xref: /qemu/target/sparc/ldst_helper.c (revision 02326733)
1 /*
2  * Helpers for loads and stores
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "tcg/tcg.h"
24 #include "exec/helper-proto.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "asi.h"
28 
29 //#define DEBUG_MMU
30 //#define DEBUG_MXCC
31 //#define DEBUG_UNASSIGNED
32 //#define DEBUG_ASI
33 //#define DEBUG_CACHE_CONTROL
34 
35 #ifdef DEBUG_MMU
36 #define DPRINTF_MMU(fmt, ...)                                   \
37     do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF_MMU(fmt, ...) do {} while (0)
40 #endif
41 
42 #ifdef DEBUG_MXCC
43 #define DPRINTF_MXCC(fmt, ...)                                  \
44     do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
47 #endif
48 
49 #ifdef DEBUG_ASI
50 #define DPRINTF_ASI(fmt, ...)                                   \
51     do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
52 #endif
53 
54 #ifdef DEBUG_CACHE_CONTROL
55 #define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
56     do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
59 #endif
60 
61 #ifdef TARGET_SPARC64
62 #ifndef TARGET_ABI32
63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
64 #else
65 #define AM_CHECK(env1) (1)
66 #endif
67 #endif
68 
69 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
70 /* Calculates TSB pointer value for fault page size
71  * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
72  * UA2005 holds the page size configuration in mmu_ctx registers */
73 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
74                                        const SparcV9MMU *mmu, const int idx)
75 {
76     uint64_t tsb_register;
77     int page_size;
78     if (cpu_has_hypervisor(env)) {
79         int tsb_index = 0;
80         int ctx = mmu->tag_access & 0x1fffULL;
81         uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
82         tsb_index = idx;
83         tsb_index |= ctx ? 2 : 0;
84         page_size = idx ? ctx_register >> 8 : ctx_register;
85         page_size &= 7;
86         tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
87     } else {
88         page_size = idx;
89         tsb_register = mmu->tsb;
90     }
91     int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
92     int tsb_size  = tsb_register & 0xf;
93 
94     uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
95 
96     /* move va bits to correct position,
97      * the context bits will be masked out later */
98     uint64_t va = mmu->tag_access >> (3 * page_size + 9);
99 
100     /* calculate tsb_base mask and adjust va if split is in use */
101     if (tsb_split) {
102         if (idx == 0) {
103             va &= ~(1ULL << (13 + tsb_size));
104         } else {
105             va |= (1ULL << (13 + tsb_size));
106         }
107         tsb_base_mask <<= 1;
108     }
109 
110     return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
111 }
112 
113 /* Calculates tag target register value by reordering bits
114    in tag access register */
115 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
116 {
117     return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
118 }
119 
120 static void replace_tlb_entry(SparcTLBEntry *tlb,
121                               uint64_t tlb_tag, uint64_t tlb_tte,
122                               CPUSPARCState *env)
123 {
124     target_ulong mask, size, va, offset;
125 
126     /* flush page range if translation is valid */
127     if (TTE_IS_VALID(tlb->tte)) {
128         CPUState *cs = env_cpu(env);
129 
130         size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
131         mask = 1ULL + ~size;
132 
133         va = tlb->tag & mask;
134 
135         for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
136             tlb_flush_page(cs, va + offset);
137         }
138     }
139 
140     tlb->tag = tlb_tag;
141     tlb->tte = tlb_tte;
142 }
143 
144 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
145                       const char *strmmu, CPUSPARCState *env1)
146 {
147     unsigned int i;
148     target_ulong mask;
149     uint64_t context;
150 
151     int is_demap_context = (demap_addr >> 6) & 1;
152 
153     /* demap context */
154     switch ((demap_addr >> 4) & 3) {
155     case 0: /* primary */
156         context = env1->dmmu.mmu_primary_context;
157         break;
158     case 1: /* secondary */
159         context = env1->dmmu.mmu_secondary_context;
160         break;
161     case 2: /* nucleus */
162         context = 0;
163         break;
164     case 3: /* reserved */
165     default:
166         return;
167     }
168 
169     for (i = 0; i < 64; i++) {
170         if (TTE_IS_VALID(tlb[i].tte)) {
171 
172             if (is_demap_context) {
173                 /* will remove non-global entries matching context value */
174                 if (TTE_IS_GLOBAL(tlb[i].tte) ||
175                     !tlb_compare_context(&tlb[i], context)) {
176                     continue;
177                 }
178             } else {
179                 /* demap page
180                    will remove any entry matching VA */
181                 mask = 0xffffffffffffe000ULL;
182                 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
183 
184                 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
185                     continue;
186                 }
187 
188                 /* entry should be global or matching context value */
189                 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
190                     !tlb_compare_context(&tlb[i], context)) {
191                     continue;
192                 }
193             }
194 
195             replace_tlb_entry(&tlb[i], 0, 0, env1);
196 #ifdef DEBUG_MMU
197             DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
198             dump_mmu(env1);
199 #endif
200         }
201     }
202 }
203 
204 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
205                                    uint64_t sun4v_tte)
206 {
207     uint64_t sun4u_tte;
208     if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
209         /* is already in the sun4u format */
210         return sun4v_tte;
211     }
212     sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
213     sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
214     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
215     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
216     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
217     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
218                              TTE_SIDEEFFECT_BIT);
219     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
220     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
221     return sun4u_tte;
222 }
223 
224 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
225                                  uint64_t tlb_tag, uint64_t tlb_tte,
226                                  const char *strmmu, CPUSPARCState *env1,
227                                  uint64_t addr)
228 {
229     unsigned int i, replace_used;
230 
231     tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
232     if (cpu_has_hypervisor(env1)) {
233         uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
234         uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
235         uint32_t new_ctx = tlb_tag & 0x1fffU;
236         for (i = 0; i < 64; i++) {
237             uint32_t ctx = tlb[i].tag & 0x1fffU;
238             /* check if new mapping overlaps an existing one */
239             if (new_ctx == ctx) {
240                 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
241                 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
242                 if (new_vaddr == vaddr
243                     || (new_vaddr < vaddr + size
244                         && vaddr < new_vaddr + new_size)) {
245                     DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
246                                 new_vaddr);
247                     replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
248                     return;
249                 }
250             }
251 
252         }
253     }
254     /* Try replacing invalid entry */
255     for (i = 0; i < 64; i++) {
256         if (!TTE_IS_VALID(tlb[i].tte)) {
257             replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
258 #ifdef DEBUG_MMU
259             DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
260             dump_mmu(env1);
261 #endif
262             return;
263         }
264     }
265 
266     /* All entries are valid, try replacing unlocked entry */
267 
268     for (replace_used = 0; replace_used < 2; ++replace_used) {
269 
270         /* Used entries are not replaced on first pass */
271 
272         for (i = 0; i < 64; i++) {
273             if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
274 
275                 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
276 #ifdef DEBUG_MMU
277                 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
278                             strmmu, (replace_used ? "used" : "unused"), i);
279                 dump_mmu(env1);
280 #endif
281                 return;
282             }
283         }
284 
285         /* Now reset used bit and search for unused entries again */
286 
287         for (i = 0; i < 64; i++) {
288             TTE_SET_UNUSED(tlb[i].tte);
289         }
290     }
291 
292 #ifdef DEBUG_MMU
293     DPRINTF_MMU("%s lru replacement: no free entries available, "
294                 "replacing the last one\n", strmmu);
295 #endif
296     /* corner case: the last entry is replaced anyway */
297     replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
298 }
299 
300 #endif
301 
302 #ifdef TARGET_SPARC64
303 /* returns true if access using this ASI is to have address translated by MMU
304    otherwise access is to raw physical address */
305 /* TODO: check sparc32 bits */
306 static inline int is_translating_asi(int asi)
307 {
308     /* Ultrasparc IIi translating asi
309        - note this list is defined by cpu implementation
310     */
311     switch (asi) {
312     case 0x04 ... 0x11:
313     case 0x16 ... 0x19:
314     case 0x1E ... 0x1F:
315     case 0x24 ... 0x2C:
316     case 0x70 ... 0x73:
317     case 0x78 ... 0x79:
318     case 0x80 ... 0xFF:
319         return 1;
320 
321     default:
322         return 0;
323     }
324 }
325 
326 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
327 {
328     if (AM_CHECK(env1)) {
329         addr &= 0xffffffffULL;
330     }
331     return addr;
332 }
333 
334 static inline target_ulong asi_address_mask(CPUSPARCState *env,
335                                             int asi, target_ulong addr)
336 {
337     if (is_translating_asi(asi)) {
338         addr = address_mask(env, addr);
339     }
340     return addr;
341 }
342 
343 #ifndef CONFIG_USER_ONLY
344 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
345 {
346     /* ASIs >= 0x80 are user mode.
347      * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
348      * ASIs <= 0x2f are super mode.
349      */
350     if (asi < 0x80
351         && !cpu_hypervisor_mode(env)
352         && (!cpu_supervisor_mode(env)
353             || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
354         cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
355     }
356 }
357 #endif /* !CONFIG_USER_ONLY */
358 #endif
359 
360 #if defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)
361 static void do_check_align(CPUSPARCState *env, target_ulong addr,
362                            uint32_t align, uintptr_t ra)
363 {
364     if (addr & align) {
365         cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
366     }
367 }
368 #endif
369 
370 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
371     defined(DEBUG_MXCC)
372 static void dump_mxcc(CPUSPARCState *env)
373 {
374     printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
375            "\n",
376            env->mxccdata[0], env->mxccdata[1],
377            env->mxccdata[2], env->mxccdata[3]);
378     printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
379            "\n"
380            "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
381            "\n",
382            env->mxccregs[0], env->mxccregs[1],
383            env->mxccregs[2], env->mxccregs[3],
384            env->mxccregs[4], env->mxccregs[5],
385            env->mxccregs[6], env->mxccregs[7]);
386 }
387 #endif
388 
389 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
390     && defined(DEBUG_ASI)
391 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
392                      uint64_t r1)
393 {
394     switch (size) {
395     case 1:
396         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
397                     addr, asi, r1 & 0xff);
398         break;
399     case 2:
400         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
401                     addr, asi, r1 & 0xffff);
402         break;
403     case 4:
404         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
405                     addr, asi, r1 & 0xffffffff);
406         break;
407     case 8:
408         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
409                     addr, asi, r1);
410         break;
411     }
412 }
413 #endif
414 
415 #ifndef CONFIG_USER_ONLY
416 #ifndef TARGET_SPARC64
417 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
418                                   bool is_write, bool is_exec, int is_asi,
419                                   unsigned size, uintptr_t retaddr)
420 {
421     CPUSPARCState *env = cpu_env(cs);
422     int fault_type;
423 
424 #ifdef DEBUG_UNASSIGNED
425     if (is_asi) {
426         printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
427                " asi 0x%02x from " TARGET_FMT_lx "\n",
428                is_exec ? "exec" : is_write ? "write" : "read", size,
429                size == 1 ? "" : "s", addr, is_asi, env->pc);
430     } else {
431         printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
432                " from " TARGET_FMT_lx "\n",
433                is_exec ? "exec" : is_write ? "write" : "read", size,
434                size == 1 ? "" : "s", addr, env->pc);
435     }
436 #endif
437     /* Don't overwrite translation and access faults */
438     fault_type = (env->mmuregs[3] & 0x1c) >> 2;
439     if ((fault_type > 4) || (fault_type == 0)) {
440         env->mmuregs[3] = 0; /* Fault status register */
441         if (is_asi) {
442             env->mmuregs[3] |= 1 << 16;
443         }
444         if (env->psrs) {
445             env->mmuregs[3] |= 1 << 5;
446         }
447         if (is_exec) {
448             env->mmuregs[3] |= 1 << 6;
449         }
450         if (is_write) {
451             env->mmuregs[3] |= 1 << 7;
452         }
453         env->mmuregs[3] |= (5 << 2) | 2;
454         /* SuperSPARC will never place instruction fault addresses in the FAR */
455         if (!is_exec) {
456             env->mmuregs[4] = addr; /* Fault address register */
457         }
458     }
459     /* overflow (same type fault was not read before another fault) */
460     if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
461         env->mmuregs[3] |= 1;
462     }
463 
464     if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
465         int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
466         cpu_raise_exception_ra(env, tt, retaddr);
467     }
468 
469     /*
470      * flush neverland mappings created during no-fault mode,
471      * so the sequential MMU faults report proper fault types
472      */
473     if (env->mmuregs[0] & MMU_NF) {
474         tlb_flush(cs);
475     }
476 }
477 #else
478 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
479                                   bool is_write, bool is_exec, int is_asi,
480                                   unsigned size, uintptr_t retaddr)
481 {
482     CPUSPARCState *env = cpu_env(cs);
483 
484 #ifdef DEBUG_UNASSIGNED
485     printf("Unassigned mem access to " HWADDR_FMT_plx " from " TARGET_FMT_lx
486            "\n", addr, env->pc);
487 #endif
488 
489     if (is_exec) { /* XXX has_hypervisor */
490         if (env->lsu & (IMMU_E)) {
491             cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
492         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
493             cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
494         }
495     } else {
496         if (env->lsu & (DMMU_E)) {
497             cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
498         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
499             cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
500         }
501     }
502 }
503 #endif
504 #endif
505 
506 #ifndef TARGET_SPARC64
507 #ifndef CONFIG_USER_ONLY
508 
509 
510 /* Leon3 cache control */
511 
512 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
513                                    uint64_t val, int size)
514 {
515     DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
516                           addr, val, size);
517 
518     if (size != 4) {
519         DPRINTF_CACHE_CONTROL("32bits only\n");
520         return;
521     }
522 
523     switch (addr) {
524     case 0x00:              /* Cache control */
525 
526         /* These values must always be read as zeros */
527         val &= ~CACHE_CTRL_FD;
528         val &= ~CACHE_CTRL_FI;
529         val &= ~CACHE_CTRL_IB;
530         val &= ~CACHE_CTRL_IP;
531         val &= ~CACHE_CTRL_DP;
532 
533         env->cache_control = val;
534         break;
535     case 0x04:              /* Instruction cache configuration */
536     case 0x08:              /* Data cache configuration */
537         /* Read Only */
538         break;
539     default:
540         DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
541         break;
542     };
543 }
544 
545 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
546                                        int size)
547 {
548     uint64_t ret = 0;
549 
550     if (size != 4) {
551         DPRINTF_CACHE_CONTROL("32bits only\n");
552         return 0;
553     }
554 
555     switch (addr) {
556     case 0x00:              /* Cache control */
557         ret = env->cache_control;
558         break;
559 
560         /* Configuration registers are read and only always keep those
561            predefined values */
562 
563     case 0x04:              /* Instruction cache configuration */
564         ret = 0x10220000;
565         break;
566     case 0x08:              /* Data cache configuration */
567         ret = 0x18220000;
568         break;
569     default:
570         DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
571         break;
572     };
573     DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
574                           addr, ret, size);
575     return ret;
576 }
577 
578 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
579                        int asi, uint32_t memop)
580 {
581     int size = 1 << (memop & MO_SIZE);
582     int sign = memop & MO_SIGN;
583     CPUState *cs = env_cpu(env);
584     uint64_t ret = 0;
585 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
586     uint32_t last_addr = addr;
587 #endif
588 
589     do_check_align(env, addr, size - 1, GETPC());
590     switch (asi) {
591     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
592     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
593         switch (addr) {
594         case 0x00:          /* Leon3 Cache Control */
595         case 0x08:          /* Leon3 Instruction Cache config */
596         case 0x0C:          /* Leon3 Date Cache config */
597             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
598                 ret = leon3_cache_control_ld(env, addr, size);
599             }
600             break;
601         case 0x01c00a00: /* MXCC control register */
602             if (size == 8) {
603                 ret = env->mxccregs[3];
604             } else {
605                 qemu_log_mask(LOG_UNIMP,
606                               "%08x: unimplemented access size: %d\n", addr,
607                               size);
608             }
609             break;
610         case 0x01c00a04: /* MXCC control register */
611             if (size == 4) {
612                 ret = env->mxccregs[3];
613             } else {
614                 qemu_log_mask(LOG_UNIMP,
615                               "%08x: unimplemented access size: %d\n", addr,
616                               size);
617             }
618             break;
619         case 0x01c00c00: /* Module reset register */
620             if (size == 8) {
621                 ret = env->mxccregs[5];
622                 /* should we do something here? */
623             } else {
624                 qemu_log_mask(LOG_UNIMP,
625                               "%08x: unimplemented access size: %d\n", addr,
626                               size);
627             }
628             break;
629         case 0x01c00f00: /* MBus port address register */
630             if (size == 8) {
631                 ret = env->mxccregs[7];
632             } else {
633                 qemu_log_mask(LOG_UNIMP,
634                               "%08x: unimplemented access size: %d\n", addr,
635                               size);
636             }
637             break;
638         default:
639             qemu_log_mask(LOG_UNIMP,
640                           "%08x: unimplemented address, size: %d\n", addr,
641                           size);
642             break;
643         }
644         DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
645                      "addr = %08x -> ret = %" PRIx64 ","
646                      "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
647 #ifdef DEBUG_MXCC
648         dump_mxcc(env);
649 #endif
650         break;
651     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
652     case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
653         {
654             int mmulev;
655 
656             mmulev = (addr >> 8) & 15;
657             if (mmulev > 4) {
658                 ret = 0;
659             } else {
660                 ret = mmu_probe(env, addr, mmulev);
661             }
662             DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
663                         addr, mmulev, ret);
664         }
665         break;
666     case ASI_M_MMUREGS: /* SuperSparc MMU regs */
667     case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
668         {
669             int reg = (addr >> 8) & 0x1f;
670 
671             ret = env->mmuregs[reg];
672             if (reg == 3) { /* Fault status cleared on read */
673                 env->mmuregs[3] = 0;
674             } else if (reg == 0x13) { /* Fault status read */
675                 ret = env->mmuregs[3];
676             } else if (reg == 0x14) { /* Fault address read */
677                 ret = env->mmuregs[4];
678             }
679             DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
680         }
681         break;
682     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
683     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
684     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
685         break;
686     case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
687     case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
688     case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
689     case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
690         break;
691     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
692     {
693         MemTxResult result;
694         hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
695 
696         switch (size) {
697         case 1:
698             ret = address_space_ldub(cs->as, access_addr,
699                                      MEMTXATTRS_UNSPECIFIED, &result);
700             break;
701         case 2:
702             ret = address_space_lduw(cs->as, access_addr,
703                                      MEMTXATTRS_UNSPECIFIED, &result);
704             break;
705         default:
706         case 4:
707             ret = address_space_ldl(cs->as, access_addr,
708                                     MEMTXATTRS_UNSPECIFIED, &result);
709             break;
710         case 8:
711             ret = address_space_ldq(cs->as, access_addr,
712                                     MEMTXATTRS_UNSPECIFIED, &result);
713             break;
714         }
715 
716         if (result != MEMTX_OK) {
717             sparc_raise_mmu_fault(cs, access_addr, false, false, false,
718                                   size, GETPC());
719         }
720         break;
721     }
722     case 0x30: /* Turbosparc secondary cache diagnostic */
723     case 0x31: /* Turbosparc RAM snoop */
724     case 0x32: /* Turbosparc page table descriptor diagnostic */
725     case 0x39: /* data cache diagnostic register */
726         ret = 0;
727         break;
728     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
729         {
730             int reg = (addr >> 8) & 3;
731 
732             switch (reg) {
733             case 0: /* Breakpoint Value (Addr) */
734                 ret = env->mmubpregs[reg];
735                 break;
736             case 1: /* Breakpoint Mask */
737                 ret = env->mmubpregs[reg];
738                 break;
739             case 2: /* Breakpoint Control */
740                 ret = env->mmubpregs[reg];
741                 break;
742             case 3: /* Breakpoint Status */
743                 ret = env->mmubpregs[reg];
744                 env->mmubpregs[reg] = 0ULL;
745                 break;
746             }
747             DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
748                         ret);
749         }
750         break;
751     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
752         ret = env->mmubpctrv;
753         break;
754     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
755         ret = env->mmubpctrc;
756         break;
757     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
758         ret = env->mmubpctrs;
759         break;
760     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
761         ret = env->mmubpaction;
762         break;
763     default:
764         sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
765         ret = 0;
766         break;
767 
768     case ASI_USERDATA: /* User data access */
769     case ASI_KERNELDATA: /* Supervisor data access */
770     case ASI_USERTXT: /* User code access */
771     case ASI_KERNELTXT: /* Supervisor code access */
772     case ASI_P: /* Implicit primary context data access (v9 only?) */
773     case ASI_M_BYPASS:    /* MMU passthrough */
774     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
775         /* These are always handled inline.  */
776         g_assert_not_reached();
777     }
778     if (sign) {
779         switch (size) {
780         case 1:
781             ret = (int8_t) ret;
782             break;
783         case 2:
784             ret = (int16_t) ret;
785             break;
786         case 4:
787             ret = (int32_t) ret;
788             break;
789         default:
790             break;
791         }
792     }
793 #ifdef DEBUG_ASI
794     dump_asi("read ", last_addr, asi, size, ret);
795 #endif
796     return ret;
797 }
798 
799 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
800                    int asi, uint32_t memop)
801 {
802     int size = 1 << (memop & MO_SIZE);
803     CPUState *cs = env_cpu(env);
804 
805     do_check_align(env, addr, size - 1, GETPC());
806     switch (asi) {
807     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
808     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
809         switch (addr) {
810         case 0x00:          /* Leon3 Cache Control */
811         case 0x08:          /* Leon3 Instruction Cache config */
812         case 0x0C:          /* Leon3 Date Cache config */
813             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
814                 leon3_cache_control_st(env, addr, val, size);
815             }
816             break;
817 
818         case 0x01c00000: /* MXCC stream data register 0 */
819             if (size == 8) {
820                 env->mxccdata[0] = val;
821             } else {
822                 qemu_log_mask(LOG_UNIMP,
823                               "%08x: unimplemented access size: %d\n", addr,
824                               size);
825             }
826             break;
827         case 0x01c00008: /* MXCC stream data register 1 */
828             if (size == 8) {
829                 env->mxccdata[1] = val;
830             } else {
831                 qemu_log_mask(LOG_UNIMP,
832                               "%08x: unimplemented access size: %d\n", addr,
833                               size);
834             }
835             break;
836         case 0x01c00010: /* MXCC stream data register 2 */
837             if (size == 8) {
838                 env->mxccdata[2] = val;
839             } else {
840                 qemu_log_mask(LOG_UNIMP,
841                               "%08x: unimplemented access size: %d\n", addr,
842                               size);
843             }
844             break;
845         case 0x01c00018: /* MXCC stream data register 3 */
846             if (size == 8) {
847                 env->mxccdata[3] = val;
848             } else {
849                 qemu_log_mask(LOG_UNIMP,
850                               "%08x: unimplemented access size: %d\n", addr,
851                               size);
852             }
853             break;
854         case 0x01c00100: /* MXCC stream source */
855         {
856             int i;
857 
858             if (size == 8) {
859                 env->mxccregs[0] = val;
860             } else {
861                 qemu_log_mask(LOG_UNIMP,
862                               "%08x: unimplemented access size: %d\n", addr,
863                               size);
864             }
865 
866             for (i = 0; i < 4; i++) {
867                 MemTxResult result;
868                 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
869 
870                 env->mxccdata[i] = address_space_ldq(cs->as,
871                                                      access_addr,
872                                                      MEMTXATTRS_UNSPECIFIED,
873                                                      &result);
874                 if (result != MEMTX_OK) {
875                     /* TODO: investigate whether this is the right behaviour */
876                     sparc_raise_mmu_fault(cs, access_addr, false, false,
877                                           false, size, GETPC());
878                 }
879             }
880             break;
881         }
882         case 0x01c00200: /* MXCC stream destination */
883         {
884             int i;
885 
886             if (size == 8) {
887                 env->mxccregs[1] = val;
888             } else {
889                 qemu_log_mask(LOG_UNIMP,
890                               "%08x: unimplemented access size: %d\n", addr,
891                               size);
892             }
893 
894             for (i = 0; i < 4; i++) {
895                 MemTxResult result;
896                 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
897 
898                 address_space_stq(cs->as, access_addr, env->mxccdata[i],
899                                   MEMTXATTRS_UNSPECIFIED, &result);
900 
901                 if (result != MEMTX_OK) {
902                     /* TODO: investigate whether this is the right behaviour */
903                     sparc_raise_mmu_fault(cs, access_addr, true, false,
904                                           false, size, GETPC());
905                 }
906             }
907             break;
908         }
909         case 0x01c00a00: /* MXCC control register */
910             if (size == 8) {
911                 env->mxccregs[3] = val;
912             } else {
913                 qemu_log_mask(LOG_UNIMP,
914                               "%08x: unimplemented access size: %d\n", addr,
915                               size);
916             }
917             break;
918         case 0x01c00a04: /* MXCC control register */
919             if (size == 4) {
920                 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
921                     | val;
922             } else {
923                 qemu_log_mask(LOG_UNIMP,
924                               "%08x: unimplemented access size: %d\n", addr,
925                               size);
926             }
927             break;
928         case 0x01c00e00: /* MXCC error register  */
929             /* writing a 1 bit clears the error */
930             if (size == 8) {
931                 env->mxccregs[6] &= ~val;
932             } else {
933                 qemu_log_mask(LOG_UNIMP,
934                               "%08x: unimplemented access size: %d\n", addr,
935                               size);
936             }
937             break;
938         case 0x01c00f00: /* MBus port address register */
939             if (size == 8) {
940                 env->mxccregs[7] = val;
941             } else {
942                 qemu_log_mask(LOG_UNIMP,
943                               "%08x: unimplemented access size: %d\n", addr,
944                               size);
945             }
946             break;
947         default:
948             qemu_log_mask(LOG_UNIMP,
949                           "%08x: unimplemented address, size: %d\n", addr,
950                           size);
951             break;
952         }
953         DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
954                      asi, size, addr, val);
955 #ifdef DEBUG_MXCC
956         dump_mxcc(env);
957 #endif
958         break;
959     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
960     case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
961         {
962             int mmulev;
963 
964             mmulev = (addr >> 8) & 15;
965             DPRINTF_MMU("mmu flush level %d\n", mmulev);
966             switch (mmulev) {
967             case 0: /* flush page */
968                 tlb_flush_page(cs, addr & 0xfffff000);
969                 break;
970             case 1: /* flush segment (256k) */
971             case 2: /* flush region (16M) */
972             case 3: /* flush context (4G) */
973             case 4: /* flush entire */
974                 tlb_flush(cs);
975                 break;
976             default:
977                 break;
978             }
979 #ifdef DEBUG_MMU
980             dump_mmu(env);
981 #endif
982         }
983         break;
984     case ASI_M_MMUREGS: /* write MMU regs */
985     case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
986         {
987             int reg = (addr >> 8) & 0x1f;
988             uint32_t oldreg;
989 
990             oldreg = env->mmuregs[reg];
991             switch (reg) {
992             case 0: /* Control Register */
993                 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
994                     (val & 0x00ffffff);
995                 /* Mappings generated during no-fault mode
996                    are invalid in normal mode.  */
997                 if ((oldreg ^ env->mmuregs[reg])
998                     & (MMU_NF | env->def.mmu_bm)) {
999                     tlb_flush(cs);
1000                 }
1001                 break;
1002             case 1: /* Context Table Pointer Register */
1003                 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1004                 break;
1005             case 2: /* Context Register */
1006                 env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1007                 if (oldreg != env->mmuregs[reg]) {
1008                     /* we flush when the MMU context changes because
1009                        QEMU has no MMU context support */
1010                     tlb_flush(cs);
1011                 }
1012                 break;
1013             case 3: /* Synchronous Fault Status Register with Clear */
1014             case 4: /* Synchronous Fault Address Register */
1015                 break;
1016             case 0x10: /* TLB Replacement Control Register */
1017                 env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1018                 break;
1019             case 0x13: /* Synchronous Fault Status Register with Read
1020                           and Clear */
1021                 env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1022                 break;
1023             case 0x14: /* Synchronous Fault Address Register */
1024                 env->mmuregs[4] = val;
1025                 break;
1026             default:
1027                 env->mmuregs[reg] = val;
1028                 break;
1029             }
1030             if (oldreg != env->mmuregs[reg]) {
1031                 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1032                             reg, oldreg, env->mmuregs[reg]);
1033             }
1034 #ifdef DEBUG_MMU
1035             dump_mmu(env);
1036 #endif
1037         }
1038         break;
1039     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1040     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
1041     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
1042         break;
1043     case ASI_M_TXTC_TAG:   /* I-cache tag */
1044     case ASI_M_TXTC_DATA:  /* I-cache data */
1045     case ASI_M_DATAC_TAG:  /* D-cache tag */
1046     case ASI_M_DATAC_DATA: /* D-cache data */
1047     case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
1048     case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
1049     case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1050     case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
1051     case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
1052         break;
1053     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1054         {
1055             MemTxResult result;
1056             hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1057 
1058             switch (size) {
1059             case 1:
1060                 address_space_stb(cs->as, access_addr, val,
1061                                   MEMTXATTRS_UNSPECIFIED, &result);
1062                 break;
1063             case 2:
1064                 address_space_stw(cs->as, access_addr, val,
1065                                   MEMTXATTRS_UNSPECIFIED, &result);
1066                 break;
1067             case 4:
1068             default:
1069                 address_space_stl(cs->as, access_addr, val,
1070                                   MEMTXATTRS_UNSPECIFIED, &result);
1071                 break;
1072             case 8:
1073                 address_space_stq(cs->as, access_addr, val,
1074                                   MEMTXATTRS_UNSPECIFIED, &result);
1075                 break;
1076             }
1077             if (result != MEMTX_OK) {
1078                 sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1079                                       size, GETPC());
1080             }
1081         }
1082         break;
1083     case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1084     case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1085                   Turbosparc snoop RAM */
1086     case 0x32: /* store buffer control or Turbosparc page table
1087                   descriptor diagnostic */
1088     case 0x36: /* I-cache flash clear */
1089     case 0x37: /* D-cache flash clear */
1090         break;
1091     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1092         {
1093             int reg = (addr >> 8) & 3;
1094 
1095             switch (reg) {
1096             case 0: /* Breakpoint Value (Addr) */
1097                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1098                 break;
1099             case 1: /* Breakpoint Mask */
1100                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1101                 break;
1102             case 2: /* Breakpoint Control */
1103                 env->mmubpregs[reg] = (val & 0x7fULL);
1104                 break;
1105             case 3: /* Breakpoint Status */
1106                 env->mmubpregs[reg] = (val & 0xfULL);
1107                 break;
1108             }
1109             DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1110                         env->mmuregs[reg]);
1111         }
1112         break;
1113     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1114         env->mmubpctrv = val & 0xffffffff;
1115         break;
1116     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1117         env->mmubpctrc = val & 0x3;
1118         break;
1119     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1120         env->mmubpctrs = val & 0x3;
1121         break;
1122     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1123         env->mmubpaction = val & 0x1fff;
1124         break;
1125     case ASI_USERTXT: /* User code access, XXX */
1126     case ASI_KERNELTXT: /* Supervisor code access, XXX */
1127     default:
1128         sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1129         break;
1130 
1131     case ASI_USERDATA: /* User data access */
1132     case ASI_KERNELDATA: /* Supervisor data access */
1133     case ASI_P:
1134     case ASI_M_BYPASS:    /* MMU passthrough */
1135     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1136     case ASI_M_BCOPY: /* Block copy, sta access */
1137     case ASI_M_BFILL: /* Block fill, stda access */
1138         /* These are always handled inline.  */
1139         g_assert_not_reached();
1140     }
1141 #ifdef DEBUG_ASI
1142     dump_asi("write", addr, asi, size, val);
1143 #endif
1144 }
1145 
1146 uint64_t helper_ld_code(CPUSPARCState *env, target_ulong addr, uint32_t oi)
1147 {
1148     MemOp mop = get_memop(oi);
1149     uintptr_t ra = GETPC();
1150     uint64_t ret;
1151 
1152     switch (mop & MO_SIZE) {
1153     case MO_8:
1154         ret = cpu_ldb_code_mmu(env, addr, oi, ra);
1155         if (mop & MO_SIGN) {
1156             ret = (int8_t)ret;
1157         }
1158         break;
1159     case MO_16:
1160         ret = cpu_ldw_code_mmu(env, addr, oi, ra);
1161         if ((mop & MO_BSWAP) != MO_TE) {
1162             ret = bswap16(ret);
1163         }
1164         if (mop & MO_SIGN) {
1165             ret = (int16_t)ret;
1166         }
1167         break;
1168     case MO_32:
1169         ret = cpu_ldl_code_mmu(env, addr, oi, ra);
1170         if ((mop & MO_BSWAP) != MO_TE) {
1171             ret = bswap32(ret);
1172         }
1173         if (mop & MO_SIGN) {
1174             ret = (int32_t)ret;
1175         }
1176         break;
1177     case MO_64:
1178         ret = cpu_ldq_code_mmu(env, addr, oi, ra);
1179         if ((mop & MO_BSWAP) != MO_TE) {
1180             ret = bswap64(ret);
1181         }
1182         break;
1183     default:
1184         g_assert_not_reached();
1185     }
1186     return ret;
1187 }
1188 
1189 #endif /* CONFIG_USER_ONLY */
1190 #else /* TARGET_SPARC64 */
1191 
1192 #ifdef CONFIG_USER_ONLY
1193 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1194                        int asi, uint32_t memop)
1195 {
1196     int size = 1 << (memop & MO_SIZE);
1197     int sign = memop & MO_SIGN;
1198     uint64_t ret = 0;
1199 
1200     if (asi < 0x80) {
1201         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1202     }
1203     do_check_align(env, addr, size - 1, GETPC());
1204     addr = asi_address_mask(env, asi, addr);
1205 
1206     switch (asi) {
1207     case ASI_PNF:  /* Primary no-fault */
1208     case ASI_PNFL: /* Primary no-fault LE */
1209     case ASI_SNF:  /* Secondary no-fault */
1210     case ASI_SNFL: /* Secondary no-fault LE */
1211         if (!page_check_range(addr, size, PAGE_READ)) {
1212             ret = 0;
1213             break;
1214         }
1215         switch (size) {
1216         case 1:
1217             ret = cpu_ldub_data(env, addr);
1218             break;
1219         case 2:
1220             ret = cpu_lduw_data(env, addr);
1221             break;
1222         case 4:
1223             ret = cpu_ldl_data(env, addr);
1224             break;
1225         case 8:
1226             ret = cpu_ldq_data(env, addr);
1227             break;
1228         default:
1229             g_assert_not_reached();
1230         }
1231         break;
1232         break;
1233 
1234     case ASI_P: /* Primary */
1235     case ASI_PL: /* Primary LE */
1236     case ASI_S:  /* Secondary */
1237     case ASI_SL: /* Secondary LE */
1238         /* These are always handled inline.  */
1239         g_assert_not_reached();
1240 
1241     default:
1242         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1243     }
1244 
1245     /* Convert from little endian */
1246     switch (asi) {
1247     case ASI_PNFL: /* Primary no-fault LE */
1248     case ASI_SNFL: /* Secondary no-fault LE */
1249         switch (size) {
1250         case 2:
1251             ret = bswap16(ret);
1252             break;
1253         case 4:
1254             ret = bswap32(ret);
1255             break;
1256         case 8:
1257             ret = bswap64(ret);
1258             break;
1259         }
1260     }
1261 
1262     /* Convert to signed number */
1263     if (sign) {
1264         switch (size) {
1265         case 1:
1266             ret = (int8_t) ret;
1267             break;
1268         case 2:
1269             ret = (int16_t) ret;
1270             break;
1271         case 4:
1272             ret = (int32_t) ret;
1273             break;
1274         }
1275     }
1276 #ifdef DEBUG_ASI
1277     dump_asi("read", addr, asi, size, ret);
1278 #endif
1279     return ret;
1280 }
1281 
1282 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1283                    int asi, uint32_t memop)
1284 {
1285     int size = 1 << (memop & MO_SIZE);
1286 #ifdef DEBUG_ASI
1287     dump_asi("write", addr, asi, size, val);
1288 #endif
1289     if (asi < 0x80) {
1290         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1291     }
1292     do_check_align(env, addr, size - 1, GETPC());
1293 
1294     switch (asi) {
1295     case ASI_P:  /* Primary */
1296     case ASI_PL: /* Primary LE */
1297     case ASI_S:  /* Secondary */
1298     case ASI_SL: /* Secondary LE */
1299         /* These are always handled inline.  */
1300         g_assert_not_reached();
1301 
1302     case ASI_PNF:  /* Primary no-fault, RO */
1303     case ASI_SNF:  /* Secondary no-fault, RO */
1304     case ASI_PNFL: /* Primary no-fault LE, RO */
1305     case ASI_SNFL: /* Secondary no-fault LE, RO */
1306     default:
1307         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1308     }
1309 }
1310 
1311 #else /* CONFIG_USER_ONLY */
1312 
1313 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1314                        int asi, uint32_t memop)
1315 {
1316     int size = 1 << (memop & MO_SIZE);
1317     int sign = memop & MO_SIGN;
1318     CPUState *cs = env_cpu(env);
1319     uint64_t ret = 0;
1320 #if defined(DEBUG_ASI)
1321     target_ulong last_addr = addr;
1322 #endif
1323 
1324     asi &= 0xff;
1325 
1326     do_check_asi(env, asi, GETPC());
1327     do_check_align(env, addr, size - 1, GETPC());
1328     addr = asi_address_mask(env, asi, addr);
1329 
1330     switch (asi) {
1331     case ASI_PNF:
1332     case ASI_PNFL:
1333     case ASI_SNF:
1334     case ASI_SNFL:
1335         {
1336             MemOpIdx oi;
1337             int idx = (env->pstate & PS_PRIV
1338                        ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1339                        : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1340 
1341             if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1342 #ifdef DEBUG_ASI
1343                 dump_asi("read ", last_addr, asi, size, ret);
1344 #endif
1345                 /* exception_index is set in get_physical_address_data. */
1346                 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1347             }
1348             oi = make_memop_idx(memop, idx);
1349             switch (size) {
1350             case 1:
1351                 ret = cpu_ldb_mmu(env, addr, oi, GETPC());
1352                 break;
1353             case 2:
1354                 ret = cpu_ldw_mmu(env, addr, oi, GETPC());
1355                 break;
1356             case 4:
1357                 ret = cpu_ldl_mmu(env, addr, oi, GETPC());
1358                 break;
1359             case 8:
1360                 ret = cpu_ldq_mmu(env, addr, oi, GETPC());
1361                 break;
1362             default:
1363                 g_assert_not_reached();
1364             }
1365         }
1366         break;
1367 
1368     case ASI_AIUP:  /* As if user primary */
1369     case ASI_AIUS:  /* As if user secondary */
1370     case ASI_AIUPL: /* As if user primary LE */
1371     case ASI_AIUSL: /* As if user secondary LE */
1372     case ASI_P:  /* Primary */
1373     case ASI_S:  /* Secondary */
1374     case ASI_PL: /* Primary LE */
1375     case ASI_SL: /* Secondary LE */
1376     case ASI_REAL:      /* Bypass */
1377     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1378     case ASI_REAL_L:    /* Bypass LE */
1379     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1380     case ASI_N:  /* Nucleus */
1381     case ASI_NL: /* Nucleus Little Endian (LE) */
1382     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1383     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1384     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1385     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1386     case ASI_TWINX_REAL:   /* Real address, twinx */
1387     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1388     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1389     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1390     case ASI_TWINX_N:  /* Nucleus, twinx */
1391     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1392     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1393     case ASI_TWINX_P:  /* Primary, twinx */
1394     case ASI_TWINX_PL: /* Primary, twinx, LE */
1395     case ASI_TWINX_S:  /* Secondary, twinx */
1396     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1397         /* These are always handled inline.  */
1398         g_assert_not_reached();
1399 
1400     case ASI_UPA_CONFIG: /* UPA config */
1401         /* XXX */
1402         break;
1403     case ASI_LSU_CONTROL: /* LSU */
1404         ret = env->lsu;
1405         break;
1406     case ASI_IMMU: /* I-MMU regs */
1407         {
1408             int reg = (addr >> 3) & 0xf;
1409             switch (reg) {
1410             case 0:
1411                 /* 0x00 I-TSB Tag Target register */
1412                 ret = ultrasparc_tag_target(env->immu.tag_access);
1413                 break;
1414             case 3: /* SFSR */
1415                 ret = env->immu.sfsr;
1416                 break;
1417             case 5: /* TSB access */
1418                 ret = env->immu.tsb;
1419                 break;
1420             case 6:
1421                 /* 0x30 I-TSB Tag Access register */
1422                 ret = env->immu.tag_access;
1423                 break;
1424             default:
1425                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1426                 ret = 0;
1427             }
1428             break;
1429         }
1430     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1431         {
1432             /* env->immuregs[5] holds I-MMU TSB register value
1433                env->immuregs[6] holds I-MMU Tag Access register value */
1434             ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1435             break;
1436         }
1437     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1438         {
1439             /* env->immuregs[5] holds I-MMU TSB register value
1440                env->immuregs[6] holds I-MMU Tag Access register value */
1441             ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1442             break;
1443         }
1444     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1445         {
1446             int reg = (addr >> 3) & 0x3f;
1447 
1448             ret = env->itlb[reg].tte;
1449             break;
1450         }
1451     case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1452         {
1453             int reg = (addr >> 3) & 0x3f;
1454 
1455             ret = env->itlb[reg].tag;
1456             break;
1457         }
1458     case ASI_DMMU: /* D-MMU regs */
1459         {
1460             int reg = (addr >> 3) & 0xf;
1461             switch (reg) {
1462             case 0:
1463                 /* 0x00 D-TSB Tag Target register */
1464                 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1465                 break;
1466             case 1: /* 0x08 Primary Context */
1467                 ret = env->dmmu.mmu_primary_context;
1468                 break;
1469             case 2: /* 0x10 Secondary Context */
1470                 ret = env->dmmu.mmu_secondary_context;
1471                 break;
1472             case 3: /* SFSR */
1473                 ret = env->dmmu.sfsr;
1474                 break;
1475             case 4: /* 0x20 SFAR */
1476                 ret = env->dmmu.sfar;
1477                 break;
1478             case 5: /* 0x28 TSB access */
1479                 ret = env->dmmu.tsb;
1480                 break;
1481             case 6: /* 0x30 D-TSB Tag Access register */
1482                 ret = env->dmmu.tag_access;
1483                 break;
1484             case 7:
1485                 ret = env->dmmu.virtual_watchpoint;
1486                 break;
1487             case 8:
1488                 ret = env->dmmu.physical_watchpoint;
1489                 break;
1490             default:
1491                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1492                 ret = 0;
1493             }
1494             break;
1495         }
1496     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1497         {
1498             /* env->dmmuregs[5] holds D-MMU TSB register value
1499                env->dmmuregs[6] holds D-MMU Tag Access register value */
1500             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1501             break;
1502         }
1503     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1504         {
1505             /* env->dmmuregs[5] holds D-MMU TSB register value
1506                env->dmmuregs[6] holds D-MMU Tag Access register value */
1507             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1508             break;
1509         }
1510     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1511         {
1512             int reg = (addr >> 3) & 0x3f;
1513 
1514             ret = env->dtlb[reg].tte;
1515             break;
1516         }
1517     case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1518         {
1519             int reg = (addr >> 3) & 0x3f;
1520 
1521             ret = env->dtlb[reg].tag;
1522             break;
1523         }
1524     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1525         break;
1526     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1527         ret = env->ivec_status;
1528         break;
1529     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1530         {
1531             int reg = (addr >> 4) & 0x3;
1532             if (reg < 3) {
1533                 ret = env->ivec_data[reg];
1534             }
1535             break;
1536         }
1537     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1538         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1539             /* Hyperprivileged access only */
1540             sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1541         }
1542         /* fall through */
1543     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1544         {
1545             unsigned int i = (addr >> 3) & 0x7;
1546             ret = env->scratch[i];
1547             break;
1548         }
1549     case ASI_MMU: /* UA2005 Context ID registers */
1550         switch ((addr >> 3) & 0x3) {
1551         case 1:
1552             ret = env->dmmu.mmu_primary_context;
1553             break;
1554         case 2:
1555             ret = env->dmmu.mmu_secondary_context;
1556             break;
1557         default:
1558           sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1559         }
1560         break;
1561     case ASI_DCACHE_DATA:     /* D-cache data */
1562     case ASI_DCACHE_TAG:      /* D-cache tag access */
1563     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1564     case ASI_AFSR:            /* E-cache asynchronous fault status */
1565     case ASI_AFAR:            /* E-cache asynchronous fault address */
1566     case ASI_EC_TAG_DATA:     /* E-cache tag data */
1567     case ASI_IC_INSTR:        /* I-cache instruction access */
1568     case ASI_IC_TAG:          /* I-cache tag access */
1569     case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1570     case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1571     case ASI_EC_W:            /* E-cache tag */
1572     case ASI_EC_R:            /* E-cache tag */
1573         break;
1574     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1575     case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1576     case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1577     case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1578     case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1579     case ASI_INTR_W:              /* Interrupt vector, WO */
1580     default:
1581         sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1582         ret = 0;
1583         break;
1584     }
1585 
1586     /* Convert to signed number */
1587     if (sign) {
1588         switch (size) {
1589         case 1:
1590             ret = (int8_t) ret;
1591             break;
1592         case 2:
1593             ret = (int16_t) ret;
1594             break;
1595         case 4:
1596             ret = (int32_t) ret;
1597             break;
1598         default:
1599             break;
1600         }
1601     }
1602 #ifdef DEBUG_ASI
1603     dump_asi("read ", last_addr, asi, size, ret);
1604 #endif
1605     return ret;
1606 }
1607 
1608 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1609                    int asi, uint32_t memop)
1610 {
1611     int size = 1 << (memop & MO_SIZE);
1612     CPUState *cs = env_cpu(env);
1613 
1614 #ifdef DEBUG_ASI
1615     dump_asi("write", addr, asi, size, val);
1616 #endif
1617 
1618     asi &= 0xff;
1619 
1620     do_check_asi(env, asi, GETPC());
1621     do_check_align(env, addr, size - 1, GETPC());
1622     addr = asi_address_mask(env, asi, addr);
1623 
1624     switch (asi) {
1625     case ASI_AIUP:  /* As if user primary */
1626     case ASI_AIUS:  /* As if user secondary */
1627     case ASI_AIUPL: /* As if user primary LE */
1628     case ASI_AIUSL: /* As if user secondary LE */
1629     case ASI_P:  /* Primary */
1630     case ASI_S:  /* Secondary */
1631     case ASI_PL: /* Primary LE */
1632     case ASI_SL: /* Secondary LE */
1633     case ASI_REAL:      /* Bypass */
1634     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1635     case ASI_REAL_L:    /* Bypass LE */
1636     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1637     case ASI_N:  /* Nucleus */
1638     case ASI_NL: /* Nucleus Little Endian (LE) */
1639     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1640     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1641     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1642     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1643     case ASI_TWINX_REAL:   /* Real address, twinx */
1644     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1645     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1646     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1647     case ASI_TWINX_N:  /* Nucleus, twinx */
1648     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1649     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1650     case ASI_TWINX_P:  /* Primary, twinx */
1651     case ASI_TWINX_PL: /* Primary, twinx, LE */
1652     case ASI_TWINX_S:  /* Secondary, twinx */
1653     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1654         /* These are always handled inline.  */
1655         g_assert_not_reached();
1656     /* these ASIs have different functions on UltraSPARC-IIIi
1657      * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1658      */
1659     case 0x31:
1660     case 0x32:
1661     case 0x39:
1662     case 0x3a:
1663         if (cpu_has_hypervisor(env)) {
1664             /* UA2005
1665              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1666              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1667              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1668              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1669              */
1670             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1671             env->dmmu.sun4v_tsb_pointers[idx] = val;
1672         } else {
1673             goto illegal_insn;
1674         }
1675         break;
1676     case 0x33:
1677     case 0x3b:
1678         if (cpu_has_hypervisor(env)) {
1679             /* UA2005
1680              * ASI_DMMU_CTX_ZERO_CONFIG
1681              * ASI_DMMU_CTX_NONZERO_CONFIG
1682              */
1683             env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1684         } else {
1685             goto illegal_insn;
1686         }
1687         break;
1688     case 0x35:
1689     case 0x36:
1690     case 0x3d:
1691     case 0x3e:
1692         if (cpu_has_hypervisor(env)) {
1693             /* UA2005
1694              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1695              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1696              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1697              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1698              */
1699             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1700             env->immu.sun4v_tsb_pointers[idx] = val;
1701         } else {
1702             goto illegal_insn;
1703         }
1704       break;
1705     case 0x37:
1706     case 0x3f:
1707         if (cpu_has_hypervisor(env)) {
1708             /* UA2005
1709              * ASI_IMMU_CTX_ZERO_CONFIG
1710              * ASI_IMMU_CTX_NONZERO_CONFIG
1711              */
1712             env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1713         } else {
1714             goto illegal_insn;
1715         }
1716         break;
1717     case ASI_UPA_CONFIG: /* UPA config */
1718         /* XXX */
1719         return;
1720     case ASI_LSU_CONTROL: /* LSU */
1721         env->lsu = val & (DMMU_E | IMMU_E);
1722         return;
1723     case ASI_IMMU: /* I-MMU regs */
1724         {
1725             int reg = (addr >> 3) & 0xf;
1726             uint64_t oldreg;
1727 
1728             oldreg = env->immu.mmuregs[reg];
1729             switch (reg) {
1730             case 0: /* RO */
1731                 return;
1732             case 1: /* Not in I-MMU */
1733             case 2:
1734                 return;
1735             case 3: /* SFSR */
1736                 if ((val & 1) == 0) {
1737                     val = 0; /* Clear SFSR */
1738                 }
1739                 env->immu.sfsr = val;
1740                 break;
1741             case 4: /* RO */
1742                 return;
1743             case 5: /* TSB access */
1744                 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1745                             PRIx64 "\n", env->immu.tsb, val);
1746                 env->immu.tsb = val;
1747                 break;
1748             case 6: /* Tag access */
1749                 env->immu.tag_access = val;
1750                 break;
1751             case 7:
1752             case 8:
1753                 return;
1754             default:
1755                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1756                 break;
1757             }
1758 
1759             if (oldreg != env->immu.mmuregs[reg]) {
1760                 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1761                             PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1762             }
1763 #ifdef DEBUG_MMU
1764             dump_mmu(env);
1765 #endif
1766             return;
1767         }
1768     case ASI_ITLB_DATA_IN: /* I-MMU data in */
1769         /* ignore real translation entries */
1770         if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1771             replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1772                                  val, "immu", env, addr);
1773         }
1774         return;
1775     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1776         {
1777             /* TODO: auto demap */
1778 
1779             unsigned int i = (addr >> 3) & 0x3f;
1780 
1781             /* ignore real translation entries */
1782             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1783                 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1784                                   sun4v_tte_to_sun4u(env, addr, val), env);
1785             }
1786 #ifdef DEBUG_MMU
1787             DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1788             dump_mmu(env);
1789 #endif
1790             return;
1791         }
1792     case ASI_IMMU_DEMAP: /* I-MMU demap */
1793         demap_tlb(env->itlb, addr, "immu", env);
1794         return;
1795     case ASI_DMMU: /* D-MMU regs */
1796         {
1797             int reg = (addr >> 3) & 0xf;
1798             uint64_t oldreg;
1799 
1800             oldreg = env->dmmu.mmuregs[reg];
1801             switch (reg) {
1802             case 0: /* RO */
1803             case 4:
1804                 return;
1805             case 3: /* SFSR */
1806                 if ((val & 1) == 0) {
1807                     val = 0; /* Clear SFSR, Fault address */
1808                     env->dmmu.sfar = 0;
1809                 }
1810                 env->dmmu.sfsr = val;
1811                 break;
1812             case 1: /* Primary context */
1813                 env->dmmu.mmu_primary_context = val;
1814                 /* can be optimized to only flush MMU_USER_IDX
1815                    and MMU_KERNEL_IDX entries */
1816                 tlb_flush(cs);
1817                 break;
1818             case 2: /* Secondary context */
1819                 env->dmmu.mmu_secondary_context = val;
1820                 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1821                    and MMU_KERNEL_SECONDARY_IDX entries */
1822                 tlb_flush(cs);
1823                 break;
1824             case 5: /* TSB access */
1825                 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1826                             PRIx64 "\n", env->dmmu.tsb, val);
1827                 env->dmmu.tsb = val;
1828                 break;
1829             case 6: /* Tag access */
1830                 env->dmmu.tag_access = val;
1831                 break;
1832             case 7: /* Virtual Watchpoint */
1833                 env->dmmu.virtual_watchpoint = val;
1834                 break;
1835             case 8: /* Physical Watchpoint */
1836                 env->dmmu.physical_watchpoint = val;
1837                 break;
1838             default:
1839                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1840                 break;
1841             }
1842 
1843             if (oldreg != env->dmmu.mmuregs[reg]) {
1844                 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1845                             PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1846             }
1847 #ifdef DEBUG_MMU
1848             dump_mmu(env);
1849 #endif
1850             return;
1851         }
1852     case ASI_DTLB_DATA_IN: /* D-MMU data in */
1853       /* ignore real translation entries */
1854       if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1855           replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1856                                val, "dmmu", env, addr);
1857       }
1858       return;
1859     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1860         {
1861             unsigned int i = (addr >> 3) & 0x3f;
1862 
1863             /* ignore real translation entries */
1864             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1865                 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1866                                   sun4v_tte_to_sun4u(env, addr, val), env);
1867             }
1868 #ifdef DEBUG_MMU
1869             DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1870             dump_mmu(env);
1871 #endif
1872             return;
1873         }
1874     case ASI_DMMU_DEMAP: /* D-MMU demap */
1875         demap_tlb(env->dtlb, addr, "dmmu", env);
1876         return;
1877     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1878         env->ivec_status = val & 0x20;
1879         return;
1880     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1881         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1882             /* Hyperprivileged access only */
1883             sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1884         }
1885         /* fall through */
1886     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1887         {
1888             unsigned int i = (addr >> 3) & 0x7;
1889             env->scratch[i] = val;
1890             return;
1891         }
1892     case ASI_MMU: /* UA2005 Context ID registers */
1893         {
1894           switch ((addr >> 3) & 0x3) {
1895           case 1:
1896               env->dmmu.mmu_primary_context = val;
1897               env->immu.mmu_primary_context = val;
1898               tlb_flush_by_mmuidx(cs,
1899                                   (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1900               break;
1901           case 2:
1902               env->dmmu.mmu_secondary_context = val;
1903               env->immu.mmu_secondary_context = val;
1904               tlb_flush_by_mmuidx(cs,
1905                                   (1 << MMU_USER_SECONDARY_IDX) |
1906                                   (1 << MMU_KERNEL_SECONDARY_IDX));
1907               break;
1908           default:
1909               sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1910           }
1911         }
1912         return;
1913     case ASI_QUEUE: /* UA2005 CPU mondo queue */
1914     case ASI_DCACHE_DATA: /* D-cache data */
1915     case ASI_DCACHE_TAG: /* D-cache tag access */
1916     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1917     case ASI_AFSR: /* E-cache asynchronous fault status */
1918     case ASI_AFAR: /* E-cache asynchronous fault address */
1919     case ASI_EC_TAG_DATA: /* E-cache tag data */
1920     case ASI_IC_INSTR: /* I-cache instruction access */
1921     case ASI_IC_TAG: /* I-cache tag access */
1922     case ASI_IC_PRE_DECODE: /* I-cache predecode */
1923     case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1924     case ASI_EC_W: /* E-cache tag */
1925     case ASI_EC_R: /* E-cache tag */
1926         return;
1927     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1928     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1929     case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1930     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1931     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1932     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1933     case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1934     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1935     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1936     case ASI_PNF: /* Primary no-fault, RO */
1937     case ASI_SNF: /* Secondary no-fault, RO */
1938     case ASI_PNFL: /* Primary no-fault LE, RO */
1939     case ASI_SNFL: /* Secondary no-fault LE, RO */
1940     default:
1941         sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1942         return;
1943     illegal_insn:
1944         cpu_raise_exception_ra(env, TT_ILL_INSN, GETPC());
1945     }
1946 }
1947 #endif /* CONFIG_USER_ONLY */
1948 #endif /* TARGET_SPARC64 */
1949 
1950 #if !defined(CONFIG_USER_ONLY)
1951 
1952 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1953                                      vaddr addr, unsigned size,
1954                                      MMUAccessType access_type,
1955                                      int mmu_idx, MemTxAttrs attrs,
1956                                      MemTxResult response, uintptr_t retaddr)
1957 {
1958     bool is_write = access_type == MMU_DATA_STORE;
1959     bool is_exec = access_type == MMU_INST_FETCH;
1960     bool is_asi = false;
1961 
1962     sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1963                           is_asi, size, retaddr);
1964 }
1965 #endif
1966