xref: /qemu/target/sh4/op_helper.c (revision b83a80e8)
1 /*
2  *  SH4 emulation
3  *
4  *  Copyright (c) 2005 Samuel Tardieu
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "exec/cpu_ldst.h"
24 #include "fpu/softfloat.h"
25 
26 #ifndef CONFIG_USER_ONLY
27 
28 void superh_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
29                                     MMUAccessType access_type,
30                                     int mmu_idx, uintptr_t retaddr)
31 {
32     CPUSH4State *env = cs->env_ptr;
33 
34     env->tea = addr;
35     switch (access_type) {
36     case MMU_INST_FETCH:
37     case MMU_DATA_LOAD:
38         cs->exception_index = 0x0e0;
39         break;
40     case MMU_DATA_STORE:
41         cs->exception_index = 0x100;
42         break;
43     default:
44         g_assert_not_reached();
45     }
46     cpu_loop_exit_restore(cs, retaddr);
47 }
48 
49 #endif
50 
51 void helper_ldtlb(CPUSH4State *env)
52 {
53 #ifdef CONFIG_USER_ONLY
54     cpu_abort(env_cpu(env), "Unhandled ldtlb");
55 #else
56     cpu_load_tlb(env);
57 #endif
58 }
59 
60 static inline void QEMU_NORETURN raise_exception(CPUSH4State *env, int index,
61                                                  uintptr_t retaddr)
62 {
63     CPUState *cs = env_cpu(env);
64 
65     cs->exception_index = index;
66     cpu_loop_exit_restore(cs, retaddr);
67 }
68 
69 void helper_raise_illegal_instruction(CPUSH4State *env)
70 {
71     raise_exception(env, 0x180, 0);
72 }
73 
74 void helper_raise_slot_illegal_instruction(CPUSH4State *env)
75 {
76     raise_exception(env, 0x1a0, 0);
77 }
78 
79 void helper_raise_fpu_disable(CPUSH4State *env)
80 {
81     raise_exception(env, 0x800, 0);
82 }
83 
84 void helper_raise_slot_fpu_disable(CPUSH4State *env)
85 {
86     raise_exception(env, 0x820, 0);
87 }
88 
89 void helper_sleep(CPUSH4State *env)
90 {
91     CPUState *cs = env_cpu(env);
92 
93     cs->halted = 1;
94     env->in_sleep = 1;
95     raise_exception(env, EXCP_HLT, 0);
96 }
97 
98 void helper_trapa(CPUSH4State *env, uint32_t tra)
99 {
100     env->tra = tra << 2;
101     raise_exception(env, 0x160, 0);
102 }
103 
104 void helper_exclusive(CPUSH4State *env)
105 {
106     /* We do not want cpu_restore_state to run.  */
107     cpu_loop_exit_atomic(env_cpu(env), 0);
108 }
109 
110 void helper_movcal(CPUSH4State *env, uint32_t address, uint32_t value)
111 {
112     if (cpu_sh4_is_cached (env, address))
113     {
114         memory_content *r = g_new(memory_content, 1);
115 
116 	r->address = address;
117 	r->value = value;
118 	r->next = NULL;
119 
120 	*(env->movcal_backup_tail) = r;
121 	env->movcal_backup_tail = &(r->next);
122     }
123 }
124 
125 void helper_discard_movcal_backup(CPUSH4State *env)
126 {
127     memory_content *current = env->movcal_backup;
128 
129     while(current)
130     {
131 	memory_content *next = current->next;
132         g_free(current);
133 	env->movcal_backup = current = next;
134 	if (current == NULL)
135 	    env->movcal_backup_tail = &(env->movcal_backup);
136     }
137 }
138 
139 void helper_ocbi(CPUSH4State *env, uint32_t address)
140 {
141     memory_content **current = &(env->movcal_backup);
142     while (*current)
143     {
144 	uint32_t a = (*current)->address;
145 	if ((a & ~0x1F) == (address & ~0x1F))
146 	{
147 	    memory_content *next = (*current)->next;
148             cpu_stl_data(env, a, (*current)->value);
149 
150 	    if (next == NULL)
151 	    {
152 		env->movcal_backup_tail = current;
153 	    }
154 
155             g_free(*current);
156 	    *current = next;
157 	    break;
158 	}
159     }
160 }
161 
162 void helper_macl(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
163 {
164     int64_t res;
165 
166     res = ((uint64_t) env->mach << 32) | env->macl;
167     res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
168     env->mach = (res >> 32) & 0xffffffff;
169     env->macl = res & 0xffffffff;
170     if (env->sr & (1u << SR_S)) {
171 	if (res < 0)
172 	    env->mach |= 0xffff0000;
173 	else
174 	    env->mach &= 0x00007fff;
175     }
176 }
177 
178 void helper_macw(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
179 {
180     int64_t res;
181 
182     res = ((uint64_t) env->mach << 32) | env->macl;
183     res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
184     env->mach = (res >> 32) & 0xffffffff;
185     env->macl = res & 0xffffffff;
186     if (env->sr & (1u << SR_S)) {
187 	if (res < -0x80000000) {
188 	    env->mach = 1;
189 	    env->macl = 0x80000000;
190 	} else if (res > 0x000000007fffffff) {
191 	    env->mach = 1;
192 	    env->macl = 0x7fffffff;
193 	}
194     }
195 }
196 
197 void helper_ld_fpscr(CPUSH4State *env, uint32_t val)
198 {
199     env->fpscr = val & FPSCR_MASK;
200     if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) {
201 	set_float_rounding_mode(float_round_to_zero, &env->fp_status);
202     } else {
203 	set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
204     }
205     set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status);
206 }
207 
208 static void update_fpscr(CPUSH4State *env, uintptr_t retaddr)
209 {
210     int xcpt, cause, enable;
211 
212     xcpt = get_float_exception_flags(&env->fp_status);
213 
214     /* Clear the cause entries */
215     env->fpscr &= ~FPSCR_CAUSE_MASK;
216 
217     if (unlikely(xcpt)) {
218         if (xcpt & float_flag_invalid) {
219             env->fpscr |= FPSCR_CAUSE_V;
220         }
221         if (xcpt & float_flag_divbyzero) {
222             env->fpscr |= FPSCR_CAUSE_Z;
223         }
224         if (xcpt & float_flag_overflow) {
225             env->fpscr |= FPSCR_CAUSE_O;
226         }
227         if (xcpt & float_flag_underflow) {
228             env->fpscr |= FPSCR_CAUSE_U;
229         }
230         if (xcpt & float_flag_inexact) {
231             env->fpscr |= FPSCR_CAUSE_I;
232         }
233 
234         /* Accumulate in flag entries */
235         env->fpscr |= (env->fpscr & FPSCR_CAUSE_MASK)
236                       >> (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT);
237 
238         /* Generate an exception if enabled */
239         cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT;
240         enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT;
241         if (cause & enable) {
242             raise_exception(env, 0x120, retaddr);
243         }
244     }
245 }
246 
247 float32 helper_fadd_FT(CPUSH4State *env, float32 t0, float32 t1)
248 {
249     set_float_exception_flags(0, &env->fp_status);
250     t0 = float32_add(t0, t1, &env->fp_status);
251     update_fpscr(env, GETPC());
252     return t0;
253 }
254 
255 float64 helper_fadd_DT(CPUSH4State *env, float64 t0, float64 t1)
256 {
257     set_float_exception_flags(0, &env->fp_status);
258     t0 = float64_add(t0, t1, &env->fp_status);
259     update_fpscr(env, GETPC());
260     return t0;
261 }
262 
263 uint32_t helper_fcmp_eq_FT(CPUSH4State *env, float32 t0, float32 t1)
264 {
265     int relation;
266 
267     set_float_exception_flags(0, &env->fp_status);
268     relation = float32_compare(t0, t1, &env->fp_status);
269     update_fpscr(env, GETPC());
270     return relation == float_relation_equal;
271 }
272 
273 uint32_t helper_fcmp_eq_DT(CPUSH4State *env, float64 t0, float64 t1)
274 {
275     int relation;
276 
277     set_float_exception_flags(0, &env->fp_status);
278     relation = float64_compare(t0, t1, &env->fp_status);
279     update_fpscr(env, GETPC());
280     return relation == float_relation_equal;
281 }
282 
283 uint32_t helper_fcmp_gt_FT(CPUSH4State *env, float32 t0, float32 t1)
284 {
285     int relation;
286 
287     set_float_exception_flags(0, &env->fp_status);
288     relation = float32_compare(t0, t1, &env->fp_status);
289     update_fpscr(env, GETPC());
290     return relation == float_relation_greater;
291 }
292 
293 uint32_t helper_fcmp_gt_DT(CPUSH4State *env, float64 t0, float64 t1)
294 {
295     int relation;
296 
297     set_float_exception_flags(0, &env->fp_status);
298     relation = float64_compare(t0, t1, &env->fp_status);
299     update_fpscr(env, GETPC());
300     return relation == float_relation_greater;
301 }
302 
303 float64 helper_fcnvsd_FT_DT(CPUSH4State *env, float32 t0)
304 {
305     float64 ret;
306     set_float_exception_flags(0, &env->fp_status);
307     ret = float32_to_float64(t0, &env->fp_status);
308     update_fpscr(env, GETPC());
309     return ret;
310 }
311 
312 float32 helper_fcnvds_DT_FT(CPUSH4State *env, float64 t0)
313 {
314     float32 ret;
315     set_float_exception_flags(0, &env->fp_status);
316     ret = float64_to_float32(t0, &env->fp_status);
317     update_fpscr(env, GETPC());
318     return ret;
319 }
320 
321 float32 helper_fdiv_FT(CPUSH4State *env, float32 t0, float32 t1)
322 {
323     set_float_exception_flags(0, &env->fp_status);
324     t0 = float32_div(t0, t1, &env->fp_status);
325     update_fpscr(env, GETPC());
326     return t0;
327 }
328 
329 float64 helper_fdiv_DT(CPUSH4State *env, float64 t0, float64 t1)
330 {
331     set_float_exception_flags(0, &env->fp_status);
332     t0 = float64_div(t0, t1, &env->fp_status);
333     update_fpscr(env, GETPC());
334     return t0;
335 }
336 
337 float32 helper_float_FT(CPUSH4State *env, uint32_t t0)
338 {
339     float32 ret;
340     set_float_exception_flags(0, &env->fp_status);
341     ret = int32_to_float32(t0, &env->fp_status);
342     update_fpscr(env, GETPC());
343     return ret;
344 }
345 
346 float64 helper_float_DT(CPUSH4State *env, uint32_t t0)
347 {
348     float64 ret;
349     set_float_exception_flags(0, &env->fp_status);
350     ret = int32_to_float64(t0, &env->fp_status);
351     update_fpscr(env, GETPC());
352     return ret;
353 }
354 
355 float32 helper_fmac_FT(CPUSH4State *env, float32 t0, float32 t1, float32 t2)
356 {
357     set_float_exception_flags(0, &env->fp_status);
358     t0 = float32_muladd(t0, t1, t2, 0, &env->fp_status);
359     update_fpscr(env, GETPC());
360     return t0;
361 }
362 
363 float32 helper_fmul_FT(CPUSH4State *env, float32 t0, float32 t1)
364 {
365     set_float_exception_flags(0, &env->fp_status);
366     t0 = float32_mul(t0, t1, &env->fp_status);
367     update_fpscr(env, GETPC());
368     return t0;
369 }
370 
371 float64 helper_fmul_DT(CPUSH4State *env, float64 t0, float64 t1)
372 {
373     set_float_exception_flags(0, &env->fp_status);
374     t0 = float64_mul(t0, t1, &env->fp_status);
375     update_fpscr(env, GETPC());
376     return t0;
377 }
378 
379 float32 helper_fsqrt_FT(CPUSH4State *env, float32 t0)
380 {
381     set_float_exception_flags(0, &env->fp_status);
382     t0 = float32_sqrt(t0, &env->fp_status);
383     update_fpscr(env, GETPC());
384     return t0;
385 }
386 
387 float64 helper_fsqrt_DT(CPUSH4State *env, float64 t0)
388 {
389     set_float_exception_flags(0, &env->fp_status);
390     t0 = float64_sqrt(t0, &env->fp_status);
391     update_fpscr(env, GETPC());
392     return t0;
393 }
394 
395 float32 helper_fsrra_FT(CPUSH4State *env, float32 t0)
396 {
397     set_float_exception_flags(0, &env->fp_status);
398     /* "Approximate" 1/sqrt(x) via actual computation.  */
399     t0 = float32_sqrt(t0, &env->fp_status);
400     t0 = float32_div(float32_one, t0, &env->fp_status);
401     /*
402      * Since this is supposed to be an approximation, an imprecision
403      * exception is required.  One supposes this also follows the usual
404      * IEEE rule that other exceptions take precedence.
405      */
406     if (get_float_exception_flags(&env->fp_status) == 0) {
407         set_float_exception_flags(float_flag_inexact, &env->fp_status);
408     }
409     update_fpscr(env, GETPC());
410     return t0;
411 }
412 
413 float32 helper_fsub_FT(CPUSH4State *env, float32 t0, float32 t1)
414 {
415     set_float_exception_flags(0, &env->fp_status);
416     t0 = float32_sub(t0, t1, &env->fp_status);
417     update_fpscr(env, GETPC());
418     return t0;
419 }
420 
421 float64 helper_fsub_DT(CPUSH4State *env, float64 t0, float64 t1)
422 {
423     set_float_exception_flags(0, &env->fp_status);
424     t0 = float64_sub(t0, t1, &env->fp_status);
425     update_fpscr(env, GETPC());
426     return t0;
427 }
428 
429 uint32_t helper_ftrc_FT(CPUSH4State *env, float32 t0)
430 {
431     uint32_t ret;
432     set_float_exception_flags(0, &env->fp_status);
433     ret = float32_to_int32_round_to_zero(t0, &env->fp_status);
434     update_fpscr(env, GETPC());
435     return ret;
436 }
437 
438 uint32_t helper_ftrc_DT(CPUSH4State *env, float64 t0)
439 {
440     uint32_t ret;
441     set_float_exception_flags(0, &env->fp_status);
442     ret = float64_to_int32_round_to_zero(t0, &env->fp_status);
443     update_fpscr(env, GETPC());
444     return ret;
445 }
446 
447 void helper_fipr(CPUSH4State *env, uint32_t m, uint32_t n)
448 {
449     int bank, i;
450     float32 r, p;
451 
452     bank = (env->sr & FPSCR_FR) ? 16 : 0;
453     r = float32_zero;
454     set_float_exception_flags(0, &env->fp_status);
455 
456     for (i = 0 ; i < 4 ; i++) {
457         p = float32_mul(env->fregs[bank + m + i],
458                         env->fregs[bank + n + i],
459                         &env->fp_status);
460         r = float32_add(r, p, &env->fp_status);
461     }
462     update_fpscr(env, GETPC());
463 
464     env->fregs[bank + n + 3] = r;
465 }
466 
467 void helper_ftrv(CPUSH4State *env, uint32_t n)
468 {
469     int bank_matrix, bank_vector;
470     int i, j;
471     float32 r[4];
472     float32 p;
473 
474     bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16;
475     bank_vector = (env->sr & FPSCR_FR) ? 16 : 0;
476     set_float_exception_flags(0, &env->fp_status);
477     for (i = 0 ; i < 4 ; i++) {
478         r[i] = float32_zero;
479         for (j = 0 ; j < 4 ; j++) {
480             p = float32_mul(env->fregs[bank_matrix + 4 * j + i],
481                             env->fregs[bank_vector + j],
482                             &env->fp_status);
483             r[i] = float32_add(r[i], p, &env->fp_status);
484         }
485     }
486     update_fpscr(env, GETPC());
487 
488     for (i = 0 ; i < 4 ; i++) {
489         env->fregs[bank_vector + i] = r[i];
490     }
491 }
492