepc = val;
1322     return RISCV_EXCP_NONE;
1323 }
1324 
1325 static RISCVException read_vscause(CPURISCVState *env, int csrno,
1326                                    target_ulong *val)
1327 {
1328     *val = env->vscause;
1329     return RISCV_EXCP_NONE;
1330 }
1331 
1332 static RISCVException write_vscause(CPURISCVState *env, int csrno,
1333                                     target_ulong val)
1334 {
1335     env->vscause = val;
1336     return RISCV_EXCP_NONE;
1337 }
1338 
1339 static RISCVException read_vstval(CPURISCVState *env, int csrno,
1340                                   target_ulong *val)
1341 {
1342     *val = env->vstval;
1343     return RISCV_EXCP_NONE;
1344 }
1345 
1346 static RISCVException write_vstval(CPURISCVState *env, int csrno,
1347                                    target_ulong val)
1348 {
1349     env->vstval = val;
1350     return RISCV_EXCP_NONE;
1351 }
1352 
1353 static RISCVException read_vsatp(CPURISCVState *env, int csrno,
1354                                  target_ulong *val)
1355 {
1356     *val = env->vsatp;
1357     return RISCV_EXCP_NONE;
1358 }
1359 
1360 static RISCVException write_vsatp(CPURISCVState *env, int csrno,
1361                                   target_ulong val)
1362 {
1363     env->vsatp = val;
1364     return RISCV_EXCP_NONE;
1365 }
1366 
1367 static RISCVException read_mtval2(CPURISCVState *env, int csrno,
1368                                   target_ulong *val)
1369 {
1370     *val = env->mtval2;
1371     return RISCV_EXCP_NONE;
1372 }
1373 
1374 static RISCVException write_mtval2(CPURISCVState *env, int csrno,
1375                                    target_ulong val)
1376 {
1377     env->mtval2 = val;
1378     return RISCV_EXCP_NONE;
1379 }
1380 
1381 static RISCVException read_mtinst(CPURISCVState *env, int csrno,
1382                                   target_ulong *val)
1383 {
1384     *val = env->mtinst;
1385     return RISCV_EXCP_NONE;
1386 }
1387 
1388 static RISCVException write_mtinst(CPURISCVState *env, int csrno,
1389                                    target_ulong val)
1390 {
1391     env->mtinst = val;
1392     return RISCV_EXCP_NONE;
1393 }
1394 
1395 /* Physical Memory Protection */
1396 static RISCVException read_mseccfg(CPURISCVState *env, int csrno,
1397                                    target_ulong *val)
1398 {
1399     *val = mseccfg_csr_read(env);
1400     return RISCV_EXCP_NONE;
1401 }
1402 
1403 static RISCVException write_mseccfg(CPURISCVState *env, int csrno,
1404                          target_ulong val)
1405 {
1406     mseccfg_csr_write(env, val);
1407     return RISCV_EXCP_NONE;
1408 }
1409 
1410 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno,
1411                                   target_ulong *val)
1412 {
1413     *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0);
1414     return RISCV_EXCP_NONE;
1415 }
1416 
1417 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno,
1418                                    target_ulong val)
1419 {
1420     pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val);
1421     return RISCV_EXCP_NONE;
1422 }
1423 
1424 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno,
1425                                    target_ulong *val)
1426 {
1427     *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0);
1428     return RISCV_EXCP_NONE;
1429 }
1430 
1431 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno,
1432                                     target_ulong val)
1433 {
1434     pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val);
1435     return RISCV_EXCP_NONE;
1436 }
1437 
1438 /*
1439  * Functions to access Pointer Masking feature registers
1440  * We have to check if current priv lvl could modify
1441  * csr in given mode
1442  */
1443 static bool check_pm_current_disabled(CPURISCVState *env, int csrno)
1444 {
1445     int csr_priv = get_field(csrno, 0x300);
1446     int pm_current;
1447 
1448     /*
1449      * If priv lvls differ that means we're accessing csr from higher priv lvl,
1450      * so allow the access
1451      */
1452     if (env->priv != csr_priv) {
1453         return false;
1454     }
1455     switch (env->priv) {
1456     case PRV_M:
1457         pm_current = get_field(env->mmte, M_PM_CURRENT);
1458         break;
1459     case PRV_S:
1460         pm_current = get_field(env->mmte, S_PM_CURRENT);
1461         break;
1462     case PRV_U:
1463         pm_current = get_field(env->mmte, U_PM_CURRENT);
1464         break;
1465     default:
1466         g_assert_not_reached();
1467     }
1468     /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */
1469     return !pm_current;
1470 }
1471 
1472 static RISCVException read_mmte(CPURISCVState *env, int csrno,
1473                                 target_ulong *val)
1474 {
1475     *val = env->mmte & MMTE_MASK;
1476     return RISCV_EXCP_NONE;
1477 }
1478 
1479 static RISCVException write_mmte(CPURISCVState *env, int csrno,
1480                                  target_ulong val)
1481 {
1482     uint64_t mstatus;
1483     target_ulong wpri_val = val & MMTE_MASK;
1484 
1485     if (val != wpri_val) {
1486         qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n",
1487                       "MMTE: WPRI violation written 0x", val,
1488                       "vs expected 0x", wpri_val);
1489     }
1490     /* for machine mode pm.current is hardwired to 1 */
1491     wpri_val |= MMTE_M_PM_CURRENT;
1492 
1493     /* hardwiring pm.instruction bit to 0, since it's not supported yet */
1494     wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN);
1495     env->mmte = wpri_val | PM_EXT_DIRTY;
1496 
1497     /* Set XS and SD bits, since PM CSRs are dirty */
1498     mstatus = env->mstatus | MSTATUS_XS;
1499     write_mstatus(env, csrno, mstatus);
1500     return RISCV_EXCP_NONE;
1501 }
1502 
1503 static RISCVException read_smte(CPURISCVState *env, int csrno,
1504                                 target_ulong *val)
1505 {
1506     *val = env->mmte & SMTE_MASK;
1507     return RISCV_EXCP_NONE;
1508 }
1509 
1510 static RISCVException write_smte(CPURISCVState *env, int csrno,
1511                                  target_ulong val)
1512 {
1513     target_ulong wpri_val = val & SMTE_MASK;
1514 
1515     if (val != wpri_val) {
1516         qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n",
1517                       "SMTE: WPRI violation written 0x", val,
1518                       "vs expected 0x", wpri_val);
1519     }
1520 
1521     /* if pm.current==0 we can't modify current PM CSRs */
1522     if (check_pm_current_disabled(env, csrno)) {
1523         return RISCV_EXCP_NONE;
1524     }
1525 
1526     wpri_val |= (env->mmte & ~SMTE_MASK);
1527     write_mmte(env, csrno, wpri_val);
1528     return RISCV_EXCP_NONE;
1529 }
1530 
1531 static RISCVException read_umte(CPURISCVState *env, int csrno,
1532                                 target_ulong *val)
1533 {
1534     *val = env->mmte & UMTE_MASK;
1535     return RISCV_EXCP_NONE;
1536 }
1537 
1538 static RISCVException write_umte(CPURISCVState *env, int csrno,
1539                                  target_ulong val)
1540 {
1541     target_ulong wpri_val = val & UMTE_MASK;
1542 
1543     if (val != wpri_val) {
1544         qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n",
1545                       "UMTE: WPRI violation written 0x", val,
1546                       "vs expected 0x", wpri_val);
1547     }
1548 
1549     if (check_pm_current_disabled(env, csrno)) {
1550         return RISCV_EXCP_NONE;
1551     }
1552 
1553     wpri_val |= (env->mmte & ~UMTE_MASK);
1554     write_mmte(env, csrno, wpri_val);
1555     return RISCV_EXCP_NONE;
1556 }
1557 
1558 static RISCVException read_mpmmask(CPURISCVState *env, int csrno,
1559                                    target_ulong *val)
1560 {
1561     *val = env->mpmmask;
1562     return RISCV_EXCP_NONE;
1563 }
1564 
1565 static RISCVException write_mpmmask(CPURISCVState *env, int csrno,
1566                                     target_ulong val)
1567 {
1568     uint64_t mstatus;
1569 
1570     env->mpmmask = val;
1571     env->mmte |= PM_EXT_DIRTY;
1572 
1573     /* Set XS and SD bits, since PM CSRs are dirty */
1574     mstatus = env->mstatus | MSTATUS_XS;
1575     write_mstatus(env, csrno, mstatus);
1576     return RISCV_EXCP_NONE;
1577 }
1578 
1579 static RISCVException read_spmmask(CPURISCVState *env, int csrno,
1580                                    target_ulong *val)
1581 {
1582     *val = env->spmmask;
1583     return RISCV_EXCP_NONE;
1584 }
1585 
1586 static RISCVException write_spmmask(CPURISCVState *env, int csrno,
1587                                     target_ulong val)
1588 {
1589     uint64_t mstatus;
1590 
1591     /* if pm.current==0 we can't modify current PM CSRs */
1592     if (check_pm_current_disabled(env, csrno)) {
1593         return RISCV_EXCP_NONE;
1594     }
1595     env->spmmask = val;
1596     env->mmte |= PM_EXT_DIRTY;
1597 
1598     /* Set XS and SD bits, since PM CSRs are dirty */
1599     mstatus = env->mstatus | MSTATUS_XS;
1600     write_mstatus(env, csrno, mstatus);
1601     return RISCV_EXCP_NONE;
1602 }
1603 
1604 static RISCVException read_upmmask(CPURISCVState *env, int csrno,
1605                                    target_ulong *val)
1606 {
1607     *val = env->upmmask;
1608     return RISCV_EXCP_NONE;
1609 }
1610 
1611 static RISCVException write_upmmask(CPURISCVState *env, int csrno,
1612                                     target_ulong val)
1613 {
1614     uint64_t mstatus;
1615 
1616     /* if pm.current==0 we can't modify current PM CSRs */
1617     if (check_pm_current_disabled(env, csrno)) {
1618         return RISCV_EXCP_NONE;
1619     }
1620     env->upmmask = val;
1621     env->mmte |= PM_EXT_DIRTY;
1622 
1623     /* Set XS and SD bits, since PM CSRs are dirty */
1624     mstatus = env->mstatus | MSTATUS_XS;
1625     write_mstatus(env, csrno, mstatus);
1626     return RISCV_EXCP_NONE;
1627 }
1628 
1629 static RISCVException read_mpmbase(CPURISCVState *env, int csrno,
1630                                    target_ulong *val)
1631 {
1632     *val = env->mpmbase;
1633     return RISCV_EXCP_NONE;
1634 }
1635 
1636 static RISCVException write_mpmbase(CPURISCVState *env, int csrno,
1637                                     target_ulong val)
1638 {
1639     uint64_t mstatus;
1640 
1641     env->mpmbase = val;
1642     env->mmte |= PM_EXT_DIRTY;
1643 
1644     /* Set XS and SD bits, since PM CSRs are dirty */
1645     mstatus = env->mstatus | MSTATUS_XS;
1646     write_mstatus(env, csrno, mstatus);
1647     return RISCV_EXCP_NONE;
1648 }
1649 
1650 static RISCVException read_spmbase(CPURISCVState *env, int csrno,
1651                                    target_ulong *val)
1652 {
1653     *val = env->spmbase;
1654     return RISCV_EXCP_NONE;
1655 }
1656 
1657 static RISCVException write_spmbase(CPURISCVState *env, int csrno,
1658                                     target_ulong val)
1659 {
1660     uint64_t mstatus;
1661 
1662     /* if pm.current==0 we can't modify current PM CSRs */
1663     if (check_pm_current_disabled(env, csrno)) {
1664         return RISCV_EXCP_NONE;
1665     }
1666     env->spmbase = val;
1667     env->mmte |= PM_EXT_DIRTY;
1668 
1669     /* Set XS and SD bits, since PM CSRs are dirty */
1670     mstatus = env->mstatus | MSTATUS_XS;
1671     write_mstatus(env, csrno, mstatus);
1672     return RISCV_EXCP_NONE;
1673 }
1674 
1675 static RISCVException read_upmbase(CPURISCVState *env, int csrno,
1676                                    target_ulong *val)
1677 {
1678     *val = env->upmbase;
1679     return RISCV_EXCP_NONE;
1680 }
1681 
1682 static RISCVException write_upmbase(CPURISCVState *env, int csrno,
1683                                     target_ulong val)
1684 {
1685     uint64_t mstatus;
1686 
1687     /* if pm.current==0 we can't modify current PM CSRs */
1688     if (check_pm_current_disabled(env, csrno)) {
1689         return RISCV_EXCP_NONE;
1690     }
1691     env->upmbase = val;
1692     env->mmte |= PM_EXT_DIRTY;
1693 
1694     /* Set XS and SD bits, since PM CSRs are dirty */
1695     mstatus = env->mstatus | MSTATUS_XS;
1696     write_mstatus(env, csrno, mstatus);
1697     return RISCV_EXCP_NONE;
1698 }
1699 
1700 #endif
1701 
1702 /*
1703  * riscv_csrrw - read and/or update control and status register
1704  *
1705  * csrr   <->  riscv_csrrw(env, csrno, ret_value, 0, 0);
1706  * csrrw  <->  riscv_csrrw(env, csrno, ret_value, value, -1);
1707  * csrrs  <->  riscv_csrrw(env, csrno, ret_value, -1, value);
1708  * csrrc  <->  riscv_csrrw(env, csrno, ret_value, 0, value);
1709  */
1710 
1711 RISCVException riscv_csrrw(CPURISCVState *env, int csrno,
1712                            target_ulong *ret_value,
1713                            target_ulong new_value, target_ulong write_mask)
1714 {
1715     RISCVException ret;
1716     target_ulong old_value;
1717     RISCVCPU *cpu = env_archcpu(env);
1718     int read_only = get_field(csrno, 0xC00) == 3;
1719 
1720     /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */
1721 #if !defined(CONFIG_USER_ONLY)
1722     int effective_priv = env->priv;
1723 
1724     if (riscv_has_ext(env, RVH) &&
1725         env->priv == PRV_S &&
1726         !riscv_cpu_virt_enabled(env)) {
1727         /*
1728          * We are in S mode without virtualisation, therefore we are in HS Mode.
1729          * Add 1 to the effective privledge level to allow us to access the
1730          * Hypervisor CSRs.
1731          */
1732         effective_priv++;
1733     }
1734 
1735     if (!env->debugger && (effective_priv < get_field(csrno, 0x300))) {
1736         return RISCV_EXCP_ILLEGAL_INST;
1737     }
1738 #endif
1739     if (write_mask && read_only) {
1740         return RISCV_EXCP_ILLEGAL_INST;
1741     }
1742 
1743     /* ensure the CSR extension is enabled. */
1744     if (!cpu->cfg.ext_icsr) {
1745         return RISCV_EXCP_ILLEGAL_INST;
1746     }
1747 
1748     /* check predicate */
1749     if (!csr_ops[csrno].predicate) {
1750         return RISCV_EXCP_ILLEGAL_INST;
1751     }
1752     ret = csr_ops[csrno].predicate(env, csrno);
1753     if (ret != RISCV_EXCP_NONE) {
1754         return ret;
1755     }
1756 
1757     /* execute combined read/write operation if it exists */
1758     if (csr_ops[csrno].op) {
1759         return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask);
1760     }
1761 
1762     /* if no accessor exists then return failure */
1763     if (!csr_ops[csrno].read) {
1764         return RISCV_EXCP_ILLEGAL_INST;
1765     }
1766     /* read old value */
1767     ret = csr_ops[csrno].read(env, csrno, &old_value);
1768     if (ret != RISCV_EXCP_NONE) {
1769         return ret;
1770     }
1771 
1772     /* write value if writable and write mask set, otherwise drop writes */
1773     if (write_mask) {
1774         new_value = (old_value & ~write_mask) | (new_value & write_mask);
1775         if (csr_ops[csrno].write) {
1776             ret = csr_ops[csrno].write(env, csrno, new_value);
1777             if (ret != RISCV_EXCP_NONE) {
1778                 return ret;
1779             }
1780         }
1781     }
1782 
1783     /* return old value */
1784     if (ret_value) {
1785         *ret_value = old_value;
1786     }
1787 
1788     return RISCV_EXCP_NONE;
1789 }
1790 
1791 /*
1792  * Debugger support.  If not in user mode, set env->debugger before the
1793  * riscv_csrrw call and clear it after the call.
1794  */
1795 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno,
1796                                  target_ulong *ret_value,
1797                                  target_ulong new_value,
1798                                  target_ulong write_mask)
1799 {
1800     RISCVException ret;
1801 #if !defined(CONFIG_USER_ONLY)
1802     env->debugger = true;
1803 #endif
1804     ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask);
1805 #if !defined(CONFIG_USER_ONLY)
1806     env->debugger = false;
1807 #endif
1808     return ret;
1809 }
1810 
1811 /* Control and Status Register function table */
1812 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = {
1813     /* User Floating-Point CSRs */
1814     [CSR_FFLAGS]   = { "fflags",   fs,     read_fflags,  write_fflags },
1815     [CSR_FRM]      = { "frm",      fs,     read_frm,     write_frm    },
1816     [CSR_FCSR]     = { "fcsr",     fs,     read_fcsr,    write_fcsr   },
1817     /* Vector CSRs */
1818     [CSR_VSTART]   = { "vstart",   vs,     read_vstart,  write_vstart },
1819     [CSR_VXSAT]    = { "vxsat",    vs,     read_vxsat,   write_vxsat  },
1820     [CSR_VXRM]     = { "vxrm",     vs,     read_vxrm,    write_vxrm   },
1821     [CSR_VL]       = { "vl",       vs,     read_vl                    },
1822     [CSR_VTYPE]    = { "vtype",    vs,     read_vtype                 },
1823     /* User Timers and Counters */
1824     [CSR_CYCLE]    = { "cycle",    ctr,    read_instret  },
1825     [CSR_INSTRET]  = { "instret",  ctr,    read_instret  },
1826     [CSR_CYCLEH]   = { "cycleh",   ctr32,  read_instreth },
1827     [CSR_INSTRETH] = { "instreth", ctr32,  read_instreth },
1828 
1829     /*
1830      * In privileged mode, the monitor will have to emulate TIME CSRs only if
1831      * rdtime callback is not provided by machine/platform emulation.
1832      */
1833     [CSR_TIME]  = { "time",  ctr,   read_time  },
1834     [CSR_TIMEH] = { "timeh", ctr32, read_timeh },
1835 
1836 #if !defined(CONFIG_USER_ONLY)
1837     /* Machine Timers and Counters */
1838     [CSR_MCYCLE]    = { "mcycle",    any,   read_instret  },
1839     [CSR_MINSTRET]  = { "minstret",  any,   read_instret  },
1840     [CSR_MCYCLEH]   = { "mcycleh",   any32, read_instreth },
1841     [CSR_MINSTRETH] = { "minstreth", any32, read_instreth },
1842 
1843     /* Machine Information Registers */
1844     [CSR_MVENDORID] = { "mvendorid", any,   read_zero    },
1845     [CSR_MARCHID]   = { "marchid",   any,   read_zero    },
1846     [CSR_MIMPID]    = { "mimpid",    any,   read_zero    },
1847     [CSR_MHARTID]   = { "mhartid",   any,   read_mhartid },
1848 
1849     /* Machine Trap Setup */
1850     [CSR_MSTATUS]     = { "mstatus",    any,   read_mstatus,     write_mstatus     },
1851     [CSR_MISA]        = { "misa",       any,   read_misa,        write_misa        },
1852     [CSR_MIDELEG]     = { "mideleg",    any,   read_mideleg,     write_mideleg     },
1853     [CSR_MEDELEG]     = { "medeleg",    any,   read_medeleg,     write_medeleg     },
1854     [CSR_MIE]         = { "mie",        any,   read_mie,         write_mie         },
1855     [CSR_MTVEC]       = { "mtvec",      any,   read_mtvec,       write_mtvec       },
1856     [CSR_MCOUNTEREN]  = { "mcounteren", any,   read_mcounteren,  write_mcounteren  },
1857 
1858     [CSR_MSTATUSH]    = { "mstatush",   any32, read_mstatush,    write_mstatush    },
1859 
1860     /* Machine Trap Handling */
1861     [CSR_MSCRATCH] = { "mscratch", any,  read_mscratch, write_mscratch },
1862     [CSR_MEPC]     = { "mepc",     any,  read_mepc,     write_mepc     },
1863     [CSR_MCAUSE]   = { "mcause",   any,  read_mcause,   write_mcause   },
1864     [CSR_MTVAL]    = { "mtval",    any,  read_mtval,    write_mtval    },
1865     [CSR_MIP]      = { "mip",      any,  NULL,    NULL, rmw_mip        },
1866 
1867     /* Supervisor Trap Setup */
1868     [CSR_SSTATUS]    = { "sstatus",    smode, read_sstatus,    write_sstatus    },
1869     [CSR_SIE]        = { "sie",        smode, read_sie,        write_sie        },
1870     [CSR_STVEC]      = { "stvec",      smode, read_stvec,      write_stvec      },
1871     [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, write_scounteren },
1872 
1873     /* Supervisor Trap Handling */
1874     [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch },
1875     [CSR_SEPC]     = { "sepc",     smode, read_sepc,     write_sepc     },
1876     [CSR_SCAUSE]   = { "scause",   smode, read_scause,   write_scause   },
1877     [CSR_STVAL]    = { "stval",    smode, read_stval,   write_stval   },
1878     [CSR_SIP]      = { "sip",      smode, NULL,    NULL, rmw_sip        },
1879 
1880     /* Supervisor Protection and Translation */
1881     [CSR_SATP]     = { "satp",     smode, read_satp,    write_satp      },
1882 
1883     [CSR_HSTATUS]     = { "hstatus",     hmode,   read_hstatus,     write_hstatus     },
1884     [CSR_HEDELEG]     = { "hedeleg",     hmode,   read_hedeleg,     write_hedeleg     },
1885     [CSR_HIDELEG]     = { "hideleg",     hmode,   read_hideleg,     write_hideleg     },
1886     [CSR_HVIP]        = { "hvip",        hmode,   NULL,   NULL,     rmw_hvip          },
1887     [CSR_HIP]         = { "hip",         hmode,   NULL,   NULL,     rmw_hip           },
1888     [CSR_HIE]         = { "hie",         hmode,   read_hie,         write_hie         },
1889     [CSR_HCOUNTEREN]  = { "hcounteren",  hmode,   read_hcounteren,  write_hcounteren  },
1890     [CSR_HGEIE]       = { "hgeie",       hmode,   read_zero,        write_hgeie       },
1891     [CSR_HTVAL]       = { "htval",       hmode,   read_htval,       write_htval       },
1892     [CSR_HTINST]      = { "htinst",      hmode,   read_htinst,      write_htinst      },
1893     [CSR_HGEIP]       = { "hgeip",       hmode,   read_zero,        write_hgeip       },
1894     [CSR_HGATP]       = { "hgatp",       hmode,   read_hgatp,       write_hgatp       },
1895     [CSR_HTIMEDELTA]  = { "htimedelta",  hmode,   read_htimedelta,  write_htimedelta  },
1896     [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, write_htimedeltah },
1897 
1898     [CSR_VSSTATUS]    = { "vsstatus",    hmode,   read_vsstatus,    write_vsstatus    },
1899     [CSR_VSIP]        = { "vsip",        hmode,   NULL,    NULL,    rmw_vsip          },
1900     [CSR_VSIE]        = { "vsie",        hmode,   read_vsie,        write_vsie        },
1901     [CSR_VSTVEC]      = { "vstvec",      hmode,   read_vstvec,      write_vstvec      },
1902     [CSR_VSSCRATCH]   = { "vsscratch",   hmode,   read_vsscratch,   write_vsscratch   },
1903     [CSR_VSEPC]       = { "vsepc",       hmode,   read_vsepc,       write_vsepc       },
1904     [CSR_VSCAUSE]     = { "vscause",     hmode,   read_vscause,     write_vscause     },
1905     [CSR_VSTVAL]      = { "vstval",      hmode,   read_vstval,      write_vstval      },
1906     [CSR_VSATP]       = { "vsatp",       hmode,   read_vsatp,       write_vsatp       },
1907 
1908     [CSR_MTVAL2]      = { "mtval2",      hmode,   read_mtval2,      write_mtval2      },
1909     [CSR_MTINST]      = { "mtinst",      hmode,   read_mtinst,      write_mtinst      },
1910 
1911     /* Physical Memory Protection */
1912     [CSR_MSECCFG]    = { "mseccfg",  epmp, read_mseccfg, write_mseccfg },
1913     [CSR_PMPCFG0]    = { "pmpcfg0",   pmp, read_pmpcfg,  write_pmpcfg  },
1914     [CSR_PMPCFG1]    = { "pmpcfg1",   pmp, read_pmpcfg,  write_pmpcfg  },
1915     [CSR_PMPCFG2]    = { "pmpcfg2",   pmp, read_pmpcfg,  write_pmpcfg  },
1916     [CSR_PMPCFG3]    = { "pmpcfg3",   pmp, read_pmpcfg,  write_pmpcfg  },
1917     [CSR_PMPADDR0]   = { "pmpaddr0",  pmp, read_pmpaddr, write_pmpaddr },
1918     [CSR_PMPADDR1]   = { "pmpaddr1",  pmp, read_pmpaddr, write_pmpaddr },
1919     [CSR_PMPADDR2]   = { "pmpaddr2",  pmp, read_pmpaddr, write_pmpaddr },
1920     [CSR_PMPADDR3]   = { "pmpaddr3",  pmp, read_pmpaddr, write_pmpaddr },
1921     [CSR_PMPADDR4]   = { "pmpaddr4",  pmp, read_pmpaddr, write_pmpaddr },
1922     [CSR_PMPADDR5]   = { "pmpaddr5",  pmp, read_pmpaddr, write_pmpaddr },
1923     [CSR_PMPADDR6]   = { "pmpaddr6",  pmp, read_pmpaddr, write_pmpaddr },
1924     [CSR_PMPADDR7]   = { "pmpaddr7",  pmp, read_pmpaddr, write_pmpaddr },
1925     [CSR_PMPADDR8]   = { "pmpaddr8",  pmp, read_pmpaddr, write_pmpaddr },
1926     [CSR_PMPADDR9]   = { "pmpaddr9",  pmp, read_pmpaddr, write_pmpaddr },
1927     [CSR_PMPADDR10]  = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr },
1928     [CSR_PMPADDR11]  = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr },
1929     [CSR_PMPADDR12]  = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr },
1930     [CSR_PMPADDR13]  = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr },
1931     [CSR_PMPADDR14] =  { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr },
1932     [CSR_PMPADDR15] =  { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr },
1933 
1934     /* User Pointer Masking */
1935     [CSR_UMTE]    =    { "umte",    pointer_masking, read_umte,    write_umte    },
1936     [CSR_UPMMASK] =    { "upmmask", pointer_masking, read_upmmask, write_upmmask },
1937     [CSR_UPMBASE] =    { "upmbase", pointer_masking, read_upmbase, write_upmbase },
1938     /* Machine Pointer Masking */
1939     [CSR_MMTE]    =    { "mmte",    pointer_masking, read_mmte,    write_mmte    },
1940     [CSR_MPMMASK] =    { "mpmmask", pointer_masking, read_mpmmask, write_mpmmask },
1941     [CSR_MPMBASE] =    { "mpmbase", pointer_masking, read_mpmbase, write_mpmbase },
1942     /* Supervisor Pointer Masking */
1943     [CSR_SMTE]    =    { "smte",    pointer_masking, read_smte,    write_smte    },
1944     [CSR_SPMMASK] =    { "spmmask", pointer_masking, read_spmmask, write_spmmask },
1945     [CSR_SPMBASE] =    { "spmbase", pointer_masking, read_spmbase, write_spmbase },
1946 
1947     /* Performance Counters */
1948     [CSR_HPMCOUNTER3]    = { "hpmcounter3",    ctr,    read_zero },
1949     [CSR_HPMCOUNTER4]    = { "hpmcounter4",    ctr,    read_zero },
1950     [CSR_HPMCOUNTER5]    = { "hpmcounter5",    ctr,    read_zero },
1951     [CSR_HPMCOUNTER6]    = { "hpmcounter6",    ctr,    read_zero },
1952     [CSR_HPMCOUNTER7]    = { "hpmcounter7",    ctr,    read_zero },
1953     [CSR_HPMCOUNTER8]    = { "hpmcounter8",    ctr,    read_zero },
1954     [CSR_HPMCOUNTER9]    = { "hpmcounter9",    ctr,    read_zero },
1955     [CSR_HPMCOUNTER10]   = { "hpmcounter10",   ctr,    read_zero },
1956     [CSR_HPMCOUNTER11]   = { "hpmcounter11",   ctr,    read_zero },
1957     [CSR_HPMCOUNTER12]   = { "hpmcounter12",   ctr,    read_zero },
1958     [CSR_HPMCOUNTER13]   = { "hpmcounter13",   ctr,    read_zero },
1959     [CSR_HPMCOUNTER14]   = { "hpmcounter14",   ctr,    read_zero },
1960     [CSR_HPMCOUNTER15]   = { "hpmcounter15",   ctr,    read_zero },
1961     [CSR_HPMCOUNTER16]   = { "hpmcounter16",   ctr,    read_zero },
1962     [CSR_HPMCOUNTER17]   = { "hpmcounter17",   ctr,    read_zero },
1963     [CSR_HPMCOUNTER18]   = { "hpmcounter18",   ctr,    read_zero },
1964     [CSR_HPMCOUNTER19]   = { "hpmcounter19",   ctr,    read_zero },
1965     [CSR_HPMCOUNTER20]   = { "hpmcounter20",   ctr,    read_zero },
1966     [CSR_HPMCOUNTER21]   = { "hpmcounter21",   ctr,    read_zero },
1967     [CSR_HPMCOUNTER22]   = { "hpmcounter22",   ctr,    read_zero },
1968     [CSR_HPMCOUNTER23]   = { "hpmcounter23",   ctr,    read_zero },
1969     [CSR_HPMCOUNTER24]   = { "hpmcounter24",   ctr,    read_zero },
1970     [CSR_HPMCOUNTER25]   = { "hpmcounter25",   ctr,    read_zero },
1971     [CSR_HPMCOUNTER26]   = { "hpmcounter26",   ctr,    read_zero },
1972     [CSR_HPMCOUNTER27]   = { "hpmcounter27",   ctr,    read_zero },
1973     [CSR_HPMCOUNTER28]   = { "hpmcounter28",   ctr,    read_zero },
1974     [CSR_HPMCOUNTER29]   = { "hpmcounter29",   ctr,    read_zero },
1975     [CSR_HPMCOUNTER30]   = { "hpmcounter30",   ctr,    read_zero },
1976     [CSR_HPMCOUNTER31]   = { "hpmcounter31",   ctr,    read_zero },
1977 
1978     [CSR_MHPMCOUNTER3]   = { "mhpmcounter3",   any,    read_zero },
1979     [CSR_MHPMCOUNTER4]   = { "mhpmcounter4",   any,    read_zero },
1980     [CSR_MHPMCOUNTER5]   = { "mhpmcounter5",   any,    read_zero },
1981     [CSR_MHPMCOUNTER6]   = { "mhpmcounter6",   any,    read_zero },
1982     [CSR_MHPMCOUNTER7]   = { "mhpmcounter7",   any,    read_zero },
1983     [CSR_MHPMCOUNTER8]   = { "mhpmcounter8",   any,    read_zero },
1984     [CSR_MHPMCOUNTER9]   = { "mhpmcounter9",   any,    read_zero },
1985     [CSR_MHPMCOUNTER10]  = { "mhpmcounter10",  any,    read_zero },
1986     [CSR_MHPMCOUNTER11]  = { "mhpmcounter11",  any,    read_zero },
1987     [CSR_MHPMCOUNTER12]  = { "mhpmcounter12",  any,    read_zero },
1988     [CSR_MHPMCOUNTER13]  = { "mhpmcounter13",  any,    read_zero },
1989     [CSR_MHPMCOUNTER14]  = { "mhpmcounter14",  any,    read_zero },
1990     [CSR_MHPMCOUNTER15]  = { "mhpmcounter15",  any,    read_zero },
1991     [CSR_MHPMCOUNTER16]  = { "mhpmcounter16",  any,    read_zero },
1992     [CSR_MHPMCOUNTER17]  = { "mhpmcounter17",  any,    read_zero },
1993     [CSR_MHPMCOUNTER18]  = { "mhpmcounter18",  any,    read_zero },
1994     [CSR_MHPMCOUNTER19]  = { "mhpmcounter19",  any,    read_zero },
1995     [CSR_MHPMCOUNTER20]  = { "mhpmcounter20",  any,    read_zero },
1996     [CSR_MHPMCOUNTER21]  = { "mhpmcounter21",  any,    read_zero },
1997     [CSR_MHPMCOUNTER22]  = { "mhpmcounter22",  any,    read_zero },
1998     [CSR_MHPMCOUNTER23]  = { "mhpmcounter23",  any,    read_zero },
1999     [CSR_MHPMCOUNTER24]  = { "mhpmcounter24",  any,    read_zero },
2000     [CSR_MHPMCOUNTER25]  = { "mhpmcounter25",  any,    read_zero },
2001     [CSR_MHPMCOUNTER26]  = { "mhpmcounter26",  any,    read_zero },
2002     [CSR_MHPMCOUNTER27]  = { "mhpmcounter27",  any,    read_zero },
2003     [CSR_MHPMCOUNTER28]  = { "mhpmcounter28",  any,    read_zero },
2004     [CSR_MHPMCOUNTER29]  = { "mhpmcounter29",  any,    read_zero },
2005     [CSR_MHPMCOUNTER30]  = { "mhpmcounter30",  any,    read_zero },
2006     [CSR_MHPMCOUNTER31]  = { "mhpmcounter31",  any,    read_zero },
2007 
2008     [CSR_MHPMEVENT3]     = { "mhpmevent3",     any,    read_zero },
2009     [CSR_MHPMEVENT4]     = { "mhpmevent4",     any,    read_zero },
2010     [CSR_MHPMEVENT5]     = { "mhpmevent5",     any,    read_zero },
2011     [CSR_MHPMEVENT6]     = { "mhpmevent6",     any,    read_zero },
2012     [CSR_MHPMEVENT7]     = { "mhpmevent7",     any,    read_zero },
2013     [CSR_MHPMEVENT8]     = { "mhpmevent8",     any,    read_zero },
2014     [CSR_MHPMEVENT9]     = { "mhpmevent9",     any,    read_zero },
2015     [CSR_MHPMEVENT10]    = { "mhpmevent10",    any,    read_zero },
2016     [CSR_MHPMEVENT11]    = { "mhpmevent11",    any,    read_zero },
2017     [CSR_MHPMEVENT12]    = { "mhpmevent12",    any,    read_zero },
2018     [CSR_MHPMEVENT13]    = { "mhpmevent13",    any,    read_zero },
2019     [CSR_MHPMEVENT14]    = { "mhpmevent14",    any,    read_zero },
2020     [CSR_MHPMEVENT15]    = { "mhpmevent15",    any,    read_zero },
2021     [CSR_MHPMEVENT16]    = { "mhpmevent16",    any,    read_zero },
2022     [CSR_MHPMEVENT17]    = { "mhpmevent17",    any,    read_zero },
2023     [CSR_MHPMEVENT18]    = { "mhpmevent18",    any,    read_zero },
2024     [CSR_MHPMEVENT19]    = { "mhpmevent19",    any,    read_zero },
2025     [CSR_MHPMEVENT20]    = { "mhpmevent20",    any,    read_zero },
2026     [CSR_MHPMEVENT21]    = { "mhpmevent21",    any,    read_zero },
2027     [CSR_MHPMEVENT22]    = { "mhpmevent22",    any,    read_zero },
2028     [CSR_MHPMEVENT23]    = { "mhpmevent23",    any,    read_zero },
2029     [CSR_MHPMEVENT24]    = { "mhpmevent24",    any,    read_zero },
2030     [CSR_MHPMEVENT25]    = { "mhpmevent25",    any,    read_zero },
2031     [CSR_MHPMEVENT26]    = { "mhpmevent26",    any,    read_zero },
2032     [CSR_MHPMEVENT27]    = { "mhpmevent27",    any,    read_zero },
2033     [CSR_MHPMEVENT28]    = { "mhpmevent28",    any,    read_zero },
2034     [CSR_MHPMEVENT29]    = { "mhpmevent29",    any,    read_zero },
2035     [CSR_MHPMEVENT30]    = { "mhpmevent30",    any,    read_zero },
2036     [CSR_MHPMEVENT31]    = { "mhpmevent31",    any,    read_zero },
2037 
2038     [CSR_HPMCOUNTER3H]   = { "hpmcounter3h",   ctr32,  read_zero },
2039     [CSR_HPMCOUNTER4H]   = { "hpmcounter4h",   ctr32,  read_zero },
2040     [CSR_HPMCOUNTER5H]   = { "hpmcounter5h",   ctr32,  read_zero },
2041     [CSR_HPMCOUNTER6H]   = { "hpmcounter6h",   ctr32,  read_zero },
2042     [CSR_HPMCOUNTER7H]   = { "hpmcounter7h",   ctr32,  read_zero },
2043     [CSR_HPMCOUNTER8H]   = { "hpmcounter8h",   ctr32,  read_zero },
2044     [CSR_HPMCOUNTER9H]   = { "hpmcounter9h",   ctr32,  read_zero },
2045     [CSR_HPMCOUNTER10H]  = { "hpmcounter10h",  ctr32,  read_zero },
2046     [CSR_HPMCOUNTER11H]  = { "hpmcounter11h",  ctr32,  read_zero },
2047     [CSR_HPMCOUNTER12H]  = { "hpmcounter12h",  ctr32,  read_zero },
2048     [CSR_HPMCOUNTER13H]  = { "hpmcounter13h",  ctr32,  read_zero },
2049     [CSR_HPMCOUNTER14H]  = { "hpmcounter14h",  ctr32,  read_zero },
2050     [CSR_HPMCOUNTER15H]  = { "hpmcounter15h",  ctr32,  read_zero },
2051     [CSR_HPMCOUNTER16H]  = { "hpmcounter16h",  ctr32,  read_zero },
2052     [CSR_HPMCOUNTER17H]  = { "hpmcounter17h",  ctr32,  read_zero },
2053     [CSR_HPMCOUNTER18H]  = { "hpmcounter18h",  ctr32,  read_zero },
2054     [CSR_HPMCOUNTER19H]  = { "hpmcounter19h",  ctr32,  read_zero },
2055     [CSR_HPMCOUNTER20H]  = { "hpmcounter20h",  ctr32,  read_zero },
2056     [CSR_HPMCOUNTER21H]  = { "hpmcounter21h",  ctr32,  read_zero },
2057     [CSR_HPMCOUNTER22H]  = { "hpmcounter22h",  ctr32,  read_zero },
2058     [CSR_HPMCOUNTER23H]  = { "hpmcounter23h",  ctr32,  read_zero },
2059     [CSR_HPMCOUNTER24H]  = { "hpmcounter24h",  ctr32,  read_zero },
2060     [CSR_HPMCOUNTER25H]  = { "hpmcounter25h",  ctr32,  read_zero },
2061     [CSR_HPMCOUNTER26H]  = { "hpmcounter26h",  ctr32,  read_zero },
2062     [CSR_HPMCOUNTER27H]  = { "hpmcounter27h",  ctr32,  read_zero },
2063     [CSR_HPMCOUNTER28H]  = { "hpmcounter28h",  ctr32,  read_zero },
2064     [CSR_HPMCOUNTER29H]  = { "hpmcounter29h",  ctr32,  read_zero },
2065     [CSR_HPMCOUNTER30H]  = { "hpmcounter30h",  ctr32,  read_zero },
2066     [CSR_HPMCOUNTER31H]  = { "hpmcounter31h",  ctr32,  read_zero },
2067 
2068     [CSR_MHPMCOUNTER3H]  = { "mhpmcounter3h",  any32,  read_zero },
2069     [CSR_MHPMCOUNTER4H]  = { "mhpmcounter4h",  any32,  read_zero },
2070     [CSR_MHPMCOUNTER5H]  = { "mhpmcounter5h",  any32,  read_zero },
2071     [CSR_MHPMCOUNTER6H]  = { "mhpmcounter6h",  any32,  read_zero },
2072     [CSR_MHPMCOUNTER7H]  = { "mhpmcounter7h",  any32,  read_zero },
2073     [CSR_MHPMCOUNTER8H]  = { "mhpmcounter8h",  any32,  read_zero },
2074     [CSR_MHPMCOUNTER9H]  = { "mhpmcounter9h",  any32,  read_zero },
2075     [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", any32,  read_zero },
2076     [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", any32,  read_zero },
2077     [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", any32,  read_zero },
2078     [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", any32,  read_zero },
2079     [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", any32,  read_zero },
2080     [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", any32,  read_zero },
2081     [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", any32,  read_zero },
2082     [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", any32,  read_zero },
2083     [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", any32,  read_zero },
2084     [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", any32,  read_zero },
2085     [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", any32,  read_zero },
2086     [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", any32,  read_zero },
2087     [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", any32,  read_zero },
2088     [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", any32,  read_zero },
2089     [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", any32,  read_zero },
2090     [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", any32,  read_zero },
2091     [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", any32,  read_zero },
2092     [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", any32,  read_zero },
2093     [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", any32,  read_zero },
2094     [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", any32,  read_zero },
2095     [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", any32,  read_zero },
2096     [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", any32,  read_zero },
2097 #endif /* !CONFIG_USER_ONLY */
2098 };
2099