xref: /qemu/target/riscv/csr.c (revision d45c8332)
1 /*
2  * RISC-V Control and Status Registers.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/timer.h"
23 #include "cpu.h"
24 #include "qemu/main-loop.h"
25 #include "exec/exec-all.h"
26 #include "sysemu/cpu-timers.h"
27 
28 /* CSR function table public API */
29 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops)
30 {
31     *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)];
32 }
33 
34 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops)
35 {
36     csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops;
37 }
38 
39 /* Predicates */
40 static RISCVException fs(CPURISCVState *env, int csrno)
41 {
42 #if !defined(CONFIG_USER_ONLY)
43     if (!env->debugger && !riscv_cpu_fp_enabled(env) &&
44         !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) {
45         return RISCV_EXCP_ILLEGAL_INST;
46     }
47 #endif
48     return RISCV_EXCP_NONE;
49 }
50 
51 static RISCVException vs(CPURISCVState *env, int csrno)
52 {
53     CPUState *cs = env_cpu(env);
54     RISCVCPU *cpu = RISCV_CPU(cs);
55 
56     if (env->misa_ext & RVV ||
57         cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) {
58 #if !defined(CONFIG_USER_ONLY)
59         if (!env->debugger && !riscv_cpu_vector_enabled(env)) {
60             return RISCV_EXCP_ILLEGAL_INST;
61         }
62 #endif
63         return RISCV_EXCP_NONE;
64     }
65     return RISCV_EXCP_ILLEGAL_INST;
66 }
67 
68 static RISCVException ctr(CPURISCVState *env, int csrno)
69 {
70 #if !defined(CONFIG_USER_ONLY)
71     CPUState *cs = env_cpu(env);
72     RISCVCPU *cpu = RISCV_CPU(cs);
73 
74     if (!cpu->cfg.ext_counters) {
75         /* The Counters extensions is not enabled */
76         return RISCV_EXCP_ILLEGAL_INST;
77     }
78 
79     if (riscv_cpu_virt_enabled(env)) {
80         switch (csrno) {
81         case CSR_CYCLE:
82             if (!get_field(env->hcounteren, COUNTEREN_CY) &&
83                 get_field(env->mcounteren, COUNTEREN_CY)) {
84                 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
85             }
86             break;
87         case CSR_TIME:
88             if (!get_field(env->hcounteren, COUNTEREN_TM) &&
89                 get_field(env->mcounteren, COUNTEREN_TM)) {
90                 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
91             }
92             break;
93         case CSR_INSTRET:
94             if (!get_field(env->hcounteren, COUNTEREN_IR) &&
95                 get_field(env->mcounteren, COUNTEREN_IR)) {
96                 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
97             }
98             break;
99         case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31:
100             if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3)) &&
101                 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3))) {
102                 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
103             }
104             break;
105         }
106         if (riscv_cpu_mxl(env) == MXL_RV32) {
107             switch (csrno) {
108             case CSR_CYCLEH:
109                 if (!get_field(env->hcounteren, COUNTEREN_CY) &&
110                     get_field(env->mcounteren, COUNTEREN_CY)) {
111                     return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
112                 }
113                 break;
114             case CSR_TIMEH:
115                 if (!get_field(env->hcounteren, COUNTEREN_TM) &&
116                     get_field(env->mcounteren, COUNTEREN_TM)) {
117                     return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
118                 }
119                 break;
120             case CSR_INSTRETH:
121                 if (!get_field(env->hcounteren, COUNTEREN_IR) &&
122                     get_field(env->mcounteren, COUNTEREN_IR)) {
123                     return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
124                 }
125                 break;
126             case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H:
127                 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3H)) &&
128                     get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3H))) {
129                     return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
130                 }
131                 break;
132             }
133         }
134     }
135 #endif
136     return RISCV_EXCP_NONE;
137 }
138 
139 static RISCVException ctr32(CPURISCVState *env, int csrno)
140 {
141     if (riscv_cpu_mxl(env) != MXL_RV32) {
142         return RISCV_EXCP_ILLEGAL_INST;
143     }
144 
145     return ctr(env, csrno);
146 }
147 
148 #if !defined(CONFIG_USER_ONLY)
149 static RISCVException any(CPURISCVState *env, int csrno)
150 {
151     return RISCV_EXCP_NONE;
152 }
153 
154 static RISCVException any32(CPURISCVState *env, int csrno)
155 {
156     if (riscv_cpu_mxl(env) != MXL_RV32) {
157         return RISCV_EXCP_ILLEGAL_INST;
158     }
159 
160     return any(env, csrno);
161 
162 }
163 
164 static int aia_any(CPURISCVState *env, int csrno)
165 {
166     if (!riscv_feature(env, RISCV_FEATURE_AIA)) {
167         return RISCV_EXCP_ILLEGAL_INST;
168     }
169 
170     return any(env, csrno);
171 }
172 
173 static int aia_any32(CPURISCVState *env, int csrno)
174 {
175     if (!riscv_feature(env, RISCV_FEATURE_AIA)) {
176         return RISCV_EXCP_ILLEGAL_INST;
177     }
178 
179     return any32(env, csrno);
180 }
181 
182 static RISCVException smode(CPURISCVState *env, int csrno)
183 {
184     if (riscv_has_ext(env, RVS)) {
185         return RISCV_EXCP_NONE;
186     }
187 
188     return RISCV_EXCP_ILLEGAL_INST;
189 }
190 
191 static int smode32(CPURISCVState *env, int csrno)
192 {
193     if (riscv_cpu_mxl(env) != MXL_RV32) {
194         return RISCV_EXCP_ILLEGAL_INST;
195     }
196 
197     return smode(env, csrno);
198 }
199 
200 static int aia_smode(CPURISCVState *env, int csrno)
201 {
202     if (!riscv_feature(env, RISCV_FEATURE_AIA)) {
203         return RISCV_EXCP_ILLEGAL_INST;
204     }
205 
206     return smode(env, csrno);
207 }
208 
209 static int aia_smode32(CPURISCVState *env, int csrno)
210 {
211     if (!riscv_feature(env, RISCV_FEATURE_AIA)) {
212         return RISCV_EXCP_ILLEGAL_INST;
213     }
214 
215     return smode32(env, csrno);
216 }
217 
218 static RISCVException hmode(CPURISCVState *env, int csrno)
219 {
220     if (riscv_has_ext(env, RVS) &&
221         riscv_has_ext(env, RVH)) {
222         /* Hypervisor extension is supported */
223         if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
224             env->priv == PRV_M) {
225             return RISCV_EXCP_NONE;
226         } else {
227             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
228         }
229     }
230 
231     return RISCV_EXCP_ILLEGAL_INST;
232 }
233 
234 static RISCVException hmode32(CPURISCVState *env, int csrno)
235 {
236     if (riscv_cpu_mxl(env) != MXL_RV32) {
237         if (!riscv_cpu_virt_enabled(env)) {
238             return RISCV_EXCP_ILLEGAL_INST;
239         } else {
240             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
241         }
242     }
243 
244     return hmode(env, csrno);
245 
246 }
247 
248 /* Checks if PointerMasking registers could be accessed */
249 static RISCVException pointer_masking(CPURISCVState *env, int csrno)
250 {
251     /* Check if j-ext is present */
252     if (riscv_has_ext(env, RVJ)) {
253         return RISCV_EXCP_NONE;
254     }
255     return RISCV_EXCP_ILLEGAL_INST;
256 }
257 
258 static int aia_hmode(CPURISCVState *env, int csrno)
259 {
260     if (!riscv_feature(env, RISCV_FEATURE_AIA)) {
261         return RISCV_EXCP_ILLEGAL_INST;
262      }
263 
264      return hmode(env, csrno);
265 }
266 
267 static int aia_hmode32(CPURISCVState *env, int csrno)
268 {
269     if (!riscv_feature(env, RISCV_FEATURE_AIA)) {
270         return RISCV_EXCP_ILLEGAL_INST;
271     }
272 
273     return hmode32(env, csrno);
274 }
275 
276 static RISCVException pmp(CPURISCVState *env, int csrno)
277 {
278     if (riscv_feature(env, RISCV_FEATURE_PMP)) {
279         return RISCV_EXCP_NONE;
280     }
281 
282     return RISCV_EXCP_ILLEGAL_INST;
283 }
284 
285 static RISCVException epmp(CPURISCVState *env, int csrno)
286 {
287     if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) {
288         return RISCV_EXCP_NONE;
289     }
290 
291     return RISCV_EXCP_ILLEGAL_INST;
292 }
293 #endif
294 
295 /* User Floating-Point CSRs */
296 static RISCVException read_fflags(CPURISCVState *env, int csrno,
297                                   target_ulong *val)
298 {
299     *val = riscv_cpu_get_fflags(env);
300     return RISCV_EXCP_NONE;
301 }
302 
303 static RISCVException write_fflags(CPURISCVState *env, int csrno,
304                                    target_ulong val)
305 {
306 #if !defined(CONFIG_USER_ONLY)
307     if (riscv_has_ext(env, RVF)) {
308         env->mstatus |= MSTATUS_FS;
309     }
310 #endif
311     riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT));
312     return RISCV_EXCP_NONE;
313 }
314 
315 static RISCVException read_frm(CPURISCVState *env, int csrno,
316                                target_ulong *val)
317 {
318     *val = env->frm;
319     return RISCV_EXCP_NONE;
320 }
321 
322 static RISCVException write_frm(CPURISCVState *env, int csrno,
323                                 target_ulong val)
324 {
325 #if !defined(CONFIG_USER_ONLY)
326     if (riscv_has_ext(env, RVF)) {
327         env->mstatus |= MSTATUS_FS;
328     }
329 #endif
330     env->frm = val & (FSR_RD >> FSR_RD_SHIFT);
331     return RISCV_EXCP_NONE;
332 }
333 
334 static RISCVException read_fcsr(CPURISCVState *env, int csrno,
335                                 target_ulong *val)
336 {
337     *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT)
338         | (env->frm << FSR_RD_SHIFT);
339     return RISCV_EXCP_NONE;
340 }
341 
342 static RISCVException write_fcsr(CPURISCVState *env, int csrno,
343                                  target_ulong val)
344 {
345 #if !defined(CONFIG_USER_ONLY)
346     if (riscv_has_ext(env, RVF)) {
347         env->mstatus |= MSTATUS_FS;
348     }
349 #endif
350     env->frm = (val & FSR_RD) >> FSR_RD_SHIFT;
351     riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT);
352     return RISCV_EXCP_NONE;
353 }
354 
355 static RISCVException read_vtype(CPURISCVState *env, int csrno,
356                                  target_ulong *val)
357 {
358     uint64_t vill;
359     switch (env->xl) {
360     case MXL_RV32:
361         vill = (uint32_t)env->vill << 31;
362         break;
363     case MXL_RV64:
364         vill = (uint64_t)env->vill << 63;
365         break;
366     default:
367         g_assert_not_reached();
368     }
369     *val = (target_ulong)vill | env->vtype;
370     return RISCV_EXCP_NONE;
371 }
372 
373 static RISCVException read_vl(CPURISCVState *env, int csrno,
374                               target_ulong *val)
375 {
376     *val = env->vl;
377     return RISCV_EXCP_NONE;
378 }
379 
380 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val)
381 {
382     *val = env_archcpu(env)->cfg.vlen >> 3;
383     return RISCV_EXCP_NONE;
384 }
385 
386 static RISCVException read_vxrm(CPURISCVState *env, int csrno,
387                                 target_ulong *val)
388 {
389     *val = env->vxrm;
390     return RISCV_EXCP_NONE;
391 }
392 
393 static RISCVException write_vxrm(CPURISCVState *env, int csrno,
394                                  target_ulong val)
395 {
396 #if !defined(CONFIG_USER_ONLY)
397     env->mstatus |= MSTATUS_VS;
398 #endif
399     env->vxrm = val;
400     return RISCV_EXCP_NONE;
401 }
402 
403 static RISCVException read_vxsat(CPURISCVState *env, int csrno,
404                                  target_ulong *val)
405 {
406     *val = env->vxsat;
407     return RISCV_EXCP_NONE;
408 }
409 
410 static RISCVException write_vxsat(CPURISCVState *env, int csrno,
411                                   target_ulong val)
412 {
413 #if !defined(CONFIG_USER_ONLY)
414     env->mstatus |= MSTATUS_VS;
415 #endif
416     env->vxsat = val;
417     return RISCV_EXCP_NONE;
418 }
419 
420 static RISCVException read_vstart(CPURISCVState *env, int csrno,
421                                   target_ulong *val)
422 {
423     *val = env->vstart;
424     return RISCV_EXCP_NONE;
425 }
426 
427 static RISCVException write_vstart(CPURISCVState *env, int csrno,
428                                    target_ulong val)
429 {
430 #if !defined(CONFIG_USER_ONLY)
431     env->mstatus |= MSTATUS_VS;
432 #endif
433     /*
434      * The vstart CSR is defined to have only enough writable bits
435      * to hold the largest element index, i.e. lg2(VLEN) bits.
436      */
437     env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen));
438     return RISCV_EXCP_NONE;
439 }
440 
441 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val)
442 {
443     *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT);
444     return RISCV_EXCP_NONE;
445 }
446 
447 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val)
448 {
449 #if !defined(CONFIG_USER_ONLY)
450     env->mstatus |= MSTATUS_VS;
451 #endif
452     env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT;
453     env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT;
454     return RISCV_EXCP_NONE;
455 }
456 
457 /* User Timers and Counters */
458 static RISCVException read_instret(CPURISCVState *env, int csrno,
459                                    target_ulong *val)
460 {
461 #if !defined(CONFIG_USER_ONLY)
462     if (icount_enabled()) {
463         *val = icount_get();
464     } else {
465         *val = cpu_get_host_ticks();
466     }
467 #else
468     *val = cpu_get_host_ticks();
469 #endif
470     return RISCV_EXCP_NONE;
471 }
472 
473 static RISCVException read_instreth(CPURISCVState *env, int csrno,
474                                     target_ulong *val)
475 {
476 #if !defined(CONFIG_USER_ONLY)
477     if (icount_enabled()) {
478         *val = icount_get() >> 32;
479     } else {
480         *val = cpu_get_host_ticks() >> 32;
481     }
482 #else
483     *val = cpu_get_host_ticks() >> 32;
484 #endif
485     return RISCV_EXCP_NONE;
486 }
487 
488 #if defined(CONFIG_USER_ONLY)
489 static RISCVException read_time(CPURISCVState *env, int csrno,
490                                 target_ulong *val)
491 {
492     *val = cpu_get_host_ticks();
493     return RISCV_EXCP_NONE;
494 }
495 
496 static RISCVException read_timeh(CPURISCVState *env, int csrno,
497                                  target_ulong *val)
498 {
499     *val = cpu_get_host_ticks() >> 32;
500     return RISCV_EXCP_NONE;
501 }
502 
503 #else /* CONFIG_USER_ONLY */
504 
505 static RISCVException read_time(CPURISCVState *env, int csrno,
506                                 target_ulong *val)
507 {
508     uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0;
509 
510     if (!env->rdtime_fn) {
511         return RISCV_EXCP_ILLEGAL_INST;
512     }
513 
514     *val = env->rdtime_fn(env->rdtime_fn_arg) + delta;
515     return RISCV_EXCP_NONE;
516 }
517 
518 static RISCVException read_timeh(CPURISCVState *env, int csrno,
519                                  target_ulong *val)
520 {
521     uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0;
522 
523     if (!env->rdtime_fn) {
524         return RISCV_EXCP_ILLEGAL_INST;
525     }
526 
527     *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32;
528     return RISCV_EXCP_NONE;
529 }
530 
531 /* Machine constants */
532 
533 #define M_MODE_INTERRUPTS  ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP))
534 #define S_MODE_INTERRUPTS  ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP))
535 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP))
536 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS))
537 
538 #define VSTOPI_NUM_SRCS 5
539 
540 static const uint64_t delegable_ints = S_MODE_INTERRUPTS |
541                                            VS_MODE_INTERRUPTS;
542 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS;
543 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS |
544                                      HS_MODE_INTERRUPTS;
545 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \
546                          (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \
547                          (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \
548                          (1ULL << (RISCV_EXCP_BREAKPOINT)) | \
549                          (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \
550                          (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \
551                          (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \
552                          (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \
553                          (1ULL << (RISCV_EXCP_U_ECALL)) | \
554                          (1ULL << (RISCV_EXCP_S_ECALL)) | \
555                          (1ULL << (RISCV_EXCP_VS_ECALL)) | \
556                          (1ULL << (RISCV_EXCP_M_ECALL)) | \
557                          (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \
558                          (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \
559                          (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \
560                          (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \
561                          (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \
562                          (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \
563                          (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT)))
564 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS &
565     ~((1ULL << (RISCV_EXCP_S_ECALL)) |
566       (1ULL << (RISCV_EXCP_VS_ECALL)) |
567       (1ULL << (RISCV_EXCP_M_ECALL)) |
568       (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) |
569       (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) |
570       (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) |
571       (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT)));
572 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE |
573     SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS |
574     SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS;
575 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP;
576 static const target_ulong hip_writable_mask = MIP_VSSIP;
577 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP;
578 static const target_ulong vsip_writable_mask = MIP_VSSIP;
579 
580 static const char valid_vm_1_10_32[16] = {
581     [VM_1_10_MBARE] = 1,
582     [VM_1_10_SV32] = 1
583 };
584 
585 static const char valid_vm_1_10_64[16] = {
586     [VM_1_10_MBARE] = 1,
587     [VM_1_10_SV39] = 1,
588     [VM_1_10_SV48] = 1,
589     [VM_1_10_SV57] = 1
590 };
591 
592 /* Machine Information Registers */
593 static RISCVException read_zero(CPURISCVState *env, int csrno,
594                                 target_ulong *val)
595 {
596     *val = 0;
597     return RISCV_EXCP_NONE;
598 }
599 
600 static RISCVException write_ignore(CPURISCVState *env, int csrno,
601                                    target_ulong val)
602 {
603     return RISCV_EXCP_NONE;
604 }
605 
606 static RISCVException read_mhartid(CPURISCVState *env, int csrno,
607                                    target_ulong *val)
608 {
609     *val = env->mhartid;
610     return RISCV_EXCP_NONE;
611 }
612 
613 /* Machine Trap Setup */
614 
615 /* We do not store SD explicitly, only compute it on demand. */
616 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status)
617 {
618     if ((status & MSTATUS_FS) == MSTATUS_FS ||
619         (status & MSTATUS_VS) == MSTATUS_VS ||
620         (status & MSTATUS_XS) == MSTATUS_XS) {
621         switch (xl) {
622         case MXL_RV32:
623             return status | MSTATUS32_SD;
624         case MXL_RV64:
625             return status | MSTATUS64_SD;
626         case MXL_RV128:
627             return MSTATUSH128_SD;
628         default:
629             g_assert_not_reached();
630         }
631     }
632     return status;
633 }
634 
635 static RISCVException read_mstatus(CPURISCVState *env, int csrno,
636                                    target_ulong *val)
637 {
638     *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus);
639     return RISCV_EXCP_NONE;
640 }
641 
642 static int validate_vm(CPURISCVState *env, target_ulong vm)
643 {
644     if (riscv_cpu_mxl(env) == MXL_RV32) {
645         return valid_vm_1_10_32[vm & 0xf];
646     } else {
647         return valid_vm_1_10_64[vm & 0xf];
648     }
649 }
650 
651 static RISCVException write_mstatus(CPURISCVState *env, int csrno,
652                                     target_ulong val)
653 {
654     uint64_t mstatus = env->mstatus;
655     uint64_t mask = 0;
656     RISCVMXL xl = riscv_cpu_mxl(env);
657 
658     /* flush tlb on mstatus fields that affect VM */
659     if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV |
660             MSTATUS_MPRV | MSTATUS_SUM)) {
661         tlb_flush(env_cpu(env));
662     }
663     mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE |
664         MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM |
665         MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR |
666         MSTATUS_TW | MSTATUS_VS;
667 
668     if (riscv_has_ext(env, RVF)) {
669         mask |= MSTATUS_FS;
670     }
671 
672     if (xl != MXL_RV32 || env->debugger) {
673         /*
674          * RV32: MPV and GVA are not in mstatus. The current plan is to
675          * add them to mstatush. For now, we just don't support it.
676          */
677         mask |= MSTATUS_MPV | MSTATUS_GVA;
678         if ((val & MSTATUS64_UXL) != 0) {
679             mask |= MSTATUS64_UXL;
680         }
681     }
682 
683     mstatus = (mstatus & ~mask) | (val & mask);
684 
685     if (xl > MXL_RV32) {
686         /* SXL field is for now read only */
687         mstatus = set_field(mstatus, MSTATUS64_SXL, xl);
688     }
689     env->mstatus = mstatus;
690     env->xl = cpu_recompute_xl(env);
691 
692     return RISCV_EXCP_NONE;
693 }
694 
695 static RISCVException read_mstatush(CPURISCVState *env, int csrno,
696                                     target_ulong *val)
697 {
698     *val = env->mstatus >> 32;
699     return RISCV_EXCP_NONE;
700 }
701 
702 static RISCVException write_mstatush(CPURISCVState *env, int csrno,
703                                      target_ulong val)
704 {
705     uint64_t valh = (uint64_t)val << 32;
706     uint64_t mask = MSTATUS_MPV | MSTATUS_GVA;
707 
708     if ((valh ^ env->mstatus) & (MSTATUS_MPV)) {
709         tlb_flush(env_cpu(env));
710     }
711 
712     env->mstatus = (env->mstatus & ~mask) | (valh & mask);
713 
714     return RISCV_EXCP_NONE;
715 }
716 
717 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno,
718                                         Int128 *val)
719 {
720     *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus));
721     return RISCV_EXCP_NONE;
722 }
723 
724 static RISCVException read_misa_i128(CPURISCVState *env, int csrno,
725                                      Int128 *val)
726 {
727     *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62);
728     return RISCV_EXCP_NONE;
729 }
730 
731 static RISCVException read_misa(CPURISCVState *env, int csrno,
732                                 target_ulong *val)
733 {
734     target_ulong misa;
735 
736     switch (env->misa_mxl) {
737     case MXL_RV32:
738         misa = (target_ulong)MXL_RV32 << 30;
739         break;
740 #ifdef TARGET_RISCV64
741     case MXL_RV64:
742         misa = (target_ulong)MXL_RV64 << 62;
743         break;
744 #endif
745     default:
746         g_assert_not_reached();
747     }
748 
749     *val = misa | env->misa_ext;
750     return RISCV_EXCP_NONE;
751 }
752 
753 static RISCVException write_misa(CPURISCVState *env, int csrno,
754                                  target_ulong val)
755 {
756     if (!riscv_feature(env, RISCV_FEATURE_MISA)) {
757         /* drop write to misa */
758         return RISCV_EXCP_NONE;
759     }
760 
761     /* 'I' or 'E' must be present */
762     if (!(val & (RVI | RVE))) {
763         /* It is not, drop write to misa */
764         return RISCV_EXCP_NONE;
765     }
766 
767     /* 'E' excludes all other extensions */
768     if (val & RVE) {
769         /* when we support 'E' we can do "val = RVE;" however
770          * for now we just drop writes if 'E' is present.
771          */
772         return RISCV_EXCP_NONE;
773     }
774 
775     /*
776      * misa.MXL writes are not supported by QEMU.
777      * Drop writes to those bits.
778      */
779 
780     /* Mask extensions that are not supported by this hart */
781     val &= env->misa_ext_mask;
782 
783     /* Mask extensions that are not supported by QEMU */
784     val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV);
785 
786     /* 'D' depends on 'F', so clear 'D' if 'F' is not present */
787     if ((val & RVD) && !(val & RVF)) {
788         val &= ~RVD;
789     }
790 
791     /* Suppress 'C' if next instruction is not aligned
792      * TODO: this should check next_pc
793      */
794     if ((val & RVC) && (GETPC() & ~3) != 0) {
795         val &= ~RVC;
796     }
797 
798     /* If nothing changed, do nothing. */
799     if (val == env->misa_ext) {
800         return RISCV_EXCP_NONE;
801     }
802 
803     if (!(val & RVF)) {
804         env->mstatus &= ~MSTATUS_FS;
805     }
806 
807     /* flush translation cache */
808     tb_flush(env_cpu(env));
809     env->misa_ext = val;
810     env->xl = riscv_cpu_mxl(env);
811     return RISCV_EXCP_NONE;
812 }
813 
814 static RISCVException read_medeleg(CPURISCVState *env, int csrno,
815                                    target_ulong *val)
816 {
817     *val = env->medeleg;
818     return RISCV_EXCP_NONE;
819 }
820 
821 static RISCVException write_medeleg(CPURISCVState *env, int csrno,
822                                     target_ulong val)
823 {
824     env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS);
825     return RISCV_EXCP_NONE;
826 }
827 
828 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno,
829                                     uint64_t *ret_val,
830                                     uint64_t new_val, uint64_t wr_mask)
831 {
832     uint64_t mask = wr_mask & delegable_ints;
833 
834     if (ret_val) {
835         *ret_val = env->mideleg;
836     }
837 
838     env->mideleg = (env->mideleg & ~mask) | (new_val & mask);
839 
840     if (riscv_has_ext(env, RVH)) {
841         env->mideleg |= HS_MODE_INTERRUPTS;
842     }
843 
844     return RISCV_EXCP_NONE;
845 }
846 
847 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno,
848                                   target_ulong *ret_val,
849                                   target_ulong new_val, target_ulong wr_mask)
850 {
851     uint64_t rval;
852     RISCVException ret;
853 
854     ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask);
855     if (ret_val) {
856         *ret_val = rval;
857     }
858 
859     return ret;
860 }
861 
862 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno,
863                                    target_ulong *ret_val,
864                                    target_ulong new_val,
865                                    target_ulong wr_mask)
866 {
867     uint64_t rval;
868     RISCVException ret;
869 
870     ret = rmw_mideleg64(env, csrno, &rval,
871         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
872     if (ret_val) {
873         *ret_val = rval >> 32;
874     }
875 
876     return ret;
877 }
878 
879 static RISCVException rmw_mie64(CPURISCVState *env, int csrno,
880                                 uint64_t *ret_val,
881                                 uint64_t new_val, uint64_t wr_mask)
882 {
883     uint64_t mask = wr_mask & all_ints;
884 
885     if (ret_val) {
886         *ret_val = env->mie;
887     }
888 
889     env->mie = (env->mie & ~mask) | (new_val & mask);
890 
891     if (!riscv_has_ext(env, RVH)) {
892         env->mie &= ~((uint64_t)MIP_SGEIP);
893     }
894 
895     return RISCV_EXCP_NONE;
896 }
897 
898 static RISCVException rmw_mie(CPURISCVState *env, int csrno,
899                               target_ulong *ret_val,
900                               target_ulong new_val, target_ulong wr_mask)
901 {
902     uint64_t rval;
903     RISCVException ret;
904 
905     ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask);
906     if (ret_val) {
907         *ret_val = rval;
908     }
909 
910     return ret;
911 }
912 
913 static RISCVException rmw_mieh(CPURISCVState *env, int csrno,
914                                target_ulong *ret_val,
915                                target_ulong new_val, target_ulong wr_mask)
916 {
917     uint64_t rval;
918     RISCVException ret;
919 
920     ret = rmw_mie64(env, csrno, &rval,
921         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
922     if (ret_val) {
923         *ret_val = rval >> 32;
924     }
925 
926     return ret;
927 }
928 
929 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val)
930 {
931     int irq;
932     uint8_t iprio;
933 
934     irq = riscv_cpu_mirq_pending(env);
935     if (irq <= 0 || irq > 63) {
936         *val = 0;
937     } else {
938         iprio = env->miprio[irq];
939         if (!iprio) {
940             if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) {
941                 iprio = IPRIO_MMAXIPRIO;
942             }
943         }
944         *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT;
945         *val |= iprio;
946     }
947 
948     return RISCV_EXCP_NONE;
949 }
950 
951 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno)
952 {
953     if (!riscv_cpu_virt_enabled(env)) {
954         return csrno;
955     }
956 
957     switch (csrno) {
958     case CSR_SISELECT:
959         return CSR_VSISELECT;
960     case CSR_SIREG:
961         return CSR_VSIREG;
962     case CSR_SSETEIPNUM:
963         return CSR_VSSETEIPNUM;
964     case CSR_SCLREIPNUM:
965         return CSR_VSCLREIPNUM;
966     case CSR_SSETEIENUM:
967         return CSR_VSSETEIENUM;
968     case CSR_SCLREIENUM:
969         return CSR_VSCLREIENUM;
970     case CSR_STOPEI:
971         return CSR_VSTOPEI;
972     default:
973         return csrno;
974     };
975 }
976 
977 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val,
978                         target_ulong new_val, target_ulong wr_mask)
979 {
980     target_ulong *iselect;
981 
982     /* Translate CSR number for VS-mode */
983     csrno = aia_xlate_vs_csrno(env, csrno);
984 
985     /* Find the iselect CSR based on CSR number */
986     switch (csrno) {
987     case CSR_MISELECT:
988         iselect = &env->miselect;
989         break;
990     case CSR_SISELECT:
991         iselect = &env->siselect;
992         break;
993     case CSR_VSISELECT:
994         iselect = &env->vsiselect;
995         break;
996     default:
997          return RISCV_EXCP_ILLEGAL_INST;
998     };
999 
1000     if (val) {
1001         *val = *iselect;
1002     }
1003 
1004     wr_mask &= ISELECT_MASK;
1005     if (wr_mask) {
1006         *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask);
1007     }
1008 
1009     return RISCV_EXCP_NONE;
1010 }
1011 
1012 static int rmw_iprio(target_ulong xlen,
1013                      target_ulong iselect, uint8_t *iprio,
1014                      target_ulong *val, target_ulong new_val,
1015                      target_ulong wr_mask, int ext_irq_no)
1016 {
1017     int i, firq, nirqs;
1018     target_ulong old_val;
1019 
1020     if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) {
1021         return -EINVAL;
1022     }
1023     if (xlen != 32 && iselect & 0x1) {
1024         return -EINVAL;
1025     }
1026 
1027     nirqs = 4 * (xlen / 32);
1028     firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs);
1029 
1030     old_val = 0;
1031     for (i = 0; i < nirqs; i++) {
1032         old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i);
1033     }
1034 
1035     if (val) {
1036         *val = old_val;
1037     }
1038 
1039     if (wr_mask) {
1040         new_val = (old_val & ~wr_mask) | (new_val & wr_mask);
1041         for (i = 0; i < nirqs; i++) {
1042             /*
1043              * M-level and S-level external IRQ priority always read-only
1044              * zero. This means default priority order is always preferred
1045              * for M-level and S-level external IRQs.
1046              */
1047             if ((firq + i) == ext_irq_no) {
1048                 continue;
1049             }
1050             iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff;
1051         }
1052     }
1053 
1054     return 0;
1055 }
1056 
1057 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val,
1058                      target_ulong new_val, target_ulong wr_mask)
1059 {
1060     bool virt;
1061     uint8_t *iprio;
1062     int ret = -EINVAL;
1063     target_ulong priv, isel, vgein;
1064 
1065     /* Translate CSR number for VS-mode */
1066     csrno = aia_xlate_vs_csrno(env, csrno);
1067 
1068     /* Decode register details from CSR number */
1069     virt = false;
1070     switch (csrno) {
1071     case CSR_MIREG:
1072         iprio = env->miprio;
1073         isel = env->miselect;
1074         priv = PRV_M;
1075         break;
1076     case CSR_SIREG:
1077         iprio = env->siprio;
1078         isel = env->siselect;
1079         priv = PRV_S;
1080         break;
1081     case CSR_VSIREG:
1082         iprio = env->hviprio;
1083         isel = env->vsiselect;
1084         priv = PRV_S;
1085         virt = true;
1086         break;
1087     default:
1088          goto done;
1089     };
1090 
1091     /* Find the selected guest interrupt file */
1092     vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0;
1093 
1094     if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) {
1095         /* Local interrupt priority registers not available for VS-mode */
1096         if (!virt) {
1097             ret = rmw_iprio(riscv_cpu_mxl_bits(env),
1098                             isel, iprio, val, new_val, wr_mask,
1099                             (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT);
1100         }
1101     } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) {
1102         /* IMSIC registers only available when machine implements it. */
1103         if (env->aia_ireg_rmw_fn[priv]) {
1104             /* Selected guest interrupt file should not be zero */
1105             if (virt && (!vgein || env->geilen < vgein)) {
1106                 goto done;
1107             }
1108             /* Call machine specific IMSIC register emulation */
1109             ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv],
1110                                     AIA_MAKE_IREG(isel, priv, virt, vgein,
1111                                                   riscv_cpu_mxl_bits(env)),
1112                                     val, new_val, wr_mask);
1113         }
1114     }
1115 
1116 done:
1117     if (ret) {
1118         return (riscv_cpu_virt_enabled(env) && virt) ?
1119                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
1120     }
1121     return RISCV_EXCP_NONE;
1122 }
1123 
1124 static int rmw_xsetclreinum(CPURISCVState *env, int csrno, target_ulong *val,
1125                             target_ulong new_val, target_ulong wr_mask)
1126 {
1127     int ret = -EINVAL;
1128     bool set, pend, virt;
1129     target_ulong priv, isel, vgein, xlen, nval, wmask;
1130 
1131     /* Translate CSR number for VS-mode */
1132     csrno = aia_xlate_vs_csrno(env, csrno);
1133 
1134     /* Decode register details from CSR number */
1135     virt = set = pend = false;
1136     switch (csrno) {
1137     case CSR_MSETEIPNUM:
1138         priv = PRV_M;
1139         set = true;
1140         pend = true;
1141         break;
1142     case CSR_MCLREIPNUM:
1143         priv = PRV_M;
1144         pend = true;
1145         break;
1146     case CSR_MSETEIENUM:
1147         priv = PRV_M;
1148         set = true;
1149         break;
1150     case CSR_MCLREIENUM:
1151         priv = PRV_M;
1152         break;
1153     case CSR_SSETEIPNUM:
1154         priv = PRV_S;
1155         set = true;
1156         pend = true;
1157         break;
1158     case CSR_SCLREIPNUM:
1159         priv = PRV_S;
1160         pend = true;
1161         break;
1162     case CSR_SSETEIENUM:
1163         priv = PRV_S;
1164         set = true;
1165         break;
1166     case CSR_SCLREIENUM:
1167         priv = PRV_S;
1168         break;
1169     case CSR_VSSETEIPNUM:
1170         priv = PRV_S;
1171         virt = true;
1172         set = true;
1173         pend = true;
1174         break;
1175     case CSR_VSCLREIPNUM:
1176         priv = PRV_S;
1177         virt = true;
1178         pend = true;
1179         break;
1180     case CSR_VSSETEIENUM:
1181         priv = PRV_S;
1182         virt = true;
1183         set = true;
1184         break;
1185     case CSR_VSCLREIENUM:
1186         priv = PRV_S;
1187         virt = true;
1188         break;
1189     default:
1190          goto done;
1191     };
1192 
1193     /* IMSIC CSRs only available when machine implements IMSIC. */
1194     if (!env->aia_ireg_rmw_fn[priv]) {
1195         goto done;
1196     }
1197 
1198     /* Find the selected guest interrupt file */
1199     vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0;
1200 
1201     /* Selected guest interrupt file should be valid */
1202     if (virt && (!vgein || env->geilen < vgein)) {
1203         goto done;
1204     }
1205 
1206     /* Set/Clear CSRs always read zero */
1207     if (val) {
1208         *val = 0;
1209     }
1210 
1211     if (wr_mask) {
1212         /* Get interrupt number */
1213         new_val &= wr_mask;
1214 
1215         /* Find target interrupt pending/enable register */
1216         xlen = riscv_cpu_mxl_bits(env);
1217         isel = (new_val / xlen);
1218         isel *= (xlen / IMSIC_EIPx_BITS);
1219         isel += (pend) ? ISELECT_IMSIC_EIP0 : ISELECT_IMSIC_EIE0;
1220 
1221         /* Find the interrupt bit to be set/clear */
1222         wmask = ((target_ulong)1) << (new_val % xlen);
1223         nval = (set) ? wmask : 0;
1224 
1225         /* Call machine specific IMSIC register emulation */
1226         ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv],
1227                                          AIA_MAKE_IREG(isel, priv, virt,
1228                                                        vgein, xlen),
1229                                          NULL, nval, wmask);
1230     } else {
1231         ret = 0;
1232     }
1233 
1234 done:
1235     if (ret) {
1236         return (riscv_cpu_virt_enabled(env) && virt) ?
1237                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
1238     }
1239     return RISCV_EXCP_NONE;
1240 }
1241 
1242 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val,
1243                       target_ulong new_val, target_ulong wr_mask)
1244 {
1245     bool virt;
1246     int ret = -EINVAL;
1247     target_ulong priv, vgein;
1248 
1249     /* Translate CSR number for VS-mode */
1250     csrno = aia_xlate_vs_csrno(env, csrno);
1251 
1252     /* Decode register details from CSR number */
1253     virt = false;
1254     switch (csrno) {
1255     case CSR_MTOPEI:
1256         priv = PRV_M;
1257         break;
1258     case CSR_STOPEI:
1259         priv = PRV_S;
1260         break;
1261     case CSR_VSTOPEI:
1262         priv = PRV_S;
1263         virt = true;
1264         break;
1265     default:
1266         goto done;
1267     };
1268 
1269     /* IMSIC CSRs only available when machine implements IMSIC. */
1270     if (!env->aia_ireg_rmw_fn[priv]) {
1271         goto done;
1272     }
1273 
1274     /* Find the selected guest interrupt file */
1275     vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0;
1276 
1277     /* Selected guest interrupt file should be valid */
1278     if (virt && (!vgein || env->geilen < vgein)) {
1279         goto done;
1280     }
1281 
1282     /* Call machine specific IMSIC register emulation for TOPEI */
1283     ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv],
1284                     AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein,
1285                                   riscv_cpu_mxl_bits(env)),
1286                     val, new_val, wr_mask);
1287 
1288 done:
1289     if (ret) {
1290         return (riscv_cpu_virt_enabled(env) && virt) ?
1291                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
1292     }
1293     return RISCV_EXCP_NONE;
1294 }
1295 
1296 static RISCVException read_mtvec(CPURISCVState *env, int csrno,
1297                                  target_ulong *val)
1298 {
1299     *val = env->mtvec;
1300     return RISCV_EXCP_NONE;
1301 }
1302 
1303 static RISCVException write_mtvec(CPURISCVState *env, int csrno,
1304                                   target_ulong val)
1305 {
1306     /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
1307     if ((val & 3) < 2) {
1308         env->mtvec = val;
1309     } else {
1310         qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n");
1311     }
1312     return RISCV_EXCP_NONE;
1313 }
1314 
1315 static RISCVException read_mcounteren(CPURISCVState *env, int csrno,
1316                                       target_ulong *val)
1317 {
1318     *val = env->mcounteren;
1319     return RISCV_EXCP_NONE;
1320 }
1321 
1322 static RISCVException write_mcounteren(CPURISCVState *env, int csrno,
1323                                        target_ulong val)
1324 {
1325     env->mcounteren = val;
1326     return RISCV_EXCP_NONE;
1327 }
1328 
1329 /* Machine Trap Handling */
1330 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno,
1331                                          Int128 *val)
1332 {
1333     *val = int128_make128(env->mscratch, env->mscratchh);
1334     return RISCV_EXCP_NONE;
1335 }
1336 
1337 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno,
1338                                           Int128 val)
1339 {
1340     env->mscratch = int128_getlo(val);
1341     env->mscratchh = int128_gethi(val);
1342     return RISCV_EXCP_NONE;
1343 }
1344 
1345 static RISCVException read_mscratch(CPURISCVState *env, int csrno,
1346                                     target_ulong *val)
1347 {
1348     *val = env->mscratch;
1349     return RISCV_EXCP_NONE;
1350 }
1351 
1352 static RISCVException write_mscratch(CPURISCVState *env, int csrno,
1353                                      target_ulong val)
1354 {
1355     env->mscratch = val;
1356     return RISCV_EXCP_NONE;
1357 }
1358 
1359 static RISCVException read_mepc(CPURISCVState *env, int csrno,
1360                                      target_ulong *val)
1361 {
1362     *val = env->mepc;
1363     return RISCV_EXCP_NONE;
1364 }
1365 
1366 static RISCVException write_mepc(CPURISCVState *env, int csrno,
1367                                      target_ulong val)
1368 {
1369     env->mepc = val;
1370     return RISCV_EXCP_NONE;
1371 }
1372 
1373 static RISCVException read_mcause(CPURISCVState *env, int csrno,
1374                                      target_ulong *val)
1375 {
1376     *val = env->mcause;
1377     return RISCV_EXCP_NONE;
1378 }
1379 
1380 static RISCVException write_mcause(CPURISCVState *env, int csrno,
1381                                      target_ulong val)
1382 {
1383     env->mcause = val;
1384     return RISCV_EXCP_NONE;
1385 }
1386 
1387 static RISCVException read_mtval(CPURISCVState *env, int csrno,
1388                                  target_ulong *val)
1389 {
1390     *val = env->mtval;
1391     return RISCV_EXCP_NONE;
1392 }
1393 
1394 static RISCVException write_mtval(CPURISCVState *env, int csrno,
1395                                   target_ulong val)
1396 {
1397     env->mtval = val;
1398     return RISCV_EXCP_NONE;
1399 }
1400 
1401 static RISCVException rmw_mip64(CPURISCVState *env, int csrno,
1402                                 uint64_t *ret_val,
1403                                 uint64_t new_val, uint64_t wr_mask)
1404 {
1405     RISCVCPU *cpu = env_archcpu(env);
1406     /* Allow software control of delegable interrupts not claimed by hardware */
1407     uint64_t old_mip, mask = wr_mask & delegable_ints & ~env->miclaim;
1408     uint32_t gin;
1409 
1410     if (mask) {
1411         old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask));
1412     } else {
1413         old_mip = env->mip;
1414     }
1415 
1416     if (csrno != CSR_HVIP) {
1417         gin = get_field(env->hstatus, HSTATUS_VGEIN);
1418         old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0;
1419     }
1420 
1421     if (ret_val) {
1422         *ret_val = old_mip;
1423     }
1424 
1425     return RISCV_EXCP_NONE;
1426 }
1427 
1428 static RISCVException rmw_mip(CPURISCVState *env, int csrno,
1429                               target_ulong *ret_val,
1430                               target_ulong new_val, target_ulong wr_mask)
1431 {
1432     uint64_t rval;
1433     RISCVException ret;
1434 
1435     ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask);
1436     if (ret_val) {
1437         *ret_val = rval;
1438     }
1439 
1440     return ret;
1441 }
1442 
1443 static RISCVException rmw_miph(CPURISCVState *env, int csrno,
1444                                target_ulong *ret_val,
1445                                target_ulong new_val, target_ulong wr_mask)
1446 {
1447     uint64_t rval;
1448     RISCVException ret;
1449 
1450     ret = rmw_mip64(env, csrno, &rval,
1451         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
1452     if (ret_val) {
1453         *ret_val = rval >> 32;
1454     }
1455 
1456     return ret;
1457 }
1458 
1459 /* Supervisor Trap Setup */
1460 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno,
1461                                         Int128 *val)
1462 {
1463     uint64_t mask = sstatus_v1_10_mask;
1464     uint64_t sstatus = env->mstatus & mask;
1465     if (env->xl != MXL_RV32 || env->debugger) {
1466         mask |= SSTATUS64_UXL;
1467     }
1468 
1469     *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus));
1470     return RISCV_EXCP_NONE;
1471 }
1472 
1473 static RISCVException read_sstatus(CPURISCVState *env, int csrno,
1474                                    target_ulong *val)
1475 {
1476     target_ulong mask = (sstatus_v1_10_mask);
1477     if (env->xl != MXL_RV32 || env->debugger) {
1478         mask |= SSTATUS64_UXL;
1479     }
1480     /* TODO: Use SXL not MXL. */
1481     *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask);
1482     return RISCV_EXCP_NONE;
1483 }
1484 
1485 static RISCVException write_sstatus(CPURISCVState *env, int csrno,
1486                                     target_ulong val)
1487 {
1488     target_ulong mask = (sstatus_v1_10_mask);
1489 
1490     if (env->xl != MXL_RV32 || env->debugger) {
1491         if ((val & SSTATUS64_UXL) != 0) {
1492             mask |= SSTATUS64_UXL;
1493         }
1494     }
1495     target_ulong newval = (env->mstatus & ~mask) | (val & mask);
1496     return write_mstatus(env, CSR_MSTATUS, newval);
1497 }
1498 
1499 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno,
1500                                  uint64_t *ret_val,
1501                                  uint64_t new_val, uint64_t wr_mask)
1502 {
1503     RISCVException ret;
1504     uint64_t rval, vsbits, mask = env->hideleg & VS_MODE_INTERRUPTS;
1505 
1506     /* Bring VS-level bits to correct position */
1507     vsbits = new_val & (VS_MODE_INTERRUPTS >> 1);
1508     new_val &= ~(VS_MODE_INTERRUPTS >> 1);
1509     new_val |= vsbits << 1;
1510     vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1);
1511     wr_mask &= ~(VS_MODE_INTERRUPTS >> 1);
1512     wr_mask |= vsbits << 1;
1513 
1514     ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask);
1515     if (ret_val) {
1516         rval &= mask;
1517         vsbits = rval & VS_MODE_INTERRUPTS;
1518         rval &= ~VS_MODE_INTERRUPTS;
1519         *ret_val = rval | (vsbits >> 1);
1520     }
1521 
1522     return ret;
1523 }
1524 
1525 static RISCVException rmw_vsie(CPURISCVState *env, int csrno,
1526                                target_ulong *ret_val,
1527                                target_ulong new_val, target_ulong wr_mask)
1528 {
1529     uint64_t rval;
1530     RISCVException ret;
1531 
1532     ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask);
1533     if (ret_val) {
1534         *ret_val = rval;
1535     }
1536 
1537     return ret;
1538 }
1539 
1540 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno,
1541                                 target_ulong *ret_val,
1542                                 target_ulong new_val, target_ulong wr_mask)
1543 {
1544     uint64_t rval;
1545     RISCVException ret;
1546 
1547     ret = rmw_vsie64(env, csrno, &rval,
1548         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
1549     if (ret_val) {
1550         *ret_val = rval >> 32;
1551     }
1552 
1553     return ret;
1554 }
1555 
1556 static RISCVException rmw_sie64(CPURISCVState *env, int csrno,
1557                                 uint64_t *ret_val,
1558                                 uint64_t new_val, uint64_t wr_mask)
1559 {
1560     RISCVException ret;
1561     uint64_t mask = env->mideleg & S_MODE_INTERRUPTS;
1562 
1563     if (riscv_cpu_virt_enabled(env)) {
1564         if (env->hvictl & HVICTL_VTI) {
1565             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
1566         }
1567         ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask);
1568     } else {
1569         ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask);
1570     }
1571 
1572     if (ret_val) {
1573         *ret_val &= mask;
1574     }
1575 
1576     return ret;
1577 }
1578 
1579 static RISCVException rmw_sie(CPURISCVState *env, int csrno,
1580                               target_ulong *ret_val,
1581                               target_ulong new_val, target_ulong wr_mask)
1582 {
1583     uint64_t rval;
1584     RISCVException ret;
1585 
1586     ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask);
1587     if (ret == RISCV_EXCP_NONE && ret_val) {
1588         *ret_val = rval;
1589     }
1590 
1591     return ret;
1592 }
1593 
1594 static RISCVException rmw_sieh(CPURISCVState *env, int csrno,
1595                                target_ulong *ret_val,
1596                                target_ulong new_val, target_ulong wr_mask)
1597 {
1598     uint64_t rval;
1599     RISCVException ret;
1600 
1601     ret = rmw_sie64(env, csrno, &rval,
1602         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
1603     if (ret_val) {
1604         *ret_val = rval >> 32;
1605     }
1606 
1607     return ret;
1608 }
1609 
1610 static RISCVException read_stvec(CPURISCVState *env, int csrno,
1611                                  target_ulong *val)
1612 {
1613     *val = env->stvec;
1614     return RISCV_EXCP_NONE;
1615 }
1616 
1617 static RISCVException write_stvec(CPURISCVState *env, int csrno,
1618                                   target_ulong val)
1619 {
1620     /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
1621     if ((val & 3) < 2) {
1622         env->stvec = val;
1623     } else {
1624         qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n");
1625     }
1626     return RISCV_EXCP_NONE;
1627 }
1628 
1629 static RISCVException read_scounteren(CPURISCVState *env, int csrno,
1630                                       target_ulong *val)
1631 {
1632     *val = env->scounteren;
1633     return RISCV_EXCP_NONE;
1634 }
1635 
1636 static RISCVException write_scounteren(CPURISCVState *env, int csrno,
1637                                        target_ulong val)
1638 {
1639     env->scounteren = val;
1640     return RISCV_EXCP_NONE;
1641 }
1642 
1643 /* Supervisor Trap Handling */
1644 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno,
1645                                          Int128 *val)
1646 {
1647     *val = int128_make128(env->sscratch, env->sscratchh);
1648     return RISCV_EXCP_NONE;
1649 }
1650 
1651 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno,
1652                                           Int128 val)
1653 {
1654     env->sscratch = int128_getlo(val);
1655     env->sscratchh = int128_gethi(val);
1656     return RISCV_EXCP_NONE;
1657 }
1658 
1659 static RISCVException read_sscratch(CPURISCVState *env, int csrno,
1660                                     target_ulong *val)
1661 {
1662     *val = env->sscratch;
1663     return RISCV_EXCP_NONE;
1664 }
1665 
1666 static RISCVException write_sscratch(CPURISCVState *env, int csrno,
1667                                      target_ulong val)
1668 {
1669     env->sscratch = val;
1670     return RISCV_EXCP_NONE;
1671 }
1672 
1673 static RISCVException read_sepc(CPURISCVState *env, int csrno,
1674                                 target_ulong *val)
1675 {
1676     *val = env->sepc;
1677     return RISCV_EXCP_NONE;
1678 }
1679 
1680 static RISCVException write_sepc(CPURISCVState *env, int csrno,
1681                                  target_ulong val)
1682 {
1683     env->sepc = val;
1684     return RISCV_EXCP_NONE;
1685 }
1686 
1687 static RISCVException read_scause(CPURISCVState *env, int csrno,
1688                                   target_ulong *val)
1689 {
1690     *val = env->scause;
1691     return RISCV_EXCP_NONE;
1692 }
1693 
1694 static RISCVException write_scause(CPURISCVState *env, int csrno,
1695                                    target_ulong val)
1696 {
1697     env->scause = val;
1698     return RISCV_EXCP_NONE;
1699 }
1700 
1701 static RISCVException read_stval(CPURISCVState *env, int csrno,
1702                                  target_ulong *val)
1703 {
1704     *val = env->stval;
1705     return RISCV_EXCP_NONE;
1706 }
1707 
1708 static RISCVException write_stval(CPURISCVState *env, int csrno,
1709                                   target_ulong val)
1710 {
1711     env->stval = val;
1712     return RISCV_EXCP_NONE;
1713 }
1714 
1715 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno,
1716                                  uint64_t *ret_val,
1717                                  uint64_t new_val, uint64_t wr_mask)
1718 {
1719     RISCVException ret;
1720     uint64_t rval, vsbits, mask = env->hideleg & vsip_writable_mask;
1721 
1722     /* Bring VS-level bits to correct position */
1723     vsbits = new_val & (VS_MODE_INTERRUPTS >> 1);
1724     new_val &= ~(VS_MODE_INTERRUPTS >> 1);
1725     new_val |= vsbits << 1;
1726     vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1);
1727     wr_mask &= ~(VS_MODE_INTERRUPTS >> 1);
1728     wr_mask |= vsbits << 1;
1729 
1730     ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask & mask);
1731     if (ret_val) {
1732         rval &= mask;
1733         vsbits = rval & VS_MODE_INTERRUPTS;
1734         rval &= ~VS_MODE_INTERRUPTS;
1735         *ret_val = rval | (vsbits >> 1);
1736     }
1737 
1738     return ret;
1739 }
1740 
1741 static RISCVException rmw_vsip(CPURISCVState *env, int csrno,
1742                                target_ulong *ret_val,
1743                                target_ulong new_val, target_ulong wr_mask)
1744 {
1745     uint64_t rval;
1746     RISCVException ret;
1747 
1748     ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask);
1749     if (ret_val) {
1750         *ret_val = rval;
1751     }
1752 
1753     return ret;
1754 }
1755 
1756 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno,
1757                                 target_ulong *ret_val,
1758                                 target_ulong new_val, target_ulong wr_mask)
1759 {
1760     uint64_t rval;
1761     RISCVException ret;
1762 
1763     ret = rmw_vsip64(env, csrno, &rval,
1764         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
1765     if (ret_val) {
1766         *ret_val = rval >> 32;
1767     }
1768 
1769     return ret;
1770 }
1771 
1772 static RISCVException rmw_sip64(CPURISCVState *env, int csrno,
1773                                 uint64_t *ret_val,
1774                                 uint64_t new_val, uint64_t wr_mask)
1775 {
1776     RISCVException ret;
1777     uint64_t mask = env->mideleg & sip_writable_mask;
1778 
1779     if (riscv_cpu_virt_enabled(env)) {
1780         if (env->hvictl & HVICTL_VTI) {
1781             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
1782         }
1783         ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask);
1784     } else {
1785         ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask);
1786     }
1787 
1788     if (ret_val) {
1789         *ret_val &= env->mideleg & S_MODE_INTERRUPTS;
1790     }
1791 
1792     return ret;
1793 }
1794 
1795 static RISCVException rmw_sip(CPURISCVState *env, int csrno,
1796                               target_ulong *ret_val,
1797                               target_ulong new_val, target_ulong wr_mask)
1798 {
1799     uint64_t rval;
1800     RISCVException ret;
1801 
1802     ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask);
1803     if (ret_val) {
1804         *ret_val = rval;
1805     }
1806 
1807     return ret;
1808 }
1809 
1810 static RISCVException rmw_siph(CPURISCVState *env, int csrno,
1811                                target_ulong *ret_val,
1812                                target_ulong new_val, target_ulong wr_mask)
1813 {
1814     uint64_t rval;
1815     RISCVException ret;
1816 
1817     ret = rmw_sip64(env, csrno, &rval,
1818         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
1819     if (ret_val) {
1820         *ret_val = rval >> 32;
1821     }
1822 
1823     return ret;
1824 }
1825 
1826 /* Supervisor Protection and Translation */
1827 static RISCVException read_satp(CPURISCVState *env, int csrno,
1828                                 target_ulong *val)
1829 {
1830     if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
1831         *val = 0;
1832         return RISCV_EXCP_NONE;
1833     }
1834 
1835     if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) {
1836         return RISCV_EXCP_ILLEGAL_INST;
1837     } else {
1838         *val = env->satp;
1839     }
1840 
1841     return RISCV_EXCP_NONE;
1842 }
1843 
1844 static RISCVException write_satp(CPURISCVState *env, int csrno,
1845                                  target_ulong val)
1846 {
1847     target_ulong vm, mask;
1848 
1849     if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
1850         return RISCV_EXCP_NONE;
1851     }
1852 
1853     if (riscv_cpu_mxl(env) == MXL_RV32) {
1854         vm = validate_vm(env, get_field(val, SATP32_MODE));
1855         mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN);
1856     } else {
1857         vm = validate_vm(env, get_field(val, SATP64_MODE));
1858         mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN);
1859     }
1860 
1861     if (vm && mask) {
1862         if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) {
1863             return RISCV_EXCP_ILLEGAL_INST;
1864         } else {
1865             /*
1866              * The ISA defines SATP.MODE=Bare as "no translation", but we still
1867              * pass these through QEMU's TLB emulation as it improves
1868              * performance.  Flushing the TLB on SATP writes with paging
1869              * enabled avoids leaking those invalid cached mappings.
1870              */
1871             tlb_flush(env_cpu(env));
1872             env->satp = val;
1873         }
1874     }
1875     return RISCV_EXCP_NONE;
1876 }
1877 
1878 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val)
1879 {
1880     int irq, ret;
1881     target_ulong topei;
1882     uint64_t vseip, vsgein;
1883     uint32_t iid, iprio, hviid, hviprio, gein;
1884     uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS];
1885 
1886     gein = get_field(env->hstatus, HSTATUS_VGEIN);
1887     hviid = get_field(env->hvictl, HVICTL_IID);
1888     hviprio = get_field(env->hvictl, HVICTL_IPRIO);
1889 
1890     if (gein) {
1891         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
1892         vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP;
1893         if (gein <= env->geilen && vseip) {
1894             siid[scount] = IRQ_S_EXT;
1895             siprio[scount] = IPRIO_MMAXIPRIO + 1;
1896             if (env->aia_ireg_rmw_fn[PRV_S]) {
1897                 /*
1898                  * Call machine specific IMSIC register emulation for
1899                  * reading TOPEI.
1900                  */
1901                 ret = env->aia_ireg_rmw_fn[PRV_S](
1902                         env->aia_ireg_rmw_fn_arg[PRV_S],
1903                         AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein,
1904                                       riscv_cpu_mxl_bits(env)),
1905                         &topei, 0, 0);
1906                 if (!ret && topei) {
1907                     siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK;
1908                 }
1909             }
1910             scount++;
1911         }
1912     } else {
1913         if (hviid == IRQ_S_EXT && hviprio) {
1914             siid[scount] = IRQ_S_EXT;
1915             siprio[scount] = hviprio;
1916             scount++;
1917         }
1918     }
1919 
1920     if (env->hvictl & HVICTL_VTI) {
1921         if (hviid != IRQ_S_EXT) {
1922             siid[scount] = hviid;
1923             siprio[scount] = hviprio;
1924             scount++;
1925         }
1926     } else {
1927         irq = riscv_cpu_vsirq_pending(env);
1928         if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) {
1929             siid[scount] = irq;
1930             siprio[scount] = env->hviprio[irq];
1931             scount++;
1932         }
1933     }
1934 
1935     iid = 0;
1936     iprio = UINT_MAX;
1937     for (s = 0; s < scount; s++) {
1938         if (siprio[s] < iprio) {
1939             iid = siid[s];
1940             iprio = siprio[s];
1941         }
1942     }
1943 
1944     if (iid) {
1945         if (env->hvictl & HVICTL_IPRIOM) {
1946             if (iprio > IPRIO_MMAXIPRIO) {
1947                 iprio = IPRIO_MMAXIPRIO;
1948             }
1949             if (!iprio) {
1950                 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) {
1951                     iprio = IPRIO_MMAXIPRIO;
1952                 }
1953             }
1954         } else {
1955             iprio = 1;
1956         }
1957     } else {
1958         iprio = 0;
1959     }
1960 
1961     *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT;
1962     *val |= iprio;
1963     return RISCV_EXCP_NONE;
1964 }
1965 
1966 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val)
1967 {
1968     int irq;
1969     uint8_t iprio;
1970 
1971     if (riscv_cpu_virt_enabled(env)) {
1972         return read_vstopi(env, CSR_VSTOPI, val);
1973     }
1974 
1975     irq = riscv_cpu_sirq_pending(env);
1976     if (irq <= 0 || irq > 63) {
1977         *val = 0;
1978     } else {
1979         iprio = env->siprio[irq];
1980         if (!iprio) {
1981             if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) {
1982                 iprio = IPRIO_MMAXIPRIO;
1983            }
1984         }
1985         *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT;
1986         *val |= iprio;
1987     }
1988 
1989     return RISCV_EXCP_NONE;
1990 }
1991 
1992 /* Hypervisor Extensions */
1993 static RISCVException read_hstatus(CPURISCVState *env, int csrno,
1994                                    target_ulong *val)
1995 {
1996     *val = env->hstatus;
1997     if (riscv_cpu_mxl(env) != MXL_RV32) {
1998         /* We only support 64-bit VSXL */
1999         *val = set_field(*val, HSTATUS_VSXL, 2);
2000     }
2001     /* We only support little endian */
2002     *val = set_field(*val, HSTATUS_VSBE, 0);
2003     return RISCV_EXCP_NONE;
2004 }
2005 
2006 static RISCVException write_hstatus(CPURISCVState *env, int csrno,
2007                                     target_ulong val)
2008 {
2009     env->hstatus = val;
2010     if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) {
2011         qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options.");
2012     }
2013     if (get_field(val, HSTATUS_VSBE) != 0) {
2014         qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests.");
2015     }
2016     return RISCV_EXCP_NONE;
2017 }
2018 
2019 static RISCVException read_hedeleg(CPURISCVState *env, int csrno,
2020                                    target_ulong *val)
2021 {
2022     *val = env->hedeleg;
2023     return RISCV_EXCP_NONE;
2024 }
2025 
2026 static RISCVException write_hedeleg(CPURISCVState *env, int csrno,
2027                                     target_ulong val)
2028 {
2029     env->hedeleg = val & vs_delegable_excps;
2030     return RISCV_EXCP_NONE;
2031 }
2032 
2033 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno,
2034                                     uint64_t *ret_val,
2035                                     uint64_t new_val, uint64_t wr_mask)
2036 {
2037     uint64_t mask = wr_mask & vs_delegable_ints;
2038 
2039     if (ret_val) {
2040         *ret_val = env->hideleg & vs_delegable_ints;
2041     }
2042 
2043     env->hideleg = (env->hideleg & ~mask) | (new_val & mask);
2044     return RISCV_EXCP_NONE;
2045 }
2046 
2047 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno,
2048                                   target_ulong *ret_val,
2049                                   target_ulong new_val, target_ulong wr_mask)
2050 {
2051     uint64_t rval;
2052     RISCVException ret;
2053 
2054     ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask);
2055     if (ret_val) {
2056         *ret_val = rval;
2057     }
2058 
2059     return ret;
2060 }
2061 
2062 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno,
2063                                    target_ulong *ret_val,
2064                                    target_ulong new_val, target_ulong wr_mask)
2065 {
2066     uint64_t rval;
2067     RISCVException ret;
2068 
2069     ret = rmw_hideleg64(env, csrno, &rval,
2070         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2071     if (ret_val) {
2072         *ret_val = rval >> 32;
2073     }
2074 
2075     return ret;
2076 }
2077 
2078 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno,
2079                                  uint64_t *ret_val,
2080                                  uint64_t new_val, uint64_t wr_mask)
2081 {
2082     RISCVException ret;
2083 
2084     ret = rmw_mip64(env, csrno, ret_val, new_val,
2085                     wr_mask & hvip_writable_mask);
2086     if (ret_val) {
2087         *ret_val &= VS_MODE_INTERRUPTS;
2088     }
2089 
2090     return ret;
2091 }
2092 
2093 static RISCVException rmw_hvip(CPURISCVState *env, int csrno,
2094                                target_ulong *ret_val,
2095                                target_ulong new_val, target_ulong wr_mask)
2096 {
2097     uint64_t rval;
2098     RISCVException ret;
2099 
2100     ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask);
2101     if (ret_val) {
2102         *ret_val = rval;
2103     }
2104 
2105     return ret;
2106 }
2107 
2108 static RISCVException rmw_hviph(CPURISCVState *env, int csrno,
2109                                 target_ulong *ret_val,
2110                                 target_ulong new_val, target_ulong wr_mask)
2111 {
2112     uint64_t rval;
2113     RISCVException ret;
2114 
2115     ret = rmw_hvip64(env, csrno, &rval,
2116         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2117     if (ret_val) {
2118         *ret_val = rval >> 32;
2119     }
2120 
2121     return ret;
2122 }
2123 
2124 static RISCVException rmw_hip(CPURISCVState *env, int csrno,
2125                               target_ulong *ret_value,
2126                               target_ulong new_value, target_ulong write_mask)
2127 {
2128     int ret = rmw_mip(env, csrno, ret_value, new_value,
2129                       write_mask & hip_writable_mask);
2130 
2131     if (ret_value) {
2132         *ret_value &= HS_MODE_INTERRUPTS;
2133     }
2134     return ret;
2135 }
2136 
2137 static RISCVException rmw_hie(CPURISCVState *env, int csrno,
2138                               target_ulong *ret_val,
2139                               target_ulong new_val, target_ulong wr_mask)
2140 {
2141     uint64_t rval;
2142     RISCVException ret;
2143 
2144     ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS);
2145     if (ret_val) {
2146         *ret_val = rval & HS_MODE_INTERRUPTS;
2147     }
2148 
2149     return ret;
2150 }
2151 
2152 static RISCVException read_hcounteren(CPURISCVState *env, int csrno,
2153                                       target_ulong *val)
2154 {
2155     *val = env->hcounteren;
2156     return RISCV_EXCP_NONE;
2157 }
2158 
2159 static RISCVException write_hcounteren(CPURISCVState *env, int csrno,
2160                                        target_ulong val)
2161 {
2162     env->hcounteren = val;
2163     return RISCV_EXCP_NONE;
2164 }
2165 
2166 static RISCVException read_hgeie(CPURISCVState *env, int csrno,
2167                                  target_ulong *val)
2168 {
2169     if (val) {
2170         *val = env->hgeie;
2171     }
2172     return RISCV_EXCP_NONE;
2173 }
2174 
2175 static RISCVException write_hgeie(CPURISCVState *env, int csrno,
2176                                   target_ulong val)
2177 {
2178     /* Only GEILEN:1 bits implemented and BIT0 is never implemented */
2179     val &= ((((target_ulong)1) << env->geilen) - 1) << 1;
2180     env->hgeie = val;
2181     /* Update mip.SGEIP bit */
2182     riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP,
2183                          BOOL_TO_MASK(!!(env->hgeie & env->hgeip)));
2184     return RISCV_EXCP_NONE;
2185 }
2186 
2187 static RISCVException read_htval(CPURISCVState *env, int csrno,
2188                                  target_ulong *val)
2189 {
2190     *val = env->htval;
2191     return RISCV_EXCP_NONE;
2192 }
2193 
2194 static RISCVException write_htval(CPURISCVState *env, int csrno,
2195                                   target_ulong val)
2196 {
2197     env->htval = val;
2198     return RISCV_EXCP_NONE;
2199 }
2200 
2201 static RISCVException read_htinst(CPURISCVState *env, int csrno,
2202                                   target_ulong *val)
2203 {
2204     *val = env->htinst;
2205     return RISCV_EXCP_NONE;
2206 }
2207 
2208 static RISCVException write_htinst(CPURISCVState *env, int csrno,
2209                                    target_ulong val)
2210 {
2211     return RISCV_EXCP_NONE;
2212 }
2213 
2214 static RISCVException read_hgeip(CPURISCVState *env, int csrno,
2215                                  target_ulong *val)
2216 {
2217     if (val) {
2218         *val = env->hgeip;
2219     }
2220     return RISCV_EXCP_NONE;
2221 }
2222 
2223 static RISCVException read_hgatp(CPURISCVState *env, int csrno,
2224                                  target_ulong *val)
2225 {
2226     *val = env->hgatp;
2227     return RISCV_EXCP_NONE;
2228 }
2229 
2230 static RISCVException write_hgatp(CPURISCVState *env, int csrno,
2231                                   target_ulong val)
2232 {
2233     env->hgatp = val;
2234     return RISCV_EXCP_NONE;
2235 }
2236 
2237 static RISCVException read_htimedelta(CPURISCVState *env, int csrno,
2238                                       target_ulong *val)
2239 {
2240     if (!env->rdtime_fn) {
2241         return RISCV_EXCP_ILLEGAL_INST;
2242     }
2243 
2244     *val = env->htimedelta;
2245     return RISCV_EXCP_NONE;
2246 }
2247 
2248 static RISCVException write_htimedelta(CPURISCVState *env, int csrno,
2249                                        target_ulong val)
2250 {
2251     if (!env->rdtime_fn) {
2252         return RISCV_EXCP_ILLEGAL_INST;
2253     }
2254 
2255     if (riscv_cpu_mxl(env) == MXL_RV32) {
2256         env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val);
2257     } else {
2258         env->htimedelta = val;
2259     }
2260     return RISCV_EXCP_NONE;
2261 }
2262 
2263 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno,
2264                                        target_ulong *val)
2265 {
2266     if (!env->rdtime_fn) {
2267         return RISCV_EXCP_ILLEGAL_INST;
2268     }
2269 
2270     *val = env->htimedelta >> 32;
2271     return RISCV_EXCP_NONE;
2272 }
2273 
2274 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno,
2275                                         target_ulong val)
2276 {
2277     if (!env->rdtime_fn) {
2278         return RISCV_EXCP_ILLEGAL_INST;
2279     }
2280 
2281     env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val);
2282     return RISCV_EXCP_NONE;
2283 }
2284 
2285 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val)
2286 {
2287     *val = env->hvictl;
2288     return RISCV_EXCP_NONE;
2289 }
2290 
2291 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val)
2292 {
2293     env->hvictl = val & HVICTL_VALID_MASK;
2294     return RISCV_EXCP_NONE;
2295 }
2296 
2297 static int read_hvipriox(CPURISCVState *env, int first_index,
2298                          uint8_t *iprio, target_ulong *val)
2299 {
2300     int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32);
2301 
2302     /* First index has to be a multiple of number of irqs per register */
2303     if (first_index % num_irqs) {
2304         return (riscv_cpu_virt_enabled(env)) ?
2305                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
2306     }
2307 
2308     /* Fill-up return value */
2309     *val = 0;
2310     for (i = 0; i < num_irqs; i++) {
2311         if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) {
2312             continue;
2313         }
2314         if (rdzero) {
2315             continue;
2316         }
2317         *val |= ((target_ulong)iprio[irq]) << (i * 8);
2318     }
2319 
2320     return RISCV_EXCP_NONE;
2321 }
2322 
2323 static int write_hvipriox(CPURISCVState *env, int first_index,
2324                           uint8_t *iprio, target_ulong val)
2325 {
2326     int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32);
2327 
2328     /* First index has to be a multiple of number of irqs per register */
2329     if (first_index % num_irqs) {
2330         return (riscv_cpu_virt_enabled(env)) ?
2331                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
2332     }
2333 
2334     /* Fill-up priority arrary */
2335     for (i = 0; i < num_irqs; i++) {
2336         if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) {
2337             continue;
2338         }
2339         if (rdzero) {
2340             iprio[irq] = 0;
2341         } else {
2342             iprio[irq] = (val >> (i * 8)) & 0xff;
2343         }
2344     }
2345 
2346     return RISCV_EXCP_NONE;
2347 }
2348 
2349 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val)
2350 {
2351     return read_hvipriox(env, 0, env->hviprio, val);
2352 }
2353 
2354 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val)
2355 {
2356     return write_hvipriox(env, 0, env->hviprio, val);
2357 }
2358 
2359 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val)
2360 {
2361     return read_hvipriox(env, 4, env->hviprio, val);
2362 }
2363 
2364 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val)
2365 {
2366     return write_hvipriox(env, 4, env->hviprio, val);
2367 }
2368 
2369 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val)
2370 {
2371     return read_hvipriox(env, 8, env->hviprio, val);
2372 }
2373 
2374 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val)
2375 {
2376     return write_hvipriox(env, 8, env->hviprio, val);
2377 }
2378 
2379 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val)
2380 {
2381     return read_hvipriox(env, 12, env->hviprio, val);
2382 }
2383 
2384 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val)
2385 {
2386     return write_hvipriox(env, 12, env->hviprio, val);
2387 }
2388 
2389 /* Virtual CSR Registers */
2390 static RISCVException read_vsstatus(CPURISCVState *env, int csrno,
2391                                     target_ulong *val)
2392 {
2393     *val = env->vsstatus;
2394     return RISCV_EXCP_NONE;
2395 }
2396 
2397 static RISCVException write_vsstatus(CPURISCVState *env, int csrno,
2398                                      target_ulong val)
2399 {
2400     uint64_t mask = (target_ulong)-1;
2401     if ((val & VSSTATUS64_UXL) == 0) {
2402         mask &= ~VSSTATUS64_UXL;
2403     }
2404     env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val;
2405     return RISCV_EXCP_NONE;
2406 }
2407 
2408 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val)
2409 {
2410     *val = env->vstvec;
2411     return RISCV_EXCP_NONE;
2412 }
2413 
2414 static RISCVException write_vstvec(CPURISCVState *env, int csrno,
2415                                    target_ulong val)
2416 {
2417     env->vstvec = val;
2418     return RISCV_EXCP_NONE;
2419 }
2420 
2421 static RISCVException read_vsscratch(CPURISCVState *env, int csrno,
2422                                      target_ulong *val)
2423 {
2424     *val = env->vsscratch;
2425     return RISCV_EXCP_NONE;
2426 }
2427 
2428 static RISCVException write_vsscratch(CPURISCVState *env, int csrno,
2429                                       target_ulong val)
2430 {
2431     env->vsscratch = val;
2432     return RISCV_EXCP_NONE;
2433 }
2434 
2435 static RISCVException read_vsepc(CPURISCVState *env, int csrno,
2436                                  target_ulong *val)
2437 {
2438     *val = env->vsepc;
2439     return RISCV_EXCP_NONE;
2440 }
2441 
2442 static RISCVException write_vsepc(CPURISCVState *env, int csrno,
2443                                   target_ulong val)
2444 {
2445     env->vsepc = val;
2446     return RISCV_EXCP_NONE;
2447 }
2448 
2449 static RISCVException read_vscause(CPURISCVState *env, int csrno,
2450                                    target_ulong *val)
2451 {
2452     *val = env->vscause;
2453     return RISCV_EXCP_NONE;
2454 }
2455 
2456 static RISCVException write_vscause(CPURISCVState *env, int csrno,
2457                                     target_ulong val)
2458 {
2459     env->vscause = val;
2460     return RISCV_EXCP_NONE;
2461 }
2462 
2463 static RISCVException read_vstval(CPURISCVState *env, int csrno,
2464                                   target_ulong *val)
2465 {
2466     *val = env->vstval;
2467     return RISCV_EXCP_NONE;
2468 }
2469 
2470 static RISCVException write_vstval(CPURISCVState *env, int csrno,
2471                                    target_ulong val)
2472 {
2473     env->vstval = val;
2474     return RISCV_EXCP_NONE;
2475 }
2476 
2477 static RISCVException read_vsatp(CPURISCVState *env, int csrno,
2478                                  target_ulong *val)
2479 {
2480     *val = env->vsatp;
2481     return RISCV_EXCP_NONE;
2482 }
2483 
2484 static RISCVException write_vsatp(CPURISCVState *env, int csrno,
2485                                   target_ulong val)
2486 {
2487     env->vsatp = val;
2488     return RISCV_EXCP_NONE;
2489 }
2490 
2491 static RISCVException read_mtval2(CPURISCVState *env, int csrno,
2492                                   target_ulong *val)
2493 {
2494     *val = env->mtval2;
2495     return RISCV_EXCP_NONE;
2496 }
2497 
2498 static RISCVException write_mtval2(CPURISCVState *env, int csrno,
2499                                    target_ulong val)
2500 {
2501     env->mtval2 = val;
2502     return RISCV_EXCP_NONE;
2503 }
2504 
2505 static RISCVException read_mtinst(CPURISCVState *env, int csrno,
2506                                   target_ulong *val)
2507 {
2508     *val = env->mtinst;
2509     return RISCV_EXCP_NONE;
2510 }
2511 
2512 static RISCVException write_mtinst(CPURISCVState *env, int csrno,
2513                                    target_ulong val)
2514 {
2515     env->mtinst = val;
2516     return RISCV_EXCP_NONE;
2517 }
2518 
2519 /* Physical Memory Protection */
2520 static RISCVException read_mseccfg(CPURISCVState *env, int csrno,
2521                                    target_ulong *val)
2522 {
2523     *val = mseccfg_csr_read(env);
2524     return RISCV_EXCP_NONE;
2525 }
2526 
2527 static RISCVException write_mseccfg(CPURISCVState *env, int csrno,
2528                          target_ulong val)
2529 {
2530     mseccfg_csr_write(env, val);
2531     return RISCV_EXCP_NONE;
2532 }
2533 
2534 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index)
2535 {
2536     /* TODO: RV128 restriction check */
2537     if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) {
2538         return false;
2539     }
2540     return true;
2541 }
2542 
2543 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno,
2544                                   target_ulong *val)
2545 {
2546     uint32_t reg_index = csrno - CSR_PMPCFG0;
2547 
2548     if (!check_pmp_reg_index(env, reg_index)) {
2549         return RISCV_EXCP_ILLEGAL_INST;
2550     }
2551     *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0);
2552     return RISCV_EXCP_NONE;
2553 }
2554 
2555 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno,
2556                                    target_ulong val)
2557 {
2558     uint32_t reg_index = csrno - CSR_PMPCFG0;
2559 
2560     if (!check_pmp_reg_index(env, reg_index)) {
2561         return RISCV_EXCP_ILLEGAL_INST;
2562     }
2563     pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val);
2564     return RISCV_EXCP_NONE;
2565 }
2566 
2567 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno,
2568                                    target_ulong *val)
2569 {
2570     *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0);
2571     return RISCV_EXCP_NONE;
2572 }
2573 
2574 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno,
2575                                     target_ulong val)
2576 {
2577     pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val);
2578     return RISCV_EXCP_NONE;
2579 }
2580 
2581 /*
2582  * Functions to access Pointer Masking feature registers
2583  * We have to check if current priv lvl could modify
2584  * csr in given mode
2585  */
2586 static bool check_pm_current_disabled(CPURISCVState *env, int csrno)
2587 {
2588     int csr_priv = get_field(csrno, 0x300);
2589     int pm_current;
2590 
2591     if (env->debugger) {
2592         return false;
2593     }
2594     /*
2595      * If priv lvls differ that means we're accessing csr from higher priv lvl,
2596      * so allow the access
2597      */
2598     if (env->priv != csr_priv) {
2599         return false;
2600     }
2601     switch (env->priv) {
2602     case PRV_M:
2603         pm_current = get_field(env->mmte, M_PM_CURRENT);
2604         break;
2605     case PRV_S:
2606         pm_current = get_field(env->mmte, S_PM_CURRENT);
2607         break;
2608     case PRV_U:
2609         pm_current = get_field(env->mmte, U_PM_CURRENT);
2610         break;
2611     default:
2612         g_assert_not_reached();
2613     }
2614     /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */
2615     return !pm_current;
2616 }
2617 
2618 static RISCVException read_mmte(CPURISCVState *env, int csrno,
2619                                 target_ulong *val)
2620 {
2621     *val = env->mmte & MMTE_MASK;
2622     return RISCV_EXCP_NONE;
2623 }
2624 
2625 static RISCVException write_mmte(CPURISCVState *env, int csrno,
2626                                  target_ulong val)
2627 {
2628     uint64_t mstatus;
2629     target_ulong wpri_val = val & MMTE_MASK;
2630 
2631     if (val != wpri_val) {
2632         qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n",
2633                       "MMTE: WPRI violation written 0x", val,
2634                       "vs expected 0x", wpri_val);
2635     }
2636     /* for machine mode pm.current is hardwired to 1 */
2637     wpri_val |= MMTE_M_PM_CURRENT;
2638 
2639     /* hardwiring pm.instruction bit to 0, since it's not supported yet */
2640     wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN);
2641     env->mmte = wpri_val | PM_EXT_DIRTY;
2642     riscv_cpu_update_mask(env);
2643 
2644     /* Set XS and SD bits, since PM CSRs are dirty */
2645     mstatus = env->mstatus | MSTATUS_XS;
2646     write_mstatus(env, csrno, mstatus);
2647     return RISCV_EXCP_NONE;
2648 }
2649 
2650 static RISCVException read_smte(CPURISCVState *env, int csrno,
2651                                 target_ulong *val)
2652 {
2653     *val = env->mmte & SMTE_MASK;
2654     return RISCV_EXCP_NONE;
2655 }
2656 
2657 static RISCVException write_smte(CPURISCVState *env, int csrno,
2658                                  target_ulong val)
2659 {
2660     target_ulong wpri_val = val & SMTE_MASK;
2661 
2662     if (val != wpri_val) {
2663         qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n",
2664                       "SMTE: WPRI violation written 0x", val,
2665                       "vs expected 0x", wpri_val);
2666     }
2667 
2668     /* if pm.current==0 we can't modify current PM CSRs */
2669     if (check_pm_current_disabled(env, csrno)) {
2670         return RISCV_EXCP_NONE;
2671     }
2672 
2673     wpri_val |= (env->mmte & ~SMTE_MASK);
2674     write_mmte(env, csrno, wpri_val);
2675     return RISCV_EXCP_NONE;
2676 }
2677 
2678 static RISCVException read_umte(CPURISCVState *env, int csrno,
2679                                 target_ulong *val)
2680 {
2681     *val = env->mmte & UMTE_MASK;
2682     return RISCV_EXCP_NONE;
2683 }
2684 
2685 static RISCVException write_umte(CPURISCVState *env, int csrno,
2686                                  target_ulong val)
2687 {
2688     target_ulong wpri_val = val & UMTE_MASK;
2689 
2690     if (val != wpri_val) {
2691         qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n",
2692                       "UMTE: WPRI violation written 0x", val,
2693                       "vs expected 0x", wpri_val);
2694     }
2695 
2696     if (check_pm_current_disabled(env, csrno)) {
2697         return RISCV_EXCP_NONE;
2698     }
2699 
2700     wpri_val |= (env->mmte & ~UMTE_MASK);
2701     write_mmte(env, csrno, wpri_val);
2702     return RISCV_EXCP_NONE;
2703 }
2704 
2705 static RISCVException read_mpmmask(CPURISCVState *env, int csrno,
2706                                    target_ulong *val)
2707 {
2708     *val = env->mpmmask;
2709     return RISCV_EXCP_NONE;
2710 }
2711 
2712 static RISCVException write_mpmmask(CPURISCVState *env, int csrno,
2713                                     target_ulong val)
2714 {
2715     uint64_t mstatus;
2716 
2717     env->mpmmask = val;
2718     if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) {
2719         env->cur_pmmask = val;
2720     }
2721     env->mmte |= PM_EXT_DIRTY;
2722 
2723     /* Set XS and SD bits, since PM CSRs are dirty */
2724     mstatus = env->mstatus | MSTATUS_XS;
2725     write_mstatus(env, csrno, mstatus);
2726     return RISCV_EXCP_NONE;
2727 }
2728 
2729 static RISCVException read_spmmask(CPURISCVState *env, int csrno,
2730                                    target_ulong *val)
2731 {
2732     *val = env->spmmask;
2733     return RISCV_EXCP_NONE;
2734 }
2735 
2736 static RISCVException write_spmmask(CPURISCVState *env, int csrno,
2737                                     target_ulong val)
2738 {
2739     uint64_t mstatus;
2740 
2741     /* if pm.current==0 we can't modify current PM CSRs */
2742     if (check_pm_current_disabled(env, csrno)) {
2743         return RISCV_EXCP_NONE;
2744     }
2745     env->spmmask = val;
2746     if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) {
2747         env->cur_pmmask = val;
2748     }
2749     env->mmte |= PM_EXT_DIRTY;
2750 
2751     /* Set XS and SD bits, since PM CSRs are dirty */
2752     mstatus = env->mstatus | MSTATUS_XS;
2753     write_mstatus(env, csrno, mstatus);
2754     return RISCV_EXCP_NONE;
2755 }
2756 
2757 static RISCVException read_upmmask(CPURISCVState *env, int csrno,
2758                                    target_ulong *val)
2759 {
2760     *val = env->upmmask;
2761     return RISCV_EXCP_NONE;
2762 }
2763 
2764 static RISCVException write_upmmask(CPURISCVState *env, int csrno,
2765                                     target_ulong val)
2766 {
2767     uint64_t mstatus;
2768 
2769     /* if pm.current==0 we can't modify current PM CSRs */
2770     if (check_pm_current_disabled(env, csrno)) {
2771         return RISCV_EXCP_NONE;
2772     }
2773     env->upmmask = val;
2774     if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) {
2775         env->cur_pmmask = val;
2776     }
2777     env->mmte |= PM_EXT_DIRTY;
2778 
2779     /* Set XS and SD bits, since PM CSRs are dirty */
2780     mstatus = env->mstatus | MSTATUS_XS;
2781     write_mstatus(env, csrno, mstatus);
2782     return RISCV_EXCP_NONE;
2783 }
2784 
2785 static RISCVException read_mpmbase(CPURISCVState *env, int csrno,
2786                                    target_ulong *val)
2787 {
2788     *val = env->mpmbase;
2789     return RISCV_EXCP_NONE;
2790 }
2791 
2792 static RISCVException write_mpmbase(CPURISCVState *env, int csrno,
2793                                     target_ulong val)
2794 {
2795     uint64_t mstatus;
2796 
2797     env->mpmbase = val;
2798     if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) {
2799         env->cur_pmbase = val;
2800     }
2801     env->mmte |= PM_EXT_DIRTY;
2802 
2803     /* Set XS and SD bits, since PM CSRs are dirty */
2804     mstatus = env->mstatus | MSTATUS_XS;
2805     write_mstatus(env, csrno, mstatus);
2806     return RISCV_EXCP_NONE;
2807 }
2808 
2809 static RISCVException read_spmbase(CPURISCVState *env, int csrno,
2810                                    target_ulong *val)
2811 {
2812     *val = env->spmbase;
2813     return RISCV_EXCP_NONE;
2814 }
2815 
2816 static RISCVException write_spmbase(CPURISCVState *env, int csrno,
2817                                     target_ulong val)
2818 {
2819     uint64_t mstatus;
2820 
2821     /* if pm.current==0 we can't modify current PM CSRs */
2822     if (check_pm_current_disabled(env, csrno)) {
2823         return RISCV_EXCP_NONE;
2824     }
2825     env->spmbase = val;
2826     if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) {
2827         env->cur_pmbase = val;
2828     }
2829     env->mmte |= PM_EXT_DIRTY;
2830 
2831     /* Set XS and SD bits, since PM CSRs are dirty */
2832     mstatus = env->mstatus | MSTATUS_XS;
2833     write_mstatus(env, csrno, mstatus);
2834     return RISCV_EXCP_NONE;
2835 }
2836 
2837 static RISCVException read_upmbase(CPURISCVState *env, int csrno,
2838                                    target_ulong *val)
2839 {
2840     *val = env->upmbase;
2841     return RISCV_EXCP_NONE;
2842 }
2843 
2844 static RISCVException write_upmbase(CPURISCVState *env, int csrno,
2845                                     target_ulong val)
2846 {
2847     uint64_t mstatus;
2848 
2849     /* if pm.current==0 we can't modify current PM CSRs */
2850     if (check_pm_current_disabled(env, csrno)) {
2851         return RISCV_EXCP_NONE;
2852     }
2853     env->upmbase = val;
2854     if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) {
2855         env->cur_pmbase = val;
2856     }
2857     env->mmte |= PM_EXT_DIRTY;
2858 
2859     /* Set XS and SD bits, since PM CSRs are dirty */
2860     mstatus = env->mstatus | MSTATUS_XS;
2861     write_mstatus(env, csrno, mstatus);
2862     return RISCV_EXCP_NONE;
2863 }
2864 
2865 #endif
2866 
2867 /*
2868  * riscv_csrrw - read and/or update control and status register
2869  *
2870  * csrr   <->  riscv_csrrw(env, csrno, ret_value, 0, 0);
2871  * csrrw  <->  riscv_csrrw(env, csrno, ret_value, value, -1);
2872  * csrrs  <->  riscv_csrrw(env, csrno, ret_value, -1, value);
2873  * csrrc  <->  riscv_csrrw(env, csrno, ret_value, 0, value);
2874  */
2875 
2876 static inline RISCVException riscv_csrrw_check(CPURISCVState *env,
2877                                                int csrno,
2878                                                bool write_mask,
2879                                                RISCVCPU *cpu)
2880 {
2881     /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */
2882     int read_only = get_field(csrno, 0xC00) == 3;
2883 #if !defined(CONFIG_USER_ONLY)
2884     int effective_priv = env->priv;
2885 
2886     if (riscv_has_ext(env, RVH) &&
2887         env->priv == PRV_S &&
2888         !riscv_cpu_virt_enabled(env)) {
2889         /*
2890          * We are in S mode without virtualisation, therefore we are in HS Mode.
2891          * Add 1 to the effective privledge level to allow us to access the
2892          * Hypervisor CSRs.
2893          */
2894         effective_priv++;
2895     }
2896 
2897     if (!env->debugger && (effective_priv < get_field(csrno, 0x300))) {
2898         return RISCV_EXCP_ILLEGAL_INST;
2899     }
2900 #endif
2901     if (write_mask && read_only) {
2902         return RISCV_EXCP_ILLEGAL_INST;
2903     }
2904 
2905     /* ensure the CSR extension is enabled. */
2906     if (!cpu->cfg.ext_icsr) {
2907         return RISCV_EXCP_ILLEGAL_INST;
2908     }
2909 
2910     /* check predicate */
2911     if (!csr_ops[csrno].predicate) {
2912         return RISCV_EXCP_ILLEGAL_INST;
2913     }
2914 
2915     return csr_ops[csrno].predicate(env, csrno);
2916 }
2917 
2918 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno,
2919                                        target_ulong *ret_value,
2920                                        target_ulong new_value,
2921                                        target_ulong write_mask)
2922 {
2923     RISCVException ret;
2924     target_ulong old_value;
2925 
2926     /* execute combined read/write operation if it exists */
2927     if (csr_ops[csrno].op) {
2928         return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask);
2929     }
2930 
2931     /* if no accessor exists then return failure */
2932     if (!csr_ops[csrno].read) {
2933         return RISCV_EXCP_ILLEGAL_INST;
2934     }
2935     /* read old value */
2936     ret = csr_ops[csrno].read(env, csrno, &old_value);
2937     if (ret != RISCV_EXCP_NONE) {
2938         return ret;
2939     }
2940 
2941     /* write value if writable and write mask set, otherwise drop writes */
2942     if (write_mask) {
2943         new_value = (old_value & ~write_mask) | (new_value & write_mask);
2944         if (csr_ops[csrno].write) {
2945             ret = csr_ops[csrno].write(env, csrno, new_value);
2946             if (ret != RISCV_EXCP_NONE) {
2947                 return ret;
2948             }
2949         }
2950     }
2951 
2952     /* return old value */
2953     if (ret_value) {
2954         *ret_value = old_value;
2955     }
2956 
2957     return RISCV_EXCP_NONE;
2958 }
2959 
2960 RISCVException riscv_csrrw(CPURISCVState *env, int csrno,
2961                            target_ulong *ret_value,
2962                            target_ulong new_value, target_ulong write_mask)
2963 {
2964     RISCVCPU *cpu = env_archcpu(env);
2965 
2966     RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu);
2967     if (ret != RISCV_EXCP_NONE) {
2968         return ret;
2969     }
2970 
2971     return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask);
2972 }
2973 
2974 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno,
2975                                         Int128 *ret_value,
2976                                         Int128 new_value,
2977                                         Int128 write_mask)
2978 {
2979     RISCVException ret;
2980     Int128 old_value;
2981 
2982     /* read old value */
2983     ret = csr_ops[csrno].read128(env, csrno, &old_value);
2984     if (ret != RISCV_EXCP_NONE) {
2985         return ret;
2986     }
2987 
2988     /* write value if writable and write mask set, otherwise drop writes */
2989     if (int128_nz(write_mask)) {
2990         new_value = int128_or(int128_and(old_value, int128_not(write_mask)),
2991                               int128_and(new_value, write_mask));
2992         if (csr_ops[csrno].write128) {
2993             ret = csr_ops[csrno].write128(env, csrno, new_value);
2994             if (ret != RISCV_EXCP_NONE) {
2995                 return ret;
2996             }
2997         } else if (csr_ops[csrno].write) {
2998             /* avoids having to write wrappers for all registers */
2999             ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value));
3000             if (ret != RISCV_EXCP_NONE) {
3001                 return ret;
3002             }
3003         }
3004     }
3005 
3006     /* return old value */
3007     if (ret_value) {
3008         *ret_value = old_value;
3009     }
3010 
3011     return RISCV_EXCP_NONE;
3012 }
3013 
3014 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno,
3015                                 Int128 *ret_value,
3016                                 Int128 new_value, Int128 write_mask)
3017 {
3018     RISCVException ret;
3019     RISCVCPU *cpu = env_archcpu(env);
3020 
3021     ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu);
3022     if (ret != RISCV_EXCP_NONE) {
3023         return ret;
3024     }
3025 
3026     if (csr_ops[csrno].read128) {
3027         return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask);
3028     }
3029 
3030     /*
3031      * Fall back to 64-bit version for now, if the 128-bit alternative isn't
3032      * at all defined.
3033      * Note, some CSRs don't need to extend to MXLEN (64 upper bits non
3034      * significant), for those, this fallback is correctly handling the accesses
3035      */
3036     target_ulong old_value;
3037     ret = riscv_csrrw_do64(env, csrno, &old_value,
3038                            int128_getlo(new_value),
3039                            int128_getlo(write_mask));
3040     if (ret == RISCV_EXCP_NONE && ret_value) {
3041         *ret_value = int128_make64(old_value);
3042     }
3043     return ret;
3044 }
3045 
3046 /*
3047  * Debugger support.  If not in user mode, set env->debugger before the
3048  * riscv_csrrw call and clear it after the call.
3049  */
3050 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno,
3051                                  target_ulong *ret_value,
3052                                  target_ulong new_value,
3053                                  target_ulong write_mask)
3054 {
3055     RISCVException ret;
3056 #if !defined(CONFIG_USER_ONLY)
3057     env->debugger = true;
3058 #endif
3059     ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask);
3060 #if !defined(CONFIG_USER_ONLY)
3061     env->debugger = false;
3062 #endif
3063     return ret;
3064 }
3065 
3066 /* Control and Status Register function table */
3067 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = {
3068     /* User Floating-Point CSRs */
3069     [CSR_FFLAGS]   = { "fflags",   fs,     read_fflags,  write_fflags },
3070     [CSR_FRM]      = { "frm",      fs,     read_frm,     write_frm    },
3071     [CSR_FCSR]     = { "fcsr",     fs,     read_fcsr,    write_fcsr   },
3072     /* Vector CSRs */
3073     [CSR_VSTART]   = { "vstart",   vs,     read_vstart,  write_vstart },
3074     [CSR_VXSAT]    = { "vxsat",    vs,     read_vxsat,   write_vxsat  },
3075     [CSR_VXRM]     = { "vxrm",     vs,     read_vxrm,    write_vxrm   },
3076     [CSR_VCSR]     = { "vcsr",     vs,     read_vcsr,    write_vcsr   },
3077     [CSR_VL]       = { "vl",       vs,     read_vl                    },
3078     [CSR_VTYPE]    = { "vtype",    vs,     read_vtype                 },
3079     [CSR_VLENB]    = { "vlenb",    vs,     read_vlenb                 },
3080     /* User Timers and Counters */
3081     [CSR_CYCLE]    = { "cycle",    ctr,    read_instret  },
3082     [CSR_INSTRET]  = { "instret",  ctr,    read_instret  },
3083     [CSR_CYCLEH]   = { "cycleh",   ctr32,  read_instreth },
3084     [CSR_INSTRETH] = { "instreth", ctr32,  read_instreth },
3085 
3086     /*
3087      * In privileged mode, the monitor will have to emulate TIME CSRs only if
3088      * rdtime callback is not provided by machine/platform emulation.
3089      */
3090     [CSR_TIME]  = { "time",  ctr,   read_time  },
3091     [CSR_TIMEH] = { "timeh", ctr32, read_timeh },
3092 
3093 #if !defined(CONFIG_USER_ONLY)
3094     /* Machine Timers and Counters */
3095     [CSR_MCYCLE]    = { "mcycle",    any,   read_instret  },
3096     [CSR_MINSTRET]  = { "minstret",  any,   read_instret  },
3097     [CSR_MCYCLEH]   = { "mcycleh",   any32, read_instreth },
3098     [CSR_MINSTRETH] = { "minstreth", any32, read_instreth },
3099 
3100     /* Machine Information Registers */
3101     [CSR_MVENDORID] = { "mvendorid", any,   read_zero    },
3102     [CSR_MARCHID]   = { "marchid",   any,   read_zero    },
3103     [CSR_MIMPID]    = { "mimpid",    any,   read_zero    },
3104     [CSR_MHARTID]   = { "mhartid",   any,   read_mhartid },
3105 
3106     /* Machine Trap Setup */
3107     [CSR_MSTATUS]     = { "mstatus",    any,   read_mstatus,     write_mstatus, NULL,
3108                                                read_mstatus_i128                   },
3109     [CSR_MISA]        = { "misa",       any,   read_misa,        write_misa, NULL,
3110                                                read_misa_i128                      },
3111     [CSR_MIDELEG]     = { "mideleg",    any,   NULL,    NULL,    rmw_mideleg       },
3112     [CSR_MEDELEG]     = { "medeleg",    any,   read_medeleg,     write_medeleg     },
3113     [CSR_MIE]         = { "mie",        any,   NULL,    NULL,    rmw_mie           },
3114     [CSR_MTVEC]       = { "mtvec",      any,   read_mtvec,       write_mtvec       },
3115     [CSR_MCOUNTEREN]  = { "mcounteren", any,   read_mcounteren,  write_mcounteren  },
3116 
3117     [CSR_MSTATUSH]    = { "mstatush",   any32, read_mstatush,    write_mstatush    },
3118 
3119     /* Machine Trap Handling */
3120     [CSR_MSCRATCH] = { "mscratch", any,  read_mscratch,      write_mscratch, NULL,
3121                                          read_mscratch_i128, write_mscratch_i128   },
3122     [CSR_MEPC]     = { "mepc",     any,  read_mepc,     write_mepc     },
3123     [CSR_MCAUSE]   = { "mcause",   any,  read_mcause,   write_mcause   },
3124     [CSR_MTVAL]    = { "mtval",    any,  read_mtval,    write_mtval    },
3125     [CSR_MIP]      = { "mip",      any,  NULL,    NULL, rmw_mip        },
3126 
3127     /* Machine-Level Window to Indirectly Accessed Registers (AIA) */
3128     [CSR_MISELECT] = { "miselect", aia_any,   NULL, NULL,    rmw_xiselect },
3129     [CSR_MIREG]    = { "mireg",    aia_any,   NULL, NULL,    rmw_xireg },
3130 
3131     /* Machine-Level Interrupts (AIA) */
3132     [CSR_MTOPI]    = { "mtopi",    aia_any,   read_mtopi },
3133 
3134     /* Machine-Level IMSIC Interface (AIA) */
3135     [CSR_MSETEIPNUM] = { "mseteipnum", aia_any, NULL, NULL, rmw_xsetclreinum },
3136     [CSR_MCLREIPNUM] = { "mclreipnum", aia_any, NULL, NULL, rmw_xsetclreinum },
3137     [CSR_MSETEIENUM] = { "mseteienum", aia_any, NULL, NULL, rmw_xsetclreinum },
3138     [CSR_MCLREIENUM] = { "mclreienum", aia_any, NULL, NULL, rmw_xsetclreinum },
3139     [CSR_MTOPEI]     = { "mtopei",     aia_any, NULL, NULL, rmw_xtopei },
3140 
3141     /* Virtual Interrupts for Supervisor Level (AIA) */
3142     [CSR_MVIEN]      = { "mvien", aia_any, read_zero, write_ignore },
3143     [CSR_MVIP]       = { "mvip",  aia_any, read_zero, write_ignore },
3144 
3145     /* Machine-Level High-Half CSRs (AIA) */
3146     [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh },
3147     [CSR_MIEH]     = { "mieh",     aia_any32, NULL, NULL, rmw_mieh     },
3148     [CSR_MVIENH]   = { "mvienh",   aia_any32, read_zero,  write_ignore },
3149     [CSR_MVIPH]    = { "mviph",    aia_any32, read_zero,  write_ignore },
3150     [CSR_MIPH]     = { "miph",     aia_any32, NULL, NULL, rmw_miph     },
3151 
3152     /* Supervisor Trap Setup */
3153     [CSR_SSTATUS]    = { "sstatus",    smode, read_sstatus,    write_sstatus, NULL,
3154                                               read_sstatus_i128                 },
3155     [CSR_SIE]        = { "sie",        smode, NULL,   NULL,    rmw_sie          },
3156     [CSR_STVEC]      = { "stvec",      smode, read_stvec,      write_stvec      },
3157     [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, write_scounteren },
3158 
3159     /* Supervisor Trap Handling */
3160     [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, NULL,
3161                                           read_sscratch_i128, write_sscratch_i128  },
3162     [CSR_SEPC]     = { "sepc",     smode, read_sepc,     write_sepc     },
3163     [CSR_SCAUSE]   = { "scause",   smode, read_scause,   write_scause   },
3164     [CSR_STVAL]    = { "stval",    smode, read_stval,   write_stval   },
3165     [CSR_SIP]      = { "sip",      smode, NULL,    NULL, rmw_sip        },
3166 
3167     /* Supervisor Protection and Translation */
3168     [CSR_SATP]     = { "satp",     smode, read_satp,    write_satp      },
3169 
3170     /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */
3171     [CSR_SISELECT]   = { "siselect",   aia_smode, NULL, NULL, rmw_xiselect },
3172     [CSR_SIREG]      = { "sireg",      aia_smode, NULL, NULL, rmw_xireg },
3173 
3174     /* Supervisor-Level Interrupts (AIA) */
3175     [CSR_STOPI]      = { "stopi",      aia_smode, read_stopi },
3176 
3177     /* Supervisor-Level IMSIC Interface (AIA) */
3178     [CSR_SSETEIPNUM] = { "sseteipnum", aia_smode, NULL, NULL, rmw_xsetclreinum },
3179     [CSR_SCLREIPNUM] = { "sclreipnum", aia_smode, NULL, NULL, rmw_xsetclreinum },
3180     [CSR_SSETEIENUM] = { "sseteienum", aia_smode, NULL, NULL, rmw_xsetclreinum },
3181     [CSR_SCLREIENUM] = { "sclreienum", aia_smode, NULL, NULL, rmw_xsetclreinum },
3182     [CSR_STOPEI]     = { "stopei",     aia_smode, NULL, NULL, rmw_xtopei },
3183 
3184     /* Supervisor-Level High-Half CSRs (AIA) */
3185     [CSR_SIEH]       = { "sieh",   aia_smode32, NULL, NULL, rmw_sieh },
3186     [CSR_SIPH]       = { "siph",   aia_smode32, NULL, NULL, rmw_siph },
3187 
3188     [CSR_HSTATUS]     = { "hstatus",     hmode,   read_hstatus,     write_hstatus     },
3189     [CSR_HEDELEG]     = { "hedeleg",     hmode,   read_hedeleg,     write_hedeleg     },
3190     [CSR_HIDELEG]     = { "hideleg",     hmode,   NULL,   NULL,     rmw_hideleg       },
3191     [CSR_HVIP]        = { "hvip",        hmode,   NULL,   NULL,     rmw_hvip          },
3192     [CSR_HIP]         = { "hip",         hmode,   NULL,   NULL,     rmw_hip           },
3193     [CSR_HIE]         = { "hie",         hmode,   NULL,   NULL,     rmw_hie           },
3194     [CSR_HCOUNTEREN]  = { "hcounteren",  hmode,   read_hcounteren,  write_hcounteren  },
3195     [CSR_HGEIE]       = { "hgeie",       hmode,   read_hgeie,       write_hgeie       },
3196     [CSR_HTVAL]       = { "htval",       hmode,   read_htval,       write_htval       },
3197     [CSR_HTINST]      = { "htinst",      hmode,   read_htinst,      write_htinst      },
3198     [CSR_HGEIP]       = { "hgeip",       hmode,   read_hgeip,       NULL              },
3199     [CSR_HGATP]       = { "hgatp",       hmode,   read_hgatp,       write_hgatp       },
3200     [CSR_HTIMEDELTA]  = { "htimedelta",  hmode,   read_htimedelta,  write_htimedelta  },
3201     [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, write_htimedeltah },
3202 
3203     [CSR_VSSTATUS]    = { "vsstatus",    hmode,   read_vsstatus,    write_vsstatus    },
3204     [CSR_VSIP]        = { "vsip",        hmode,   NULL,    NULL,    rmw_vsip          },
3205     [CSR_VSIE]        = { "vsie",        hmode,   NULL,    NULL,    rmw_vsie          },
3206     [CSR_VSTVEC]      = { "vstvec",      hmode,   read_vstvec,      write_vstvec      },
3207     [CSR_VSSCRATCH]   = { "vsscratch",   hmode,   read_vsscratch,   write_vsscratch   },
3208     [CSR_VSEPC]       = { "vsepc",       hmode,   read_vsepc,       write_vsepc       },
3209     [CSR_VSCAUSE]     = { "vscause",     hmode,   read_vscause,     write_vscause     },
3210     [CSR_VSTVAL]      = { "vstval",      hmode,   read_vstval,      write_vstval      },
3211     [CSR_VSATP]       = { "vsatp",       hmode,   read_vsatp,       write_vsatp       },
3212 
3213     [CSR_MTVAL2]      = { "mtval2",      hmode,   read_mtval2,      write_mtval2      },
3214     [CSR_MTINST]      = { "mtinst",      hmode,   read_mtinst,      write_mtinst      },
3215 
3216     /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */
3217     [CSR_HVIEN]       = { "hvien",       aia_hmode, read_zero, write_ignore },
3218     [CSR_HVICTL]      = { "hvictl",      aia_hmode, read_hvictl, write_hvictl },
3219     [CSR_HVIPRIO1]    = { "hviprio1",    aia_hmode, read_hviprio1,   write_hviprio1 },
3220     [CSR_HVIPRIO2]    = { "hviprio2",    aia_hmode, read_hviprio2,   write_hviprio2 },
3221 
3222     /*
3223      * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA)
3224      */
3225     [CSR_VSISELECT]   = { "vsiselect",   aia_hmode, NULL, NULL,      rmw_xiselect },
3226     [CSR_VSIREG]      = { "vsireg",      aia_hmode, NULL, NULL,      rmw_xireg },
3227 
3228     /* VS-Level Interrupts (H-extension with AIA) */
3229     [CSR_VSTOPI]      = { "vstopi",      aia_hmode, read_vstopi },
3230 
3231     /* VS-Level IMSIC Interface (H-extension with AIA) */
3232     [CSR_VSSETEIPNUM] = { "vsseteipnum", aia_hmode, NULL, NULL, rmw_xsetclreinum },
3233     [CSR_VSCLREIPNUM] = { "vsclreipnum", aia_hmode, NULL, NULL, rmw_xsetclreinum },
3234     [CSR_VSSETEIENUM] = { "vsseteienum", aia_hmode, NULL, NULL, rmw_xsetclreinum },
3235     [CSR_VSCLREIENUM] = { "vsclreienum", aia_hmode, NULL, NULL, rmw_xsetclreinum },
3236     [CSR_VSTOPEI]     = { "vstopei",     aia_hmode, NULL, NULL, rmw_xtopei },
3237 
3238     /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */
3239     [CSR_HIDELEGH]    = { "hidelegh",    aia_hmode32, NULL, NULL, rmw_hidelegh },
3240     [CSR_HVIENH]      = { "hvienh",      aia_hmode32, read_zero, write_ignore },
3241     [CSR_HVIPH]       = { "hviph",       aia_hmode32, NULL, NULL, rmw_hviph },
3242     [CSR_HVIPRIO1H]   = { "hviprio1h",   aia_hmode32, read_hviprio1h, write_hviprio1h },
3243     [CSR_HVIPRIO2H]   = { "hviprio2h",   aia_hmode32, read_hviprio2h, write_hviprio2h },
3244     [CSR_VSIEH]       = { "vsieh",       aia_hmode32, NULL, NULL, rmw_vsieh },
3245     [CSR_VSIPH]       = { "vsiph",       aia_hmode32, NULL, NULL, rmw_vsiph },
3246 
3247     /* Physical Memory Protection */
3248     [CSR_MSECCFG]    = { "mseccfg",  epmp, read_mseccfg, write_mseccfg },
3249     [CSR_PMPCFG0]    = { "pmpcfg0",   pmp, read_pmpcfg,  write_pmpcfg  },
3250     [CSR_PMPCFG1]    = { "pmpcfg1",   pmp, read_pmpcfg,  write_pmpcfg  },
3251     [CSR_PMPCFG2]    = { "pmpcfg2",   pmp, read_pmpcfg,  write_pmpcfg  },
3252     [CSR_PMPCFG3]    = { "pmpcfg3",   pmp, read_pmpcfg,  write_pmpcfg  },
3253     [CSR_PMPADDR0]   = { "pmpaddr0",  pmp, read_pmpaddr, write_pmpaddr },
3254     [CSR_PMPADDR1]   = { "pmpaddr1",  pmp, read_pmpaddr, write_pmpaddr },
3255     [CSR_PMPADDR2]   = { "pmpaddr2",  pmp, read_pmpaddr, write_pmpaddr },
3256     [CSR_PMPADDR3]   = { "pmpaddr3",  pmp, read_pmpaddr, write_pmpaddr },
3257     [CSR_PMPADDR4]   = { "pmpaddr4",  pmp, read_pmpaddr, write_pmpaddr },
3258     [CSR_PMPADDR5]   = { "pmpaddr5",  pmp, read_pmpaddr, write_pmpaddr },
3259     [CSR_PMPADDR6]   = { "pmpaddr6",  pmp, read_pmpaddr, write_pmpaddr },
3260     [CSR_PMPADDR7]   = { "pmpaddr7",  pmp, read_pmpaddr, write_pmpaddr },
3261     [CSR_PMPADDR8]   = { "pmpaddr8",  pmp, read_pmpaddr, write_pmpaddr },
3262     [CSR_PMPADDR9]   = { "pmpaddr9",  pmp, read_pmpaddr, write_pmpaddr },
3263     [CSR_PMPADDR10]  = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr },
3264     [CSR_PMPADDR11]  = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr },
3265     [CSR_PMPADDR12]  = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr },
3266     [CSR_PMPADDR13]  = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr },
3267     [CSR_PMPADDR14] =  { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr },
3268     [CSR_PMPADDR15] =  { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr },
3269 
3270     /* User Pointer Masking */
3271     [CSR_UMTE]    =    { "umte",    pointer_masking, read_umte,    write_umte    },
3272     [CSR_UPMMASK] =    { "upmmask", pointer_masking, read_upmmask, write_upmmask },
3273     [CSR_UPMBASE] =    { "upmbase", pointer_masking, read_upmbase, write_upmbase },
3274     /* Machine Pointer Masking */
3275     [CSR_MMTE]    =    { "mmte",    pointer_masking, read_mmte,    write_mmte    },
3276     [CSR_MPMMASK] =    { "mpmmask", pointer_masking, read_mpmmask, write_mpmmask },
3277     [CSR_MPMBASE] =    { "mpmbase", pointer_masking, read_mpmbase, write_mpmbase },
3278     /* Supervisor Pointer Masking */
3279     [CSR_SMTE]    =    { "smte",    pointer_masking, read_smte,    write_smte    },
3280     [CSR_SPMMASK] =    { "spmmask", pointer_masking, read_spmmask, write_spmmask },
3281     [CSR_SPMBASE] =    { "spmbase", pointer_masking, read_spmbase, write_spmbase },
3282 
3283     /* Performance Counters */
3284     [CSR_HPMCOUNTER3]    = { "hpmcounter3",    ctr,    read_zero },
3285     [CSR_HPMCOUNTER4]    = { "hpmcounter4",    ctr,    read_zero },
3286     [CSR_HPMCOUNTER5]    = { "hpmcounter5",    ctr,    read_zero },
3287     [CSR_HPMCOUNTER6]    = { "hpmcounter6",    ctr,    read_zero },
3288     [CSR_HPMCOUNTER7]    = { "hpmcounter7",    ctr,    read_zero },
3289     [CSR_HPMCOUNTER8]    = { "hpmcounter8",    ctr,    read_zero },
3290     [CSR_HPMCOUNTER9]    = { "hpmcounter9",    ctr,    read_zero },
3291     [CSR_HPMCOUNTER10]   = { "hpmcounter10",   ctr,    read_zero },
3292     [CSR_HPMCOUNTER11]   = { "hpmcounter11",   ctr,    read_zero },
3293     [CSR_HPMCOUNTER12]   = { "hpmcounter12",   ctr,    read_zero },
3294     [CSR_HPMCOUNTER13]   = { "hpmcounter13",   ctr,    read_zero },
3295     [CSR_HPMCOUNTER14]   = { "hpmcounter14",   ctr,    read_zero },
3296     [CSR_HPMCOUNTER15]   = { "hpmcounter15",   ctr,    read_zero },
3297     [CSR_HPMCOUNTER16]   = { "hpmcounter16",   ctr,    read_zero },
3298     [CSR_HPMCOUNTER17]   = { "hpmcounter17",   ctr,    read_zero },
3299     [CSR_HPMCOUNTER18]   = { "hpmcounter18",   ctr,    read_zero },
3300     [CSR_HPMCOUNTER19]   = { "hpmcounter19",   ctr,    read_zero },
3301     [CSR_HPMCOUNTER20]   = { "hpmcounter20",   ctr,    read_zero },
3302     [CSR_HPMCOUNTER21]   = { "hpmcounter21",   ctr,    read_zero },
3303     [CSR_HPMCOUNTER22]   = { "hpmcounter22",   ctr,    read_zero },
3304     [CSR_HPMCOUNTER23]   = { "hpmcounter23",   ctr,    read_zero },
3305     [CSR_HPMCOUNTER24]   = { "hpmcounter24",   ctr,    read_zero },
3306     [CSR_HPMCOUNTER25]   = { "hpmcounter25",   ctr,    read_zero },
3307     [CSR_HPMCOUNTER26]   = { "hpmcounter26",   ctr,    read_zero },
3308     [CSR_HPMCOUNTER27]   = { "hpmcounter27",   ctr,    read_zero },
3309     [CSR_HPMCOUNTER28]   = { "hpmcounter28",   ctr,    read_zero },
3310     [CSR_HPMCOUNTER29]   = { "hpmcounter29",   ctr,    read_zero },
3311     [CSR_HPMCOUNTER30]   = { "hpmcounter30",   ctr,    read_zero },
3312     [CSR_HPMCOUNTER31]   = { "hpmcounter31",   ctr,    read_zero },
3313 
3314     [CSR_MHPMCOUNTER3]   = { "mhpmcounter3",   any,    read_zero },
3315     [CSR_MHPMCOUNTER4]   = { "mhpmcounter4",   any,    read_zero },
3316     [CSR_MHPMCOUNTER5]   = { "mhpmcounter5",   any,    read_zero },
3317     [CSR_MHPMCOUNTER6]   = { "mhpmcounter6",   any,    read_zero },
3318     [CSR_MHPMCOUNTER7]   = { "mhpmcounter7",   any,    read_zero },
3319     [CSR_MHPMCOUNTER8]   = { "mhpmcounter8",   any,    read_zero },
3320     [CSR_MHPMCOUNTER9]   = { "mhpmcounter9",   any,    read_zero },
3321     [CSR_MHPMCOUNTER10]  = { "mhpmcounter10",  any,    read_zero },
3322     [CSR_MHPMCOUNTER11]  = { "mhpmcounter11",  any,    read_zero },
3323     [CSR_MHPMCOUNTER12]  = { "mhpmcounter12",  any,    read_zero },
3324     [CSR_MHPMCOUNTER13]  = { "mhpmcounter13",  any,    read_zero },
3325     [CSR_MHPMCOUNTER14]  = { "mhpmcounter14",  any,    read_zero },
3326     [CSR_MHPMCOUNTER15]  = { "mhpmcounter15",  any,    read_zero },
3327     [CSR_MHPMCOUNTER16]  = { "mhpmcounter16",  any,    read_zero },
3328     [CSR_MHPMCOUNTER17]  = { "mhpmcounter17",  any,    read_zero },
3329     [CSR_MHPMCOUNTER18]  = { "mhpmcounter18",  any,    read_zero },
3330     [CSR_MHPMCOUNTER19]  = { "mhpmcounter19",  any,    read_zero },
3331     [CSR_MHPMCOUNTER20]  = { "mhpmcounter20",  any,    read_zero },
3332     [CSR_MHPMCOUNTER21]  = { "mhpmcounter21",  any,    read_zero },
3333     [CSR_MHPMCOUNTER22]  = { "mhpmcounter22",  any,    read_zero },
3334     [CSR_MHPMCOUNTER23]  = { "mhpmcounter23",  any,    read_zero },
3335     [CSR_MHPMCOUNTER24]  = { "mhpmcounter24",  any,    read_zero },
3336     [CSR_MHPMCOUNTER25]  = { "mhpmcounter25",  any,    read_zero },
3337     [CSR_MHPMCOUNTER26]  = { "mhpmcounter26",  any,    read_zero },
3338     [CSR_MHPMCOUNTER27]  = { "mhpmcounter27",  any,    read_zero },
3339     [CSR_MHPMCOUNTER28]  = { "mhpmcounter28",  any,    read_zero },
3340     [CSR_MHPMCOUNTER29]  = { "mhpmcounter29",  any,    read_zero },
3341     [CSR_MHPMCOUNTER30]  = { "mhpmcounter30",  any,    read_zero },
3342     [CSR_MHPMCOUNTER31]  = { "mhpmcounter31",  any,    read_zero },
3343 
3344     [CSR_MHPMEVENT3]     = { "mhpmevent3",     any,    read_zero },
3345     [CSR_MHPMEVENT4]     = { "mhpmevent4",     any,    read_zero },
3346     [CSR_MHPMEVENT5]     = { "mhpmevent5",     any,    read_zero },
3347     [CSR_MHPMEVENT6]     = { "mhpmevent6",     any,    read_zero },
3348     [CSR_MHPMEVENT7]     = { "mhpmevent7",     any,    read_zero },
3349     [CSR_MHPMEVENT8]     = { "mhpmevent8",     any,    read_zero },
3350     [CSR_MHPMEVENT9]     = { "mhpmevent9",     any,    read_zero },
3351     [CSR_MHPMEVENT10]    = { "mhpmevent10",    any,    read_zero },
3352     [CSR_MHPMEVENT11]    = { "mhpmevent11",    any,    read_zero },
3353     [CSR_MHPMEVENT12]    = { "mhpmevent12",    any,    read_zero },
3354     [CSR_MHPMEVENT13]    = { "mhpmevent13",    any,    read_zero },
3355     [CSR_MHPMEVENT14]    = { "mhpmevent14",    any,    read_zero },
3356     [CSR_MHPMEVENT15]    = { "mhpmevent15",    any,    read_zero },
3357     [CSR_MHPMEVENT16]    = { "mhpmevent16",    any,    read_zero },
3358     [CSR_MHPMEVENT17]    = { "mhpmevent17",    any,    read_zero },
3359     [CSR_MHPMEVENT18]    = { "mhpmevent18",    any,    read_zero },
3360     [CSR_MHPMEVENT19]    = { "mhpmevent19",    any,    read_zero },
3361     [CSR_MHPMEVENT20]    = { "mhpmevent20",    any,    read_zero },
3362     [CSR_MHPMEVENT21]    = { "mhpmevent21",    any,    read_zero },
3363     [CSR_MHPMEVENT22]    = { "mhpmevent22",    any,    read_zero },
3364     [CSR_MHPMEVENT23]    = { "mhpmevent23",    any,    read_zero },
3365     [CSR_MHPMEVENT24]    = { "mhpmevent24",    any,    read_zero },
3366     [CSR_MHPMEVENT25]    = { "mhpmevent25",    any,    read_zero },
3367     [CSR_MHPMEVENT26]    = { "mhpmevent26",    any,    read_zero },
3368     [CSR_MHPMEVENT27]    = { "mhpmevent27",    any,    read_zero },
3369     [CSR_MHPMEVENT28]    = { "mhpmevent28",    any,    read_zero },
3370     [CSR_MHPMEVENT29]    = { "mhpmevent29",    any,    read_zero },
3371     [CSR_MHPMEVENT30]    = { "mhpmevent30",    any,    read_zero },
3372     [CSR_MHPMEVENT31]    = { "mhpmevent31",    any,    read_zero },
3373 
3374     [CSR_HPMCOUNTER3H]   = { "hpmcounter3h",   ctr32,  read_zero },
3375     [CSR_HPMCOUNTER4H]   = { "hpmcounter4h",   ctr32,  read_zero },
3376     [CSR_HPMCOUNTER5H]   = { "hpmcounter5h",   ctr32,  read_zero },
3377     [CSR_HPMCOUNTER6H]   = { "hpmcounter6h",   ctr32,  read_zero },
3378     [CSR_HPMCOUNTER7H]   = { "hpmcounter7h",   ctr32,  read_zero },
3379     [CSR_HPMCOUNTER8H]   = { "hpmcounter8h",   ctr32,  read_zero },
3380     [CSR_HPMCOUNTER9H]   = { "hpmcounter9h",   ctr32,  read_zero },
3381     [CSR_HPMCOUNTER10H]  = { "hpmcounter10h",  ctr32,  read_zero },
3382     [CSR_HPMCOUNTER11H]  = { "hpmcounter11h",  ctr32,  read_zero },
3383     [CSR_HPMCOUNTER12H]  = { "hpmcounter12h",  ctr32,  read_zero },
3384     [CSR_HPMCOUNTER13H]  = { "hpmcounter13h",  ctr32,  read_zero },
3385     [CSR_HPMCOUNTER14H]  = { "hpmcounter14h",  ctr32,  read_zero },
3386     [CSR_HPMCOUNTER15H]  = { "hpmcounter15h",  ctr32,  read_zero },
3387     [CSR_HPMCOUNTER16H]  = { "hpmcounter16h",  ctr32,  read_zero },
3388     [CSR_HPMCOUNTER17H]  = { "hpmcounter17h",  ctr32,  read_zero },
3389     [CSR_HPMCOUNTER18H]  = { "hpmcounter18h",  ctr32,  read_zero },
3390     [CSR_HPMCOUNTER19H]  = { "hpmcounter19h",  ctr32,  read_zero },
3391     [CSR_HPMCOUNTER20H]  = { "hpmcounter20h",  ctr32,  read_zero },
3392     [CSR_HPMCOUNTER21H]  = { "hpmcounter21h",  ctr32,  read_zero },
3393     [CSR_HPMCOUNTER22H]  = { "hpmcounter22h",  ctr32,  read_zero },
3394     [CSR_HPMCOUNTER23H]  = { "hpmcounter23h",  ctr32,  read_zero },
3395     [CSR_HPMCOUNTER24H]  = { "hpmcounter24h",  ctr32,  read_zero },
3396     [CSR_HPMCOUNTER25H]  = { "hpmcounter25h",  ctr32,  read_zero },
3397     [CSR_HPMCOUNTER26H]  = { "hpmcounter26h",  ctr32,  read_zero },
3398     [CSR_HPMCOUNTER27H]  = { "hpmcounter27h",  ctr32,  read_zero },
3399     [CSR_HPMCOUNTER28H]  = { "hpmcounter28h",  ctr32,  read_zero },
3400     [CSR_HPMCOUNTER29H]  = { "hpmcounter29h",  ctr32,  read_zero },
3401     [CSR_HPMCOUNTER30H]  = { "hpmcounter30h",  ctr32,  read_zero },
3402     [CSR_HPMCOUNTER31H]  = { "hpmcounter31h",  ctr32,  read_zero },
3403 
3404     [CSR_MHPMCOUNTER3H]  = { "mhpmcounter3h",  any32,  read_zero },
3405     [CSR_MHPMCOUNTER4H]  = { "mhpmcounter4h",  any32,  read_zero },
3406     [CSR_MHPMCOUNTER5H]  = { "mhpmcounter5h",  any32,  read_zero },
3407     [CSR_MHPMCOUNTER6H]  = { "mhpmcounter6h",  any32,  read_zero },
3408     [CSR_MHPMCOUNTER7H]  = { "mhpmcounter7h",  any32,  read_zero },
3409     [CSR_MHPMCOUNTER8H]  = { "mhpmcounter8h",  any32,  read_zero },
3410     [CSR_MHPMCOUNTER9H]  = { "mhpmcounter9h",  any32,  read_zero },
3411     [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", any32,  read_zero },
3412     [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", any32,  read_zero },
3413     [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", any32,  read_zero },
3414     [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", any32,  read_zero },
3415     [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", any32,  read_zero },
3416     [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", any32,  read_zero },
3417     [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", any32,  read_zero },
3418     [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", any32,  read_zero },
3419     [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", any32,  read_zero },
3420     [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", any32,  read_zero },
3421     [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", any32,  read_zero },
3422     [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", any32,  read_zero },
3423     [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", any32,  read_zero },
3424     [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", any32,  read_zero },
3425     [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", any32,  read_zero },
3426     [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", any32,  read_zero },
3427     [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", any32,  read_zero },
3428     [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", any32,  read_zero },
3429     [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", any32,  read_zero },
3430     [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", any32,  read_zero },
3431     [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", any32,  read_zero },
3432     [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", any32,  read_zero },
3433 #endif /* !CONFIG_USER_ONLY */
3434 };
3435