xref: /qemu/target/riscv/fpu_helper.c (revision a7b78fc9)
1 /*
2  * RISC-V FPU Emulation Helpers for QEMU.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "qemu/host-utils.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 
25 target_ulong riscv_cpu_get_fflags(CPURISCVState *env)
26 {
27     int soft = get_float_exception_flags(&env->fp_status);
28     target_ulong hard = 0;
29 
30     hard |= (soft & float_flag_inexact) ? FPEXC_NX : 0;
31     hard |= (soft & float_flag_underflow) ? FPEXC_UF : 0;
32     hard |= (soft & float_flag_overflow) ? FPEXC_OF : 0;
33     hard |= (soft & float_flag_divbyzero) ? FPEXC_DZ : 0;
34     hard |= (soft & float_flag_invalid) ? FPEXC_NV : 0;
35 
36     return hard;
37 }
38 
39 void riscv_cpu_set_fflags(CPURISCVState *env, target_ulong hard)
40 {
41     int soft = 0;
42 
43     soft |= (hard & FPEXC_NX) ? float_flag_inexact : 0;
44     soft |= (hard & FPEXC_UF) ? float_flag_underflow : 0;
45     soft |= (hard & FPEXC_OF) ? float_flag_overflow : 0;
46     soft |= (hard & FPEXC_DZ) ? float_flag_divbyzero : 0;
47     soft |= (hard & FPEXC_NV) ? float_flag_invalid : 0;
48 
49     set_float_exception_flags(soft, &env->fp_status);
50 }
51 
52 void helper_set_rounding_mode(CPURISCVState *env, uint32_t rm)
53 {
54     int softrm;
55 
56     if (rm == 7) {
57         rm = env->frm;
58     }
59     switch (rm) {
60     case 0:
61         softrm = float_round_nearest_even;
62         break;
63     case 1:
64         softrm = float_round_to_zero;
65         break;
66     case 2:
67         softrm = float_round_down;
68         break;
69     case 3:
70         softrm = float_round_up;
71         break;
72     case 4:
73         softrm = float_round_ties_away;
74         break;
75     default:
76         riscv_raise_exception(env, RISCV_EXCP_ILLEGAL_INST, GETPC());
77     }
78 
79     set_float_rounding_mode(softrm, &env->fp_status);
80 }
81 
82 uint64_t helper_fmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
83                         uint64_t frs3)
84 {
85     return float32_muladd(frs1, frs2, frs3, 0, &env->fp_status);
86 }
87 
88 uint64_t helper_fmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
89                         uint64_t frs3)
90 {
91     return float64_muladd(frs1, frs2, frs3, 0, &env->fp_status);
92 }
93 
94 uint64_t helper_fmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
95                         uint64_t frs3)
96 {
97     return float32_muladd(frs1, frs2, frs3, float_muladd_negate_c,
98                           &env->fp_status);
99 }
100 
101 uint64_t helper_fmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
102                         uint64_t frs3)
103 {
104     return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c,
105                           &env->fp_status);
106 }
107 
108 uint64_t helper_fnmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
109                          uint64_t frs3)
110 {
111     return float32_muladd(frs1, frs2, frs3, float_muladd_negate_product,
112                           &env->fp_status);
113 }
114 
115 uint64_t helper_fnmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
116                          uint64_t frs3)
117 {
118     return float64_muladd(frs1, frs2, frs3, float_muladd_negate_product,
119                           &env->fp_status);
120 }
121 
122 uint64_t helper_fnmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
123                          uint64_t frs3)
124 {
125     return float32_muladd(frs1, frs2, frs3, float_muladd_negate_c |
126                           float_muladd_negate_product, &env->fp_status);
127 }
128 
129 uint64_t helper_fnmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
130                          uint64_t frs3)
131 {
132     return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c |
133                           float_muladd_negate_product, &env->fp_status);
134 }
135 
136 uint64_t helper_fadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
137 {
138     return float32_add(frs1, frs2, &env->fp_status);
139 }
140 
141 uint64_t helper_fsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
142 {
143     return float32_sub(frs1, frs2, &env->fp_status);
144 }
145 
146 uint64_t helper_fmul_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
147 {
148     return float32_mul(frs1, frs2, &env->fp_status);
149 }
150 
151 uint64_t helper_fdiv_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
152 {
153     return float32_div(frs1, frs2, &env->fp_status);
154 }
155 
156 uint64_t helper_fmin_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
157 {
158     return float32_minnum(frs1, frs2, &env->fp_status);
159 }
160 
161 uint64_t helper_fmax_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
162 {
163     return float32_maxnum(frs1, frs2, &env->fp_status);
164 }
165 
166 uint64_t helper_fsqrt_s(CPURISCVState *env, uint64_t frs1)
167 {
168     return float32_sqrt(frs1, &env->fp_status);
169 }
170 
171 target_ulong helper_fle_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
172 {
173     return float32_le(frs1, frs2, &env->fp_status);
174 }
175 
176 target_ulong helper_flt_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
177 {
178     return float32_lt(frs1, frs2, &env->fp_status);
179 }
180 
181 target_ulong helper_feq_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
182 {
183     return float32_eq_quiet(frs1, frs2, &env->fp_status);
184 }
185 
186 target_ulong helper_fcvt_w_s(CPURISCVState *env, uint64_t frs1)
187 {
188     return float32_to_int32(frs1, &env->fp_status);
189 }
190 
191 target_ulong helper_fcvt_wu_s(CPURISCVState *env, uint64_t frs1)
192 {
193     return (int32_t)float32_to_uint32(frs1, &env->fp_status);
194 }
195 
196 #if defined(TARGET_RISCV64)
197 uint64_t helper_fcvt_l_s(CPURISCVState *env, uint64_t frs1)
198 {
199     return float32_to_int64(frs1, &env->fp_status);
200 }
201 
202 uint64_t helper_fcvt_lu_s(CPURISCVState *env, uint64_t frs1)
203 {
204     return float32_to_uint64(frs1, &env->fp_status);
205 }
206 #endif
207 
208 uint64_t helper_fcvt_s_w(CPURISCVState *env, target_ulong rs1)
209 {
210     return int32_to_float32((int32_t)rs1, &env->fp_status);
211 }
212 
213 uint64_t helper_fcvt_s_wu(CPURISCVState *env, target_ulong rs1)
214 {
215     return uint32_to_float32((uint32_t)rs1, &env->fp_status);
216 }
217 
218 #if defined(TARGET_RISCV64)
219 uint64_t helper_fcvt_s_l(CPURISCVState *env, uint64_t rs1)
220 {
221     return int64_to_float32(rs1, &env->fp_status);
222 }
223 
224 uint64_t helper_fcvt_s_lu(CPURISCVState *env, uint64_t rs1)
225 {
226     return uint64_to_float32(rs1, &env->fp_status);
227 }
228 #endif
229 
230 target_ulong helper_fclass_s(uint64_t frs1)
231 {
232     float32 f = frs1;
233     bool sign = float32_is_neg(f);
234 
235     if (float32_is_infinity(f)) {
236         return sign ? 1 << 0 : 1 << 7;
237     } else if (float32_is_zero(f)) {
238         return sign ? 1 << 3 : 1 << 4;
239     } else if (float32_is_zero_or_denormal(f)) {
240         return sign ? 1 << 2 : 1 << 5;
241     } else if (float32_is_any_nan(f)) {
242         float_status s = { }; /* for snan_bit_is_one */
243         return float32_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
244     } else {
245         return sign ? 1 << 1 : 1 << 6;
246     }
247 }
248 
249 uint64_t helper_fadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
250 {
251     return float64_add(frs1, frs2, &env->fp_status);
252 }
253 
254 uint64_t helper_fsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
255 {
256     return float64_sub(frs1, frs2, &env->fp_status);
257 }
258 
259 uint64_t helper_fmul_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
260 {
261     return float64_mul(frs1, frs2, &env->fp_status);
262 }
263 
264 uint64_t helper_fdiv_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
265 {
266     return float64_div(frs1, frs2, &env->fp_status);
267 }
268 
269 uint64_t helper_fmin_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
270 {
271     return float64_minnum(frs1, frs2, &env->fp_status);
272 }
273 
274 uint64_t helper_fmax_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
275 {
276     return float64_maxnum(frs1, frs2, &env->fp_status);
277 }
278 
279 uint64_t helper_fcvt_s_d(CPURISCVState *env, uint64_t rs1)
280 {
281     return float64_to_float32(rs1, &env->fp_status);
282 }
283 
284 uint64_t helper_fcvt_d_s(CPURISCVState *env, uint64_t rs1)
285 {
286     return float32_to_float64(rs1, &env->fp_status);
287 }
288 
289 uint64_t helper_fsqrt_d(CPURISCVState *env, uint64_t frs1)
290 {
291     return float64_sqrt(frs1, &env->fp_status);
292 }
293 
294 target_ulong helper_fle_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
295 {
296     return float64_le(frs1, frs2, &env->fp_status);
297 }
298 
299 target_ulong helper_flt_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
300 {
301     return float64_lt(frs1, frs2, &env->fp_status);
302 }
303 
304 target_ulong helper_feq_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
305 {
306     return float64_eq_quiet(frs1, frs2, &env->fp_status);
307 }
308 
309 target_ulong helper_fcvt_w_d(CPURISCVState *env, uint64_t frs1)
310 {
311     return float64_to_int32(frs1, &env->fp_status);
312 }
313 
314 target_ulong helper_fcvt_wu_d(CPURISCVState *env, uint64_t frs1)
315 {
316     return (int32_t)float64_to_uint32(frs1, &env->fp_status);
317 }
318 
319 #if defined(TARGET_RISCV64)
320 uint64_t helper_fcvt_l_d(CPURISCVState *env, uint64_t frs1)
321 {
322     return float64_to_int64(frs1, &env->fp_status);
323 }
324 
325 uint64_t helper_fcvt_lu_d(CPURISCVState *env, uint64_t frs1)
326 {
327     return float64_to_uint64(frs1, &env->fp_status);
328 }
329 #endif
330 
331 uint64_t helper_fcvt_d_w(CPURISCVState *env, target_ulong rs1)
332 {
333     return int32_to_float64((int32_t)rs1, &env->fp_status);
334 }
335 
336 uint64_t helper_fcvt_d_wu(CPURISCVState *env, target_ulong rs1)
337 {
338     return uint32_to_float64((uint32_t)rs1, &env->fp_status);
339 }
340 
341 #if defined(TARGET_RISCV64)
342 uint64_t helper_fcvt_d_l(CPURISCVState *env, uint64_t rs1)
343 {
344     return int64_to_float64(rs1, &env->fp_status);
345 }
346 
347 uint64_t helper_fcvt_d_lu(CPURISCVState *env, uint64_t rs1)
348 {
349     return uint64_to_float64(rs1, &env->fp_status);
350 }
351 #endif
352 
353 target_ulong helper_fclass_d(uint64_t frs1)
354 {
355     float64 f = frs1;
356     bool sign = float64_is_neg(f);
357 
358     if (float64_is_infinity(f)) {
359         return sign ? 1 << 0 : 1 << 7;
360     } else if (float64_is_zero(f)) {
361         return sign ? 1 << 3 : 1 << 4;
362     } else if (float64_is_zero_or_denormal(f)) {
363         return sign ? 1 << 2 : 1 << 5;
364     } else if (float64_is_any_nan(f)) {
365         float_status s = { }; /* for snan_bit_is_one */
366         return float64_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
367     } else {
368         return sign ? 1 << 1 : 1 << 6;
369     }
370 }
371