xref: /qemu/target/riscv/pmp.c (revision 138ca49a)
1 /*
2  * QEMU RISC-V PMP (Physical Memory Protection)
3  *
4  * Author: Daire McNamara, daire.mcnamara@emdalo.com
5  *         Ivan Griffin, ivan.griffin@emdalo.com
6  *
7  * This provides a RISC-V Physical Memory Protection implementation
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License,
11  * version 2 or later, as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 /*
23  * PMP (Physical Memory Protection) is as-of-yet unused and needs testing.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #include "trace.h"
31 
32 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index,
33     uint8_t val);
34 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index);
35 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index);
36 
37 /*
38  * Accessor method to extract address matching type 'a field' from cfg reg
39  */
40 static inline uint8_t pmp_get_a_field(uint8_t cfg)
41 {
42     uint8_t a = cfg >> 3;
43     return a & 0x3;
44 }
45 
46 /*
47  * Check whether a PMP is locked or not.
48  */
49 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index)
50 {
51 
52     if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) {
53         return 1;
54     }
55 
56     /* Top PMP has no 'next' to check */
57     if ((pmp_index + 1u) >= MAX_RISCV_PMPS) {
58         return 0;
59     }
60 
61     /* In TOR mode, need to check the lock bit of the next pmp
62      * (if there is a next)
63      */
64     const uint8_t a_field =
65         pmp_get_a_field(env->pmp_state.pmp[pmp_index + 1].cfg_reg);
66     if ((env->pmp_state.pmp[pmp_index + 1u].cfg_reg & PMP_LOCK) &&
67          (PMP_AMATCH_TOR == a_field)) {
68         return 1;
69     }
70 
71     return 0;
72 }
73 
74 /*
75  * Count the number of active rules.
76  */
77 uint32_t pmp_get_num_rules(CPURISCVState *env)
78 {
79      return env->pmp_state.num_rules;
80 }
81 
82 /*
83  * Accessor to get the cfg reg for a specific PMP/HART
84  */
85 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index)
86 {
87     if (pmp_index < MAX_RISCV_PMPS) {
88         return env->pmp_state.pmp[pmp_index].cfg_reg;
89     }
90 
91     return 0;
92 }
93 
94 
95 /*
96  * Accessor to set the cfg reg for a specific PMP/HART
97  * Bounds checks and relevant lock bit.
98  */
99 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val)
100 {
101     if (pmp_index < MAX_RISCV_PMPS) {
102         if (!pmp_is_locked(env, pmp_index)) {
103             env->pmp_state.pmp[pmp_index].cfg_reg = val;
104             pmp_update_rule(env, pmp_index);
105         } else {
106             qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n");
107         }
108     } else {
109         qemu_log_mask(LOG_GUEST_ERROR,
110                       "ignoring pmpcfg write - out of bounds\n");
111     }
112 }
113 
114 static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea)
115 {
116     /*
117        aaaa...aaa0   8-byte NAPOT range
118        aaaa...aa01   16-byte NAPOT range
119        aaaa...a011   32-byte NAPOT range
120        ...
121        aa01...1111   2^XLEN-byte NAPOT range
122        a011...1111   2^(XLEN+1)-byte NAPOT range
123        0111...1111   2^(XLEN+2)-byte NAPOT range
124        1111...1111   Reserved
125     */
126     if (a == -1) {
127         *sa = 0u;
128         *ea = -1;
129         return;
130     } else {
131         target_ulong t1 = ctz64(~a);
132         target_ulong base = (a & ~(((target_ulong)1 << t1) - 1)) << 2;
133         target_ulong range = ((target_ulong)1 << (t1 + 3)) - 1;
134         *sa = base;
135         *ea = base + range;
136     }
137 }
138 
139 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index)
140 {
141     uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg;
142     target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg;
143     target_ulong prev_addr = 0u;
144     target_ulong sa = 0u;
145     target_ulong ea = 0u;
146 
147     if (pmp_index >= 1u) {
148         prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg;
149     }
150 
151     switch (pmp_get_a_field(this_cfg)) {
152     case PMP_AMATCH_OFF:
153         sa = 0u;
154         ea = -1;
155         break;
156 
157     case PMP_AMATCH_TOR:
158         sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
159         ea = (this_addr << 2) - 1u;
160         break;
161 
162     case PMP_AMATCH_NA4:
163         sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
164         ea = (sa + 4u) - 1u;
165         break;
166 
167     case PMP_AMATCH_NAPOT:
168         pmp_decode_napot(this_addr, &sa, &ea);
169         break;
170 
171     default:
172         sa = 0u;
173         ea = 0u;
174         break;
175     }
176 
177     env->pmp_state.addr[pmp_index].sa = sa;
178     env->pmp_state.addr[pmp_index].ea = ea;
179 }
180 
181 void pmp_update_rule_nums(CPURISCVState *env)
182 {
183     int i;
184 
185     env->pmp_state.num_rules = 0;
186     for (i = 0; i < MAX_RISCV_PMPS; i++) {
187         const uint8_t a_field =
188             pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
189         if (PMP_AMATCH_OFF != a_field) {
190             env->pmp_state.num_rules++;
191         }
192     }
193 }
194 
195 /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea'
196  *   end address values.
197  *   This function is called relatively infrequently whereas the check that
198  *   an address is within a pmp rule is called often, so optimise that one
199  */
200 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index)
201 {
202     pmp_update_rule_addr(env, pmp_index);
203     pmp_update_rule_nums(env);
204 }
205 
206 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr)
207 {
208     int result = 0;
209 
210     if ((addr >= env->pmp_state.addr[pmp_index].sa)
211         && (addr <= env->pmp_state.addr[pmp_index].ea)) {
212         result = 1;
213     } else {
214         result = 0;
215     }
216 
217     return result;
218 }
219 
220 
221 /*
222  * Public Interface
223  */
224 
225 /*
226  * Check if the address has required RWX privs to complete desired operation
227  */
228 bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr,
229     target_ulong size, pmp_priv_t privs, target_ulong mode)
230 {
231     int i = 0;
232     int ret = -1;
233     int pmp_size = 0;
234     target_ulong s = 0;
235     target_ulong e = 0;
236     pmp_priv_t allowed_privs = 0;
237 
238     /* Short cut if no rules */
239     if (0 == pmp_get_num_rules(env)) {
240         return (env->priv == PRV_M) ? true : false;
241     }
242 
243     if (size == 0) {
244         if (riscv_feature(env, RISCV_FEATURE_MMU)) {
245             /*
246              * If size is unknown (0), assume that all bytes
247              * from addr to the end of the page will be accessed.
248              */
249             pmp_size = -(addr | TARGET_PAGE_MASK);
250         } else {
251             pmp_size = sizeof(target_ulong);
252         }
253     } else {
254         pmp_size = size;
255     }
256 
257     /* 1.10 draft priv spec states there is an implicit order
258          from low to high */
259     for (i = 0; i < MAX_RISCV_PMPS; i++) {
260         s = pmp_is_in_range(env, i, addr);
261         e = pmp_is_in_range(env, i, addr + pmp_size - 1);
262 
263         /* partially inside */
264         if ((s + e) == 1) {
265             qemu_log_mask(LOG_GUEST_ERROR,
266                           "pmp violation - access is partially inside\n");
267             ret = 0;
268             break;
269         }
270 
271         /* fully inside */
272         const uint8_t a_field =
273             pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
274 
275         /*
276          * If the PMP entry is not off and the address is in range, do the priv
277          * check
278          */
279         if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) {
280             allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
281             if ((mode != PRV_M) || pmp_is_locked(env, i)) {
282                 allowed_privs &= env->pmp_state.pmp[i].cfg_reg;
283             }
284 
285             if ((privs & allowed_privs) == privs) {
286                 ret = 1;
287                 break;
288             } else {
289                 ret = 0;
290                 break;
291             }
292         }
293     }
294 
295     /* No rule matched */
296     if (ret == -1) {
297         if (mode == PRV_M) {
298             ret = 1; /* Privileged spec v1.10 states if no PMP entry matches an
299                       * M-Mode access, the access succeeds */
300         } else {
301             ret = 0; /* Other modes are not allowed to succeed if they don't
302                       * match a rule, but there are rules.  We've checked for
303                       * no rule earlier in this function. */
304         }
305     }
306 
307     return ret == 1 ? true : false;
308 }
309 
310 
311 /*
312  * Handle a write to a pmpcfg CSP
313  */
314 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index,
315     target_ulong val)
316 {
317     int i;
318     uint8_t cfg_val;
319 
320     trace_pmpcfg_csr_write(env->mhartid, reg_index, val);
321 
322     if ((reg_index & 1) && (sizeof(target_ulong) == 8)) {
323         qemu_log_mask(LOG_GUEST_ERROR,
324                       "ignoring pmpcfg write - incorrect address\n");
325         return;
326     }
327 
328     for (i = 0; i < sizeof(target_ulong); i++) {
329         cfg_val = (val >> 8 * i)  & 0xff;
330         pmp_write_cfg(env, (reg_index * 4) + i, cfg_val);
331     }
332 }
333 
334 
335 /*
336  * Handle a read from a pmpcfg CSP
337  */
338 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index)
339 {
340     int i;
341     target_ulong cfg_val = 0;
342     target_ulong val = 0;
343 
344     for (i = 0; i < sizeof(target_ulong); i++) {
345         val = pmp_read_cfg(env, (reg_index * 4) + i);
346         cfg_val |= (val << (i * 8));
347     }
348     trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val);
349 
350     return cfg_val;
351 }
352 
353 
354 /*
355  * Handle a write to a pmpaddr CSP
356  */
357 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index,
358     target_ulong val)
359 {
360     trace_pmpaddr_csr_write(env->mhartid, addr_index, val);
361     if (addr_index < MAX_RISCV_PMPS) {
362         if (!pmp_is_locked(env, addr_index)) {
363             env->pmp_state.pmp[addr_index].addr_reg = val;
364             pmp_update_rule(env, addr_index);
365         } else {
366             qemu_log_mask(LOG_GUEST_ERROR,
367                           "ignoring pmpaddr write - locked\n");
368         }
369     } else {
370         qemu_log_mask(LOG_GUEST_ERROR,
371                       "ignoring pmpaddr write - out of bounds\n");
372     }
373 }
374 
375 
376 /*
377  * Handle a read from a pmpaddr CSP
378  */
379 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index)
380 {
381     target_ulong val = 0;
382 
383     if (addr_index < MAX_RISCV_PMPS) {
384         val = env->pmp_state.pmp[addr_index].addr_reg;
385         trace_pmpaddr_csr_read(env->mhartid, addr_index, val);
386     } else {
387         qemu_log_mask(LOG_GUEST_ERROR,
388                       "ignoring pmpaddr read - out of bounds\n");
389     }
390 
391     return val;
392 }
393 
394 /*
395  * Calculate the TLB size if the start address or the end address of
396  * PMP entry is presented in thie TLB page.
397  */
398 static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index,
399                                      target_ulong tlb_sa, target_ulong tlb_ea)
400 {
401     target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa;
402     target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea;
403 
404     if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) {
405         return pmp_ea - pmp_sa + 1;
406     }
407 
408     if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) {
409         return tlb_ea - pmp_sa + 1;
410     }
411 
412     if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) {
413         return pmp_ea - tlb_sa + 1;
414     }
415 
416     return 0;
417 }
418 
419 /*
420  * Check is there a PMP entry which range covers this page. If so,
421  * try to find the minimum granularity for the TLB size.
422  */
423 bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa,
424                          target_ulong *tlb_size)
425 {
426     int i;
427     target_ulong val;
428     target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1);
429 
430     for (i = 0; i < MAX_RISCV_PMPS; i++) {
431         val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea);
432         if (val) {
433             if (*tlb_size == 0 || *tlb_size > val) {
434                 *tlb_size = val;
435             }
436         }
437     }
438 
439     if (*tlb_size != 0) {
440         return true;
441     }
442 
443     return false;
444 }
445