xref: /qemu/target/sparc/ldst_helper.c (revision 370ed600)
1 /*
2  * Helpers for loads and stores
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "tcg/tcg.h"
24 #include "exec/helper-proto.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "asi.h"
28 
29 //#define DEBUG_MMU
30 //#define DEBUG_MXCC
31 //#define DEBUG_UNASSIGNED
32 //#define DEBUG_ASI
33 //#define DEBUG_CACHE_CONTROL
34 
35 #ifdef DEBUG_MMU
36 #define DPRINTF_MMU(fmt, ...)                                   \
37     do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF_MMU(fmt, ...) do {} while (0)
40 #endif
41 
42 #ifdef DEBUG_MXCC
43 #define DPRINTF_MXCC(fmt, ...)                                  \
44     do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
47 #endif
48 
49 #ifdef DEBUG_ASI
50 #define DPRINTF_ASI(fmt, ...)                                   \
51     do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
52 #endif
53 
54 #ifdef DEBUG_CACHE_CONTROL
55 #define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
56     do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
59 #endif
60 
61 #ifdef TARGET_SPARC64
62 #ifndef TARGET_ABI32
63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
64 #else
65 #define AM_CHECK(env1) (1)
66 #endif
67 #endif
68 
69 #define QT0 (env->qt0)
70 #define QT1 (env->qt1)
71 
72 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
73 /* Calculates TSB pointer value for fault page size
74  * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
75  * UA2005 holds the page size configuration in mmu_ctx registers */
76 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
77                                        const SparcV9MMU *mmu, const int idx)
78 {
79     uint64_t tsb_register;
80     int page_size;
81     if (cpu_has_hypervisor(env)) {
82         int tsb_index = 0;
83         int ctx = mmu->tag_access & 0x1fffULL;
84         uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
85         tsb_index = idx;
86         tsb_index |= ctx ? 2 : 0;
87         page_size = idx ? ctx_register >> 8 : ctx_register;
88         page_size &= 7;
89         tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
90     } else {
91         page_size = idx;
92         tsb_register = mmu->tsb;
93     }
94     int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
95     int tsb_size  = tsb_register & 0xf;
96 
97     uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
98 
99     /* move va bits to correct position,
100      * the context bits will be masked out later */
101     uint64_t va = mmu->tag_access >> (3 * page_size + 9);
102 
103     /* calculate tsb_base mask and adjust va if split is in use */
104     if (tsb_split) {
105         if (idx == 0) {
106             va &= ~(1ULL << (13 + tsb_size));
107         } else {
108             va |= (1ULL << (13 + tsb_size));
109         }
110         tsb_base_mask <<= 1;
111     }
112 
113     return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
114 }
115 
116 /* Calculates tag target register value by reordering bits
117    in tag access register */
118 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
119 {
120     return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
121 }
122 
123 static void replace_tlb_entry(SparcTLBEntry *tlb,
124                               uint64_t tlb_tag, uint64_t tlb_tte,
125                               CPUSPARCState *env)
126 {
127     target_ulong mask, size, va, offset;
128 
129     /* flush page range if translation is valid */
130     if (TTE_IS_VALID(tlb->tte)) {
131         CPUState *cs = env_cpu(env);
132 
133         size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
134         mask = 1ULL + ~size;
135 
136         va = tlb->tag & mask;
137 
138         for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
139             tlb_flush_page(cs, va + offset);
140         }
141     }
142 
143     tlb->tag = tlb_tag;
144     tlb->tte = tlb_tte;
145 }
146 
147 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
148                       const char *strmmu, CPUSPARCState *env1)
149 {
150     unsigned int i;
151     target_ulong mask;
152     uint64_t context;
153 
154     int is_demap_context = (demap_addr >> 6) & 1;
155 
156     /* demap context */
157     switch ((demap_addr >> 4) & 3) {
158     case 0: /* primary */
159         context = env1->dmmu.mmu_primary_context;
160         break;
161     case 1: /* secondary */
162         context = env1->dmmu.mmu_secondary_context;
163         break;
164     case 2: /* nucleus */
165         context = 0;
166         break;
167     case 3: /* reserved */
168     default:
169         return;
170     }
171 
172     for (i = 0; i < 64; i++) {
173         if (TTE_IS_VALID(tlb[i].tte)) {
174 
175             if (is_demap_context) {
176                 /* will remove non-global entries matching context value */
177                 if (TTE_IS_GLOBAL(tlb[i].tte) ||
178                     !tlb_compare_context(&tlb[i], context)) {
179                     continue;
180                 }
181             } else {
182                 /* demap page
183                    will remove any entry matching VA */
184                 mask = 0xffffffffffffe000ULL;
185                 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
186 
187                 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
188                     continue;
189                 }
190 
191                 /* entry should be global or matching context value */
192                 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
193                     !tlb_compare_context(&tlb[i], context)) {
194                     continue;
195                 }
196             }
197 
198             replace_tlb_entry(&tlb[i], 0, 0, env1);
199 #ifdef DEBUG_MMU
200             DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
201             dump_mmu(env1);
202 #endif
203         }
204     }
205 }
206 
207 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
208                                    uint64_t sun4v_tte)
209 {
210     uint64_t sun4u_tte;
211     if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
212         /* is already in the sun4u format */
213         return sun4v_tte;
214     }
215     sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
216     sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
217     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
218     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
219     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
220     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
221                              TTE_SIDEEFFECT_BIT);
222     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
223     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
224     return sun4u_tte;
225 }
226 
227 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
228                                  uint64_t tlb_tag, uint64_t tlb_tte,
229                                  const char *strmmu, CPUSPARCState *env1,
230                                  uint64_t addr)
231 {
232     unsigned int i, replace_used;
233 
234     tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
235     if (cpu_has_hypervisor(env1)) {
236         uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
237         uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
238         uint32_t new_ctx = tlb_tag & 0x1fffU;
239         for (i = 0; i < 64; i++) {
240             uint32_t ctx = tlb[i].tag & 0x1fffU;
241             /* check if new mapping overlaps an existing one */
242             if (new_ctx == ctx) {
243                 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
244                 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
245                 if (new_vaddr == vaddr
246                     || (new_vaddr < vaddr + size
247                         && vaddr < new_vaddr + new_size)) {
248                     DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
249                                 new_vaddr);
250                     replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
251                     return;
252                 }
253             }
254 
255         }
256     }
257     /* Try replacing invalid entry */
258     for (i = 0; i < 64; i++) {
259         if (!TTE_IS_VALID(tlb[i].tte)) {
260             replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
261 #ifdef DEBUG_MMU
262             DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
263             dump_mmu(env1);
264 #endif
265             return;
266         }
267     }
268 
269     /* All entries are valid, try replacing unlocked entry */
270 
271     for (replace_used = 0; replace_used < 2; ++replace_used) {
272 
273         /* Used entries are not replaced on first pass */
274 
275         for (i = 0; i < 64; i++) {
276             if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
277 
278                 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
279 #ifdef DEBUG_MMU
280                 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
281                             strmmu, (replace_used ? "used" : "unused"), i);
282                 dump_mmu(env1);
283 #endif
284                 return;
285             }
286         }
287 
288         /* Now reset used bit and search for unused entries again */
289 
290         for (i = 0; i < 64; i++) {
291             TTE_SET_UNUSED(tlb[i].tte);
292         }
293     }
294 
295 #ifdef DEBUG_MMU
296     DPRINTF_MMU("%s lru replacement: no free entries available, "
297                 "replacing the last one\n", strmmu);
298 #endif
299     /* corner case: the last entry is replaced anyway */
300     replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
301 }
302 
303 #endif
304 
305 #ifdef TARGET_SPARC64
306 /* returns true if access using this ASI is to have address translated by MMU
307    otherwise access is to raw physical address */
308 /* TODO: check sparc32 bits */
309 static inline int is_translating_asi(int asi)
310 {
311     /* Ultrasparc IIi translating asi
312        - note this list is defined by cpu implementation
313     */
314     switch (asi) {
315     case 0x04 ... 0x11:
316     case 0x16 ... 0x19:
317     case 0x1E ... 0x1F:
318     case 0x24 ... 0x2C:
319     case 0x70 ... 0x73:
320     case 0x78 ... 0x79:
321     case 0x80 ... 0xFF:
322         return 1;
323 
324     default:
325         return 0;
326     }
327 }
328 
329 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
330 {
331     if (AM_CHECK(env1)) {
332         addr &= 0xffffffffULL;
333     }
334     return addr;
335 }
336 
337 static inline target_ulong asi_address_mask(CPUSPARCState *env,
338                                             int asi, target_ulong addr)
339 {
340     if (is_translating_asi(asi)) {
341         addr = address_mask(env, addr);
342     }
343     return addr;
344 }
345 
346 #ifndef CONFIG_USER_ONLY
347 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
348 {
349     /* ASIs >= 0x80 are user mode.
350      * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
351      * ASIs <= 0x2f are super mode.
352      */
353     if (asi < 0x80
354         && !cpu_hypervisor_mode(env)
355         && (!cpu_supervisor_mode(env)
356             || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
357         cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
358     }
359 }
360 #endif /* !CONFIG_USER_ONLY */
361 #endif
362 
363 static void do_check_align(CPUSPARCState *env, target_ulong addr,
364                            uint32_t align, uintptr_t ra)
365 {
366     if (addr & align) {
367         cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
368     }
369 }
370 
371 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
372 {
373     do_check_align(env, addr, align, GETPC());
374 }
375 
376 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
377     defined(DEBUG_MXCC)
378 static void dump_mxcc(CPUSPARCState *env)
379 {
380     printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
381            "\n",
382            env->mxccdata[0], env->mxccdata[1],
383            env->mxccdata[2], env->mxccdata[3]);
384     printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
385            "\n"
386            "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
387            "\n",
388            env->mxccregs[0], env->mxccregs[1],
389            env->mxccregs[2], env->mxccregs[3],
390            env->mxccregs[4], env->mxccregs[5],
391            env->mxccregs[6], env->mxccregs[7]);
392 }
393 #endif
394 
395 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
396     && defined(DEBUG_ASI)
397 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
398                      uint64_t r1)
399 {
400     switch (size) {
401     case 1:
402         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
403                     addr, asi, r1 & 0xff);
404         break;
405     case 2:
406         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
407                     addr, asi, r1 & 0xffff);
408         break;
409     case 4:
410         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
411                     addr, asi, r1 & 0xffffffff);
412         break;
413     case 8:
414         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
415                     addr, asi, r1);
416         break;
417     }
418 }
419 #endif
420 
421 #ifndef CONFIG_USER_ONLY
422 #ifndef TARGET_SPARC64
423 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
424                                   bool is_write, bool is_exec, int is_asi,
425                                   unsigned size, uintptr_t retaddr)
426 {
427     SPARCCPU *cpu = SPARC_CPU(cs);
428     CPUSPARCState *env = &cpu->env;
429     int fault_type;
430 
431 #ifdef DEBUG_UNASSIGNED
432     if (is_asi) {
433         printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
434                " asi 0x%02x from " TARGET_FMT_lx "\n",
435                is_exec ? "exec" : is_write ? "write" : "read", size,
436                size == 1 ? "" : "s", addr, is_asi, env->pc);
437     } else {
438         printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
439                " from " TARGET_FMT_lx "\n",
440                is_exec ? "exec" : is_write ? "write" : "read", size,
441                size == 1 ? "" : "s", addr, env->pc);
442     }
443 #endif
444     /* Don't overwrite translation and access faults */
445     fault_type = (env->mmuregs[3] & 0x1c) >> 2;
446     if ((fault_type > 4) || (fault_type == 0)) {
447         env->mmuregs[3] = 0; /* Fault status register */
448         if (is_asi) {
449             env->mmuregs[3] |= 1 << 16;
450         }
451         if (env->psrs) {
452             env->mmuregs[3] |= 1 << 5;
453         }
454         if (is_exec) {
455             env->mmuregs[3] |= 1 << 6;
456         }
457         if (is_write) {
458             env->mmuregs[3] |= 1 << 7;
459         }
460         env->mmuregs[3] |= (5 << 2) | 2;
461         /* SuperSPARC will never place instruction fault addresses in the FAR */
462         if (!is_exec) {
463             env->mmuregs[4] = addr; /* Fault address register */
464         }
465     }
466     /* overflow (same type fault was not read before another fault) */
467     if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
468         env->mmuregs[3] |= 1;
469     }
470 
471     if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
472         int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
473         cpu_raise_exception_ra(env, tt, retaddr);
474     }
475 
476     /*
477      * flush neverland mappings created during no-fault mode,
478      * so the sequential MMU faults report proper fault types
479      */
480     if (env->mmuregs[0] & MMU_NF) {
481         tlb_flush(cs);
482     }
483 }
484 #else
485 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
486                                   bool is_write, bool is_exec, int is_asi,
487                                   unsigned size, uintptr_t retaddr)
488 {
489     SPARCCPU *cpu = SPARC_CPU(cs);
490     CPUSPARCState *env = &cpu->env;
491 
492 #ifdef DEBUG_UNASSIGNED
493     printf("Unassigned mem access to " HWADDR_FMT_plx " from " TARGET_FMT_lx
494            "\n", addr, env->pc);
495 #endif
496 
497     if (is_exec) { /* XXX has_hypervisor */
498         if (env->lsu & (IMMU_E)) {
499             cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
500         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
501             cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
502         }
503     } else {
504         if (env->lsu & (DMMU_E)) {
505             cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
506         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
507             cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
508         }
509     }
510 }
511 #endif
512 #endif
513 
514 #ifndef TARGET_SPARC64
515 #ifndef CONFIG_USER_ONLY
516 
517 
518 /* Leon3 cache control */
519 
520 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
521                                    uint64_t val, int size)
522 {
523     DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
524                           addr, val, size);
525 
526     if (size != 4) {
527         DPRINTF_CACHE_CONTROL("32bits only\n");
528         return;
529     }
530 
531     switch (addr) {
532     case 0x00:              /* Cache control */
533 
534         /* These values must always be read as zeros */
535         val &= ~CACHE_CTRL_FD;
536         val &= ~CACHE_CTRL_FI;
537         val &= ~CACHE_CTRL_IB;
538         val &= ~CACHE_CTRL_IP;
539         val &= ~CACHE_CTRL_DP;
540 
541         env->cache_control = val;
542         break;
543     case 0x04:              /* Instruction cache configuration */
544     case 0x08:              /* Data cache configuration */
545         /* Read Only */
546         break;
547     default:
548         DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
549         break;
550     };
551 }
552 
553 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
554                                        int size)
555 {
556     uint64_t ret = 0;
557 
558     if (size != 4) {
559         DPRINTF_CACHE_CONTROL("32bits only\n");
560         return 0;
561     }
562 
563     switch (addr) {
564     case 0x00:              /* Cache control */
565         ret = env->cache_control;
566         break;
567 
568         /* Configuration registers are read and only always keep those
569            predefined values */
570 
571     case 0x04:              /* Instruction cache configuration */
572         ret = 0x10220000;
573         break;
574     case 0x08:              /* Data cache configuration */
575         ret = 0x18220000;
576         break;
577     default:
578         DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
579         break;
580     };
581     DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
582                           addr, ret, size);
583     return ret;
584 }
585 
586 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
587                        int asi, uint32_t memop)
588 {
589     int size = 1 << (memop & MO_SIZE);
590     int sign = memop & MO_SIGN;
591     CPUState *cs = env_cpu(env);
592     uint64_t ret = 0;
593 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
594     uint32_t last_addr = addr;
595 #endif
596     MemOpIdx oi;
597 
598     do_check_align(env, addr, size - 1, GETPC());
599     switch (asi) {
600     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
601     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
602         switch (addr) {
603         case 0x00:          /* Leon3 Cache Control */
604         case 0x08:          /* Leon3 Instruction Cache config */
605         case 0x0C:          /* Leon3 Date Cache config */
606             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
607                 ret = leon3_cache_control_ld(env, addr, size);
608             }
609             break;
610         case 0x01c00a00: /* MXCC control register */
611             if (size == 8) {
612                 ret = env->mxccregs[3];
613             } else {
614                 qemu_log_mask(LOG_UNIMP,
615                               "%08x: unimplemented access size: %d\n", addr,
616                               size);
617             }
618             break;
619         case 0x01c00a04: /* MXCC control register */
620             if (size == 4) {
621                 ret = env->mxccregs[3];
622             } else {
623                 qemu_log_mask(LOG_UNIMP,
624                               "%08x: unimplemented access size: %d\n", addr,
625                               size);
626             }
627             break;
628         case 0x01c00c00: /* Module reset register */
629             if (size == 8) {
630                 ret = env->mxccregs[5];
631                 /* should we do something here? */
632             } else {
633                 qemu_log_mask(LOG_UNIMP,
634                               "%08x: unimplemented access size: %d\n", addr,
635                               size);
636             }
637             break;
638         case 0x01c00f00: /* MBus port address register */
639             if (size == 8) {
640                 ret = env->mxccregs[7];
641             } else {
642                 qemu_log_mask(LOG_UNIMP,
643                               "%08x: unimplemented access size: %d\n", addr,
644                               size);
645             }
646             break;
647         default:
648             qemu_log_mask(LOG_UNIMP,
649                           "%08x: unimplemented address, size: %d\n", addr,
650                           size);
651             break;
652         }
653         DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
654                      "addr = %08x -> ret = %" PRIx64 ","
655                      "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
656 #ifdef DEBUG_MXCC
657         dump_mxcc(env);
658 #endif
659         break;
660     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
661     case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
662         {
663             int mmulev;
664 
665             mmulev = (addr >> 8) & 15;
666             if (mmulev > 4) {
667                 ret = 0;
668             } else {
669                 ret = mmu_probe(env, addr, mmulev);
670             }
671             DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
672                         addr, mmulev, ret);
673         }
674         break;
675     case ASI_M_MMUREGS: /* SuperSparc MMU regs */
676     case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
677         {
678             int reg = (addr >> 8) & 0x1f;
679 
680             ret = env->mmuregs[reg];
681             if (reg == 3) { /* Fault status cleared on read */
682                 env->mmuregs[3] = 0;
683             } else if (reg == 0x13) { /* Fault status read */
684                 ret = env->mmuregs[3];
685             } else if (reg == 0x14) { /* Fault address read */
686                 ret = env->mmuregs[4];
687             }
688             DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
689         }
690         break;
691     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
692     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
693     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
694         break;
695     case ASI_KERNELTXT: /* Supervisor code access */
696         oi = make_memop_idx(memop, cpu_mmu_index(env, true));
697         switch (size) {
698         case 1:
699             ret = cpu_ldb_code_mmu(env, addr, oi, GETPC());
700             break;
701         case 2:
702             ret = cpu_ldw_code_mmu(env, addr, oi, GETPC());
703             break;
704         default:
705         case 4:
706             ret = cpu_ldl_code_mmu(env, addr, oi, GETPC());
707             break;
708         case 8:
709             ret = cpu_ldq_code_mmu(env, addr, oi, GETPC());
710             break;
711         }
712         break;
713     case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
714     case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
715     case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
716     case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
717         break;
718     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
719     {
720         MemTxResult result;
721         hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
722 
723         switch (size) {
724         case 1:
725             ret = address_space_ldub(cs->as, access_addr,
726                                      MEMTXATTRS_UNSPECIFIED, &result);
727             break;
728         case 2:
729             ret = address_space_lduw(cs->as, access_addr,
730                                      MEMTXATTRS_UNSPECIFIED, &result);
731             break;
732         default:
733         case 4:
734             ret = address_space_ldl(cs->as, access_addr,
735                                     MEMTXATTRS_UNSPECIFIED, &result);
736             break;
737         case 8:
738             ret = address_space_ldq(cs->as, access_addr,
739                                     MEMTXATTRS_UNSPECIFIED, &result);
740             break;
741         }
742 
743         if (result != MEMTX_OK) {
744             sparc_raise_mmu_fault(cs, access_addr, false, false, false,
745                                   size, GETPC());
746         }
747         break;
748     }
749     case 0x30: /* Turbosparc secondary cache diagnostic */
750     case 0x31: /* Turbosparc RAM snoop */
751     case 0x32: /* Turbosparc page table descriptor diagnostic */
752     case 0x39: /* data cache diagnostic register */
753         ret = 0;
754         break;
755     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
756         {
757             int reg = (addr >> 8) & 3;
758 
759             switch (reg) {
760             case 0: /* Breakpoint Value (Addr) */
761                 ret = env->mmubpregs[reg];
762                 break;
763             case 1: /* Breakpoint Mask */
764                 ret = env->mmubpregs[reg];
765                 break;
766             case 2: /* Breakpoint Control */
767                 ret = env->mmubpregs[reg];
768                 break;
769             case 3: /* Breakpoint Status */
770                 ret = env->mmubpregs[reg];
771                 env->mmubpregs[reg] = 0ULL;
772                 break;
773             }
774             DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
775                         ret);
776         }
777         break;
778     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
779         ret = env->mmubpctrv;
780         break;
781     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
782         ret = env->mmubpctrc;
783         break;
784     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
785         ret = env->mmubpctrs;
786         break;
787     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
788         ret = env->mmubpaction;
789         break;
790     case ASI_USERTXT: /* User code access, XXX */
791     default:
792         sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
793         ret = 0;
794         break;
795 
796     case ASI_USERDATA: /* User data access */
797     case ASI_KERNELDATA: /* Supervisor data access */
798     case ASI_P: /* Implicit primary context data access (v9 only?) */
799     case ASI_M_BYPASS:    /* MMU passthrough */
800     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
801         /* These are always handled inline.  */
802         g_assert_not_reached();
803     }
804     if (sign) {
805         switch (size) {
806         case 1:
807             ret = (int8_t) ret;
808             break;
809         case 2:
810             ret = (int16_t) ret;
811             break;
812         case 4:
813             ret = (int32_t) ret;
814             break;
815         default:
816             break;
817         }
818     }
819 #ifdef DEBUG_ASI
820     dump_asi("read ", last_addr, asi, size, ret);
821 #endif
822     return ret;
823 }
824 
825 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
826                    int asi, uint32_t memop)
827 {
828     int size = 1 << (memop & MO_SIZE);
829     CPUState *cs = env_cpu(env);
830 
831     do_check_align(env, addr, size - 1, GETPC());
832     switch (asi) {
833     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
834     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
835         switch (addr) {
836         case 0x00:          /* Leon3 Cache Control */
837         case 0x08:          /* Leon3 Instruction Cache config */
838         case 0x0C:          /* Leon3 Date Cache config */
839             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
840                 leon3_cache_control_st(env, addr, val, size);
841             }
842             break;
843 
844         case 0x01c00000: /* MXCC stream data register 0 */
845             if (size == 8) {
846                 env->mxccdata[0] = val;
847             } else {
848                 qemu_log_mask(LOG_UNIMP,
849                               "%08x: unimplemented access size: %d\n", addr,
850                               size);
851             }
852             break;
853         case 0x01c00008: /* MXCC stream data register 1 */
854             if (size == 8) {
855                 env->mxccdata[1] = val;
856             } else {
857                 qemu_log_mask(LOG_UNIMP,
858                               "%08x: unimplemented access size: %d\n", addr,
859                               size);
860             }
861             break;
862         case 0x01c00010: /* MXCC stream data register 2 */
863             if (size == 8) {
864                 env->mxccdata[2] = val;
865             } else {
866                 qemu_log_mask(LOG_UNIMP,
867                               "%08x: unimplemented access size: %d\n", addr,
868                               size);
869             }
870             break;
871         case 0x01c00018: /* MXCC stream data register 3 */
872             if (size == 8) {
873                 env->mxccdata[3] = val;
874             } else {
875                 qemu_log_mask(LOG_UNIMP,
876                               "%08x: unimplemented access size: %d\n", addr,
877                               size);
878             }
879             break;
880         case 0x01c00100: /* MXCC stream source */
881         {
882             int i;
883 
884             if (size == 8) {
885                 env->mxccregs[0] = val;
886             } else {
887                 qemu_log_mask(LOG_UNIMP,
888                               "%08x: unimplemented access size: %d\n", addr,
889                               size);
890             }
891 
892             for (i = 0; i < 4; i++) {
893                 MemTxResult result;
894                 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
895 
896                 env->mxccdata[i] = address_space_ldq(cs->as,
897                                                      access_addr,
898                                                      MEMTXATTRS_UNSPECIFIED,
899                                                      &result);
900                 if (result != MEMTX_OK) {
901                     /* TODO: investigate whether this is the right behaviour */
902                     sparc_raise_mmu_fault(cs, access_addr, false, false,
903                                           false, size, GETPC());
904                 }
905             }
906             break;
907         }
908         case 0x01c00200: /* MXCC stream destination */
909         {
910             int i;
911 
912             if (size == 8) {
913                 env->mxccregs[1] = val;
914             } else {
915                 qemu_log_mask(LOG_UNIMP,
916                               "%08x: unimplemented access size: %d\n", addr,
917                               size);
918             }
919 
920             for (i = 0; i < 4; i++) {
921                 MemTxResult result;
922                 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
923 
924                 address_space_stq(cs->as, access_addr, env->mxccdata[i],
925                                   MEMTXATTRS_UNSPECIFIED, &result);
926 
927                 if (result != MEMTX_OK) {
928                     /* TODO: investigate whether this is the right behaviour */
929                     sparc_raise_mmu_fault(cs, access_addr, true, false,
930                                           false, size, GETPC());
931                 }
932             }
933             break;
934         }
935         case 0x01c00a00: /* MXCC control register */
936             if (size == 8) {
937                 env->mxccregs[3] = val;
938             } else {
939                 qemu_log_mask(LOG_UNIMP,
940                               "%08x: unimplemented access size: %d\n", addr,
941                               size);
942             }
943             break;
944         case 0x01c00a04: /* MXCC control register */
945             if (size == 4) {
946                 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
947                     | val;
948             } else {
949                 qemu_log_mask(LOG_UNIMP,
950                               "%08x: unimplemented access size: %d\n", addr,
951                               size);
952             }
953             break;
954         case 0x01c00e00: /* MXCC error register  */
955             /* writing a 1 bit clears the error */
956             if (size == 8) {
957                 env->mxccregs[6] &= ~val;
958             } else {
959                 qemu_log_mask(LOG_UNIMP,
960                               "%08x: unimplemented access size: %d\n", addr,
961                               size);
962             }
963             break;
964         case 0x01c00f00: /* MBus port address register */
965             if (size == 8) {
966                 env->mxccregs[7] = val;
967             } else {
968                 qemu_log_mask(LOG_UNIMP,
969                               "%08x: unimplemented access size: %d\n", addr,
970                               size);
971             }
972             break;
973         default:
974             qemu_log_mask(LOG_UNIMP,
975                           "%08x: unimplemented address, size: %d\n", addr,
976                           size);
977             break;
978         }
979         DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
980                      asi, size, addr, val);
981 #ifdef DEBUG_MXCC
982         dump_mxcc(env);
983 #endif
984         break;
985     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
986     case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
987         {
988             int mmulev;
989 
990             mmulev = (addr >> 8) & 15;
991             DPRINTF_MMU("mmu flush level %d\n", mmulev);
992             switch (mmulev) {
993             case 0: /* flush page */
994                 tlb_flush_page(cs, addr & 0xfffff000);
995                 break;
996             case 1: /* flush segment (256k) */
997             case 2: /* flush region (16M) */
998             case 3: /* flush context (4G) */
999             case 4: /* flush entire */
1000                 tlb_flush(cs);
1001                 break;
1002             default:
1003                 break;
1004             }
1005 #ifdef DEBUG_MMU
1006             dump_mmu(env);
1007 #endif
1008         }
1009         break;
1010     case ASI_M_MMUREGS: /* write MMU regs */
1011     case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
1012         {
1013             int reg = (addr >> 8) & 0x1f;
1014             uint32_t oldreg;
1015 
1016             oldreg = env->mmuregs[reg];
1017             switch (reg) {
1018             case 0: /* Control Register */
1019                 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1020                     (val & 0x00ffffff);
1021                 /* Mappings generated during no-fault mode
1022                    are invalid in normal mode.  */
1023                 if ((oldreg ^ env->mmuregs[reg])
1024                     & (MMU_NF | env->def.mmu_bm)) {
1025                     tlb_flush(cs);
1026                 }
1027                 break;
1028             case 1: /* Context Table Pointer Register */
1029                 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1030                 break;
1031             case 2: /* Context Register */
1032                 env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1033                 if (oldreg != env->mmuregs[reg]) {
1034                     /* we flush when the MMU context changes because
1035                        QEMU has no MMU context support */
1036                     tlb_flush(cs);
1037                 }
1038                 break;
1039             case 3: /* Synchronous Fault Status Register with Clear */
1040             case 4: /* Synchronous Fault Address Register */
1041                 break;
1042             case 0x10: /* TLB Replacement Control Register */
1043                 env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1044                 break;
1045             case 0x13: /* Synchronous Fault Status Register with Read
1046                           and Clear */
1047                 env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1048                 break;
1049             case 0x14: /* Synchronous Fault Address Register */
1050                 env->mmuregs[4] = val;
1051                 break;
1052             default:
1053                 env->mmuregs[reg] = val;
1054                 break;
1055             }
1056             if (oldreg != env->mmuregs[reg]) {
1057                 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1058                             reg, oldreg, env->mmuregs[reg]);
1059             }
1060 #ifdef DEBUG_MMU
1061             dump_mmu(env);
1062 #endif
1063         }
1064         break;
1065     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1066     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
1067     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
1068         break;
1069     case ASI_M_TXTC_TAG:   /* I-cache tag */
1070     case ASI_M_TXTC_DATA:  /* I-cache data */
1071     case ASI_M_DATAC_TAG:  /* D-cache tag */
1072     case ASI_M_DATAC_DATA: /* D-cache data */
1073     case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
1074     case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
1075     case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1076     case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
1077     case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
1078         break;
1079     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1080         {
1081             MemTxResult result;
1082             hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1083 
1084             switch (size) {
1085             case 1:
1086                 address_space_stb(cs->as, access_addr, val,
1087                                   MEMTXATTRS_UNSPECIFIED, &result);
1088                 break;
1089             case 2:
1090                 address_space_stw(cs->as, access_addr, val,
1091                                   MEMTXATTRS_UNSPECIFIED, &result);
1092                 break;
1093             case 4:
1094             default:
1095                 address_space_stl(cs->as, access_addr, val,
1096                                   MEMTXATTRS_UNSPECIFIED, &result);
1097                 break;
1098             case 8:
1099                 address_space_stq(cs->as, access_addr, val,
1100                                   MEMTXATTRS_UNSPECIFIED, &result);
1101                 break;
1102             }
1103             if (result != MEMTX_OK) {
1104                 sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1105                                       size, GETPC());
1106             }
1107         }
1108         break;
1109     case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1110     case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1111                   Turbosparc snoop RAM */
1112     case 0x32: /* store buffer control or Turbosparc page table
1113                   descriptor diagnostic */
1114     case 0x36: /* I-cache flash clear */
1115     case 0x37: /* D-cache flash clear */
1116         break;
1117     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1118         {
1119             int reg = (addr >> 8) & 3;
1120 
1121             switch (reg) {
1122             case 0: /* Breakpoint Value (Addr) */
1123                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1124                 break;
1125             case 1: /* Breakpoint Mask */
1126                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1127                 break;
1128             case 2: /* Breakpoint Control */
1129                 env->mmubpregs[reg] = (val & 0x7fULL);
1130                 break;
1131             case 3: /* Breakpoint Status */
1132                 env->mmubpregs[reg] = (val & 0xfULL);
1133                 break;
1134             }
1135             DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1136                         env->mmuregs[reg]);
1137         }
1138         break;
1139     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1140         env->mmubpctrv = val & 0xffffffff;
1141         break;
1142     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1143         env->mmubpctrc = val & 0x3;
1144         break;
1145     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1146         env->mmubpctrs = val & 0x3;
1147         break;
1148     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1149         env->mmubpaction = val & 0x1fff;
1150         break;
1151     case ASI_USERTXT: /* User code access, XXX */
1152     case ASI_KERNELTXT: /* Supervisor code access, XXX */
1153     default:
1154         sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1155         break;
1156 
1157     case ASI_USERDATA: /* User data access */
1158     case ASI_KERNELDATA: /* Supervisor data access */
1159     case ASI_P:
1160     case ASI_M_BYPASS:    /* MMU passthrough */
1161     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1162     case ASI_M_BCOPY: /* Block copy, sta access */
1163     case ASI_M_BFILL: /* Block fill, stda access */
1164         /* These are always handled inline.  */
1165         g_assert_not_reached();
1166     }
1167 #ifdef DEBUG_ASI
1168     dump_asi("write", addr, asi, size, val);
1169 #endif
1170 }
1171 
1172 #endif /* CONFIG_USER_ONLY */
1173 #else /* TARGET_SPARC64 */
1174 
1175 #ifdef CONFIG_USER_ONLY
1176 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1177                        int asi, uint32_t memop)
1178 {
1179     int size = 1 << (memop & MO_SIZE);
1180     int sign = memop & MO_SIGN;
1181     uint64_t ret = 0;
1182 
1183     if (asi < 0x80) {
1184         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1185     }
1186     do_check_align(env, addr, size - 1, GETPC());
1187     addr = asi_address_mask(env, asi, addr);
1188 
1189     switch (asi) {
1190     case ASI_PNF:  /* Primary no-fault */
1191     case ASI_PNFL: /* Primary no-fault LE */
1192     case ASI_SNF:  /* Secondary no-fault */
1193     case ASI_SNFL: /* Secondary no-fault LE */
1194         if (page_check_range(addr, size, PAGE_READ) == -1) {
1195             ret = 0;
1196             break;
1197         }
1198         switch (size) {
1199         case 1:
1200             ret = cpu_ldub_data(env, addr);
1201             break;
1202         case 2:
1203             ret = cpu_lduw_data(env, addr);
1204             break;
1205         case 4:
1206             ret = cpu_ldl_data(env, addr);
1207             break;
1208         case 8:
1209             ret = cpu_ldq_data(env, addr);
1210             break;
1211         default:
1212             g_assert_not_reached();
1213         }
1214         break;
1215         break;
1216 
1217     case ASI_P: /* Primary */
1218     case ASI_PL: /* Primary LE */
1219     case ASI_S:  /* Secondary */
1220     case ASI_SL: /* Secondary LE */
1221         /* These are always handled inline.  */
1222         g_assert_not_reached();
1223 
1224     default:
1225         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1226     }
1227 
1228     /* Convert from little endian */
1229     switch (asi) {
1230     case ASI_PNFL: /* Primary no-fault LE */
1231     case ASI_SNFL: /* Secondary no-fault LE */
1232         switch (size) {
1233         case 2:
1234             ret = bswap16(ret);
1235             break;
1236         case 4:
1237             ret = bswap32(ret);
1238             break;
1239         case 8:
1240             ret = bswap64(ret);
1241             break;
1242         }
1243     }
1244 
1245     /* Convert to signed number */
1246     if (sign) {
1247         switch (size) {
1248         case 1:
1249             ret = (int8_t) ret;
1250             break;
1251         case 2:
1252             ret = (int16_t) ret;
1253             break;
1254         case 4:
1255             ret = (int32_t) ret;
1256             break;
1257         }
1258     }
1259 #ifdef DEBUG_ASI
1260     dump_asi("read", addr, asi, size, ret);
1261 #endif
1262     return ret;
1263 }
1264 
1265 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1266                    int asi, uint32_t memop)
1267 {
1268     int size = 1 << (memop & MO_SIZE);
1269 #ifdef DEBUG_ASI
1270     dump_asi("write", addr, asi, size, val);
1271 #endif
1272     if (asi < 0x80) {
1273         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1274     }
1275     do_check_align(env, addr, size - 1, GETPC());
1276 
1277     switch (asi) {
1278     case ASI_P:  /* Primary */
1279     case ASI_PL: /* Primary LE */
1280     case ASI_S:  /* Secondary */
1281     case ASI_SL: /* Secondary LE */
1282         /* These are always handled inline.  */
1283         g_assert_not_reached();
1284 
1285     case ASI_PNF:  /* Primary no-fault, RO */
1286     case ASI_SNF:  /* Secondary no-fault, RO */
1287     case ASI_PNFL: /* Primary no-fault LE, RO */
1288     case ASI_SNFL: /* Secondary no-fault LE, RO */
1289     default:
1290         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1291     }
1292 }
1293 
1294 #else /* CONFIG_USER_ONLY */
1295 
1296 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1297                        int asi, uint32_t memop)
1298 {
1299     int size = 1 << (memop & MO_SIZE);
1300     int sign = memop & MO_SIGN;
1301     CPUState *cs = env_cpu(env);
1302     uint64_t ret = 0;
1303 #if defined(DEBUG_ASI)
1304     target_ulong last_addr = addr;
1305 #endif
1306 
1307     asi &= 0xff;
1308 
1309     do_check_asi(env, asi, GETPC());
1310     do_check_align(env, addr, size - 1, GETPC());
1311     addr = asi_address_mask(env, asi, addr);
1312 
1313     switch (asi) {
1314     case ASI_PNF:
1315     case ASI_PNFL:
1316     case ASI_SNF:
1317     case ASI_SNFL:
1318         {
1319             MemOpIdx oi;
1320             int idx = (env->pstate & PS_PRIV
1321                        ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1322                        : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1323 
1324             if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1325 #ifdef DEBUG_ASI
1326                 dump_asi("read ", last_addr, asi, size, ret);
1327 #endif
1328                 /* exception_index is set in get_physical_address_data. */
1329                 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1330             }
1331             oi = make_memop_idx(memop, idx);
1332             switch (size) {
1333             case 1:
1334                 ret = cpu_ldb_mmu(env, addr, oi, GETPC());
1335                 break;
1336             case 2:
1337                 if (asi & 8) {
1338                     ret = cpu_ldw_le_mmu(env, addr, oi, GETPC());
1339                 } else {
1340                     ret = cpu_ldw_be_mmu(env, addr, oi, GETPC());
1341                 }
1342                 break;
1343             case 4:
1344                 if (asi & 8) {
1345                     ret = cpu_ldl_le_mmu(env, addr, oi, GETPC());
1346                 } else {
1347                     ret = cpu_ldl_be_mmu(env, addr, oi, GETPC());
1348                 }
1349                 break;
1350             case 8:
1351                 if (asi & 8) {
1352                     ret = cpu_ldq_le_mmu(env, addr, oi, GETPC());
1353                 } else {
1354                     ret = cpu_ldq_be_mmu(env, addr, oi, GETPC());
1355                 }
1356                 break;
1357             default:
1358                 g_assert_not_reached();
1359             }
1360         }
1361         break;
1362 
1363     case ASI_AIUP:  /* As if user primary */
1364     case ASI_AIUS:  /* As if user secondary */
1365     case ASI_AIUPL: /* As if user primary LE */
1366     case ASI_AIUSL: /* As if user secondary LE */
1367     case ASI_P:  /* Primary */
1368     case ASI_S:  /* Secondary */
1369     case ASI_PL: /* Primary LE */
1370     case ASI_SL: /* Secondary LE */
1371     case ASI_REAL:      /* Bypass */
1372     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1373     case ASI_REAL_L:    /* Bypass LE */
1374     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1375     case ASI_N:  /* Nucleus */
1376     case ASI_NL: /* Nucleus Little Endian (LE) */
1377     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1378     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1379     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1380     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1381     case ASI_TWINX_REAL:   /* Real address, twinx */
1382     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1383     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1384     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1385     case ASI_TWINX_N:  /* Nucleus, twinx */
1386     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1387     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1388     case ASI_TWINX_P:  /* Primary, twinx */
1389     case ASI_TWINX_PL: /* Primary, twinx, LE */
1390     case ASI_TWINX_S:  /* Secondary, twinx */
1391     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1392         /* These are always handled inline.  */
1393         g_assert_not_reached();
1394 
1395     case ASI_UPA_CONFIG: /* UPA config */
1396         /* XXX */
1397         break;
1398     case ASI_LSU_CONTROL: /* LSU */
1399         ret = env->lsu;
1400         break;
1401     case ASI_IMMU: /* I-MMU regs */
1402         {
1403             int reg = (addr >> 3) & 0xf;
1404             switch (reg) {
1405             case 0:
1406                 /* 0x00 I-TSB Tag Target register */
1407                 ret = ultrasparc_tag_target(env->immu.tag_access);
1408                 break;
1409             case 3: /* SFSR */
1410                 ret = env->immu.sfsr;
1411                 break;
1412             case 5: /* TSB access */
1413                 ret = env->immu.tsb;
1414                 break;
1415             case 6:
1416                 /* 0x30 I-TSB Tag Access register */
1417                 ret = env->immu.tag_access;
1418                 break;
1419             default:
1420                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1421                 ret = 0;
1422             }
1423             break;
1424         }
1425     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1426         {
1427             /* env->immuregs[5] holds I-MMU TSB register value
1428                env->immuregs[6] holds I-MMU Tag Access register value */
1429             ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1430             break;
1431         }
1432     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1433         {
1434             /* env->immuregs[5] holds I-MMU TSB register value
1435                env->immuregs[6] holds I-MMU Tag Access register value */
1436             ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1437             break;
1438         }
1439     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1440         {
1441             int reg = (addr >> 3) & 0x3f;
1442 
1443             ret = env->itlb[reg].tte;
1444             break;
1445         }
1446     case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1447         {
1448             int reg = (addr >> 3) & 0x3f;
1449 
1450             ret = env->itlb[reg].tag;
1451             break;
1452         }
1453     case ASI_DMMU: /* D-MMU regs */
1454         {
1455             int reg = (addr >> 3) & 0xf;
1456             switch (reg) {
1457             case 0:
1458                 /* 0x00 D-TSB Tag Target register */
1459                 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1460                 break;
1461             case 1: /* 0x08 Primary Context */
1462                 ret = env->dmmu.mmu_primary_context;
1463                 break;
1464             case 2: /* 0x10 Secondary Context */
1465                 ret = env->dmmu.mmu_secondary_context;
1466                 break;
1467             case 3: /* SFSR */
1468                 ret = env->dmmu.sfsr;
1469                 break;
1470             case 4: /* 0x20 SFAR */
1471                 ret = env->dmmu.sfar;
1472                 break;
1473             case 5: /* 0x28 TSB access */
1474                 ret = env->dmmu.tsb;
1475                 break;
1476             case 6: /* 0x30 D-TSB Tag Access register */
1477                 ret = env->dmmu.tag_access;
1478                 break;
1479             case 7:
1480                 ret = env->dmmu.virtual_watchpoint;
1481                 break;
1482             case 8:
1483                 ret = env->dmmu.physical_watchpoint;
1484                 break;
1485             default:
1486                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1487                 ret = 0;
1488             }
1489             break;
1490         }
1491     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1492         {
1493             /* env->dmmuregs[5] holds D-MMU TSB register value
1494                env->dmmuregs[6] holds D-MMU Tag Access register value */
1495             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1496             break;
1497         }
1498     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1499         {
1500             /* env->dmmuregs[5] holds D-MMU TSB register value
1501                env->dmmuregs[6] holds D-MMU Tag Access register value */
1502             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1503             break;
1504         }
1505     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1506         {
1507             int reg = (addr >> 3) & 0x3f;
1508 
1509             ret = env->dtlb[reg].tte;
1510             break;
1511         }
1512     case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1513         {
1514             int reg = (addr >> 3) & 0x3f;
1515 
1516             ret = env->dtlb[reg].tag;
1517             break;
1518         }
1519     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1520         break;
1521     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1522         ret = env->ivec_status;
1523         break;
1524     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1525         {
1526             int reg = (addr >> 4) & 0x3;
1527             if (reg < 3) {
1528                 ret = env->ivec_data[reg];
1529             }
1530             break;
1531         }
1532     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1533         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1534             /* Hyperprivileged access only */
1535             sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1536         }
1537         /* fall through */
1538     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1539         {
1540             unsigned int i = (addr >> 3) & 0x7;
1541             ret = env->scratch[i];
1542             break;
1543         }
1544     case ASI_MMU: /* UA2005 Context ID registers */
1545         switch ((addr >> 3) & 0x3) {
1546         case 1:
1547             ret = env->dmmu.mmu_primary_context;
1548             break;
1549         case 2:
1550             ret = env->dmmu.mmu_secondary_context;
1551             break;
1552         default:
1553           sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1554         }
1555         break;
1556     case ASI_DCACHE_DATA:     /* D-cache data */
1557     case ASI_DCACHE_TAG:      /* D-cache tag access */
1558     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1559     case ASI_AFSR:            /* E-cache asynchronous fault status */
1560     case ASI_AFAR:            /* E-cache asynchronous fault address */
1561     case ASI_EC_TAG_DATA:     /* E-cache tag data */
1562     case ASI_IC_INSTR:        /* I-cache instruction access */
1563     case ASI_IC_TAG:          /* I-cache tag access */
1564     case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1565     case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1566     case ASI_EC_W:            /* E-cache tag */
1567     case ASI_EC_R:            /* E-cache tag */
1568         break;
1569     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1570     case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1571     case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1572     case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1573     case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1574     case ASI_INTR_W:              /* Interrupt vector, WO */
1575     default:
1576         sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1577         ret = 0;
1578         break;
1579     }
1580 
1581     /* Convert to signed number */
1582     if (sign) {
1583         switch (size) {
1584         case 1:
1585             ret = (int8_t) ret;
1586             break;
1587         case 2:
1588             ret = (int16_t) ret;
1589             break;
1590         case 4:
1591             ret = (int32_t) ret;
1592             break;
1593         default:
1594             break;
1595         }
1596     }
1597 #ifdef DEBUG_ASI
1598     dump_asi("read ", last_addr, asi, size, ret);
1599 #endif
1600     return ret;
1601 }
1602 
1603 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1604                    int asi, uint32_t memop)
1605 {
1606     int size = 1 << (memop & MO_SIZE);
1607     CPUState *cs = env_cpu(env);
1608 
1609 #ifdef DEBUG_ASI
1610     dump_asi("write", addr, asi, size, val);
1611 #endif
1612 
1613     asi &= 0xff;
1614 
1615     do_check_asi(env, asi, GETPC());
1616     do_check_align(env, addr, size - 1, GETPC());
1617     addr = asi_address_mask(env, asi, addr);
1618 
1619     switch (asi) {
1620     case ASI_AIUP:  /* As if user primary */
1621     case ASI_AIUS:  /* As if user secondary */
1622     case ASI_AIUPL: /* As if user primary LE */
1623     case ASI_AIUSL: /* As if user secondary LE */
1624     case ASI_P:  /* Primary */
1625     case ASI_S:  /* Secondary */
1626     case ASI_PL: /* Primary LE */
1627     case ASI_SL: /* Secondary LE */
1628     case ASI_REAL:      /* Bypass */
1629     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1630     case ASI_REAL_L:    /* Bypass LE */
1631     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1632     case ASI_N:  /* Nucleus */
1633     case ASI_NL: /* Nucleus Little Endian (LE) */
1634     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1635     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1636     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1637     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1638     case ASI_TWINX_REAL:   /* Real address, twinx */
1639     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1640     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1641     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1642     case ASI_TWINX_N:  /* Nucleus, twinx */
1643     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1644     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1645     case ASI_TWINX_P:  /* Primary, twinx */
1646     case ASI_TWINX_PL: /* Primary, twinx, LE */
1647     case ASI_TWINX_S:  /* Secondary, twinx */
1648     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1649         /* These are always handled inline.  */
1650         g_assert_not_reached();
1651     /* these ASIs have different functions on UltraSPARC-IIIi
1652      * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1653      */
1654     case 0x31:
1655     case 0x32:
1656     case 0x39:
1657     case 0x3a:
1658         if (cpu_has_hypervisor(env)) {
1659             /* UA2005
1660              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1661              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1662              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1663              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1664              */
1665             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1666             env->dmmu.sun4v_tsb_pointers[idx] = val;
1667         } else {
1668             helper_raise_exception(env, TT_ILL_INSN);
1669         }
1670         break;
1671     case 0x33:
1672     case 0x3b:
1673         if (cpu_has_hypervisor(env)) {
1674             /* UA2005
1675              * ASI_DMMU_CTX_ZERO_CONFIG
1676              * ASI_DMMU_CTX_NONZERO_CONFIG
1677              */
1678             env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1679         } else {
1680             helper_raise_exception(env, TT_ILL_INSN);
1681         }
1682         break;
1683     case 0x35:
1684     case 0x36:
1685     case 0x3d:
1686     case 0x3e:
1687         if (cpu_has_hypervisor(env)) {
1688             /* UA2005
1689              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1690              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1691              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1692              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1693              */
1694             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1695             env->immu.sun4v_tsb_pointers[idx] = val;
1696         } else {
1697             helper_raise_exception(env, TT_ILL_INSN);
1698         }
1699       break;
1700     case 0x37:
1701     case 0x3f:
1702         if (cpu_has_hypervisor(env)) {
1703             /* UA2005
1704              * ASI_IMMU_CTX_ZERO_CONFIG
1705              * ASI_IMMU_CTX_NONZERO_CONFIG
1706              */
1707             env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1708         } else {
1709           helper_raise_exception(env, TT_ILL_INSN);
1710         }
1711         break;
1712     case ASI_UPA_CONFIG: /* UPA config */
1713         /* XXX */
1714         return;
1715     case ASI_LSU_CONTROL: /* LSU */
1716         env->lsu = val & (DMMU_E | IMMU_E);
1717         return;
1718     case ASI_IMMU: /* I-MMU regs */
1719         {
1720             int reg = (addr >> 3) & 0xf;
1721             uint64_t oldreg;
1722 
1723             oldreg = env->immu.mmuregs[reg];
1724             switch (reg) {
1725             case 0: /* RO */
1726                 return;
1727             case 1: /* Not in I-MMU */
1728             case 2:
1729                 return;
1730             case 3: /* SFSR */
1731                 if ((val & 1) == 0) {
1732                     val = 0; /* Clear SFSR */
1733                 }
1734                 env->immu.sfsr = val;
1735                 break;
1736             case 4: /* RO */
1737                 return;
1738             case 5: /* TSB access */
1739                 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1740                             PRIx64 "\n", env->immu.tsb, val);
1741                 env->immu.tsb = val;
1742                 break;
1743             case 6: /* Tag access */
1744                 env->immu.tag_access = val;
1745                 break;
1746             case 7:
1747             case 8:
1748                 return;
1749             default:
1750                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1751                 break;
1752             }
1753 
1754             if (oldreg != env->immu.mmuregs[reg]) {
1755                 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1756                             PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1757             }
1758 #ifdef DEBUG_MMU
1759             dump_mmu(env);
1760 #endif
1761             return;
1762         }
1763     case ASI_ITLB_DATA_IN: /* I-MMU data in */
1764         /* ignore real translation entries */
1765         if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1766             replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1767                                  val, "immu", env, addr);
1768         }
1769         return;
1770     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1771         {
1772             /* TODO: auto demap */
1773 
1774             unsigned int i = (addr >> 3) & 0x3f;
1775 
1776             /* ignore real translation entries */
1777             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1778                 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1779                                   sun4v_tte_to_sun4u(env, addr, val), env);
1780             }
1781 #ifdef DEBUG_MMU
1782             DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1783             dump_mmu(env);
1784 #endif
1785             return;
1786         }
1787     case ASI_IMMU_DEMAP: /* I-MMU demap */
1788         demap_tlb(env->itlb, addr, "immu", env);
1789         return;
1790     case ASI_DMMU: /* D-MMU regs */
1791         {
1792             int reg = (addr >> 3) & 0xf;
1793             uint64_t oldreg;
1794 
1795             oldreg = env->dmmu.mmuregs[reg];
1796             switch (reg) {
1797             case 0: /* RO */
1798             case 4:
1799                 return;
1800             case 3: /* SFSR */
1801                 if ((val & 1) == 0) {
1802                     val = 0; /* Clear SFSR, Fault address */
1803                     env->dmmu.sfar = 0;
1804                 }
1805                 env->dmmu.sfsr = val;
1806                 break;
1807             case 1: /* Primary context */
1808                 env->dmmu.mmu_primary_context = val;
1809                 /* can be optimized to only flush MMU_USER_IDX
1810                    and MMU_KERNEL_IDX entries */
1811                 tlb_flush(cs);
1812                 break;
1813             case 2: /* Secondary context */
1814                 env->dmmu.mmu_secondary_context = val;
1815                 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1816                    and MMU_KERNEL_SECONDARY_IDX entries */
1817                 tlb_flush(cs);
1818                 break;
1819             case 5: /* TSB access */
1820                 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1821                             PRIx64 "\n", env->dmmu.tsb, val);
1822                 env->dmmu.tsb = val;
1823                 break;
1824             case 6: /* Tag access */
1825                 env->dmmu.tag_access = val;
1826                 break;
1827             case 7: /* Virtual Watchpoint */
1828                 env->dmmu.virtual_watchpoint = val;
1829                 break;
1830             case 8: /* Physical Watchpoint */
1831                 env->dmmu.physical_watchpoint = val;
1832                 break;
1833             default:
1834                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1835                 break;
1836             }
1837 
1838             if (oldreg != env->dmmu.mmuregs[reg]) {
1839                 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1840                             PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1841             }
1842 #ifdef DEBUG_MMU
1843             dump_mmu(env);
1844 #endif
1845             return;
1846         }
1847     case ASI_DTLB_DATA_IN: /* D-MMU data in */
1848       /* ignore real translation entries */
1849       if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1850           replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1851                                val, "dmmu", env, addr);
1852       }
1853       return;
1854     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1855         {
1856             unsigned int i = (addr >> 3) & 0x3f;
1857 
1858             /* ignore real translation entries */
1859             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1860                 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1861                                   sun4v_tte_to_sun4u(env, addr, val), env);
1862             }
1863 #ifdef DEBUG_MMU
1864             DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1865             dump_mmu(env);
1866 #endif
1867             return;
1868         }
1869     case ASI_DMMU_DEMAP: /* D-MMU demap */
1870         demap_tlb(env->dtlb, addr, "dmmu", env);
1871         return;
1872     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1873         env->ivec_status = val & 0x20;
1874         return;
1875     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1876         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1877             /* Hyperprivileged access only */
1878             sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1879         }
1880         /* fall through */
1881     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1882         {
1883             unsigned int i = (addr >> 3) & 0x7;
1884             env->scratch[i] = val;
1885             return;
1886         }
1887     case ASI_MMU: /* UA2005 Context ID registers */
1888         {
1889           switch ((addr >> 3) & 0x3) {
1890           case 1:
1891               env->dmmu.mmu_primary_context = val;
1892               env->immu.mmu_primary_context = val;
1893               tlb_flush_by_mmuidx(cs,
1894                                   (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1895               break;
1896           case 2:
1897               env->dmmu.mmu_secondary_context = val;
1898               env->immu.mmu_secondary_context = val;
1899               tlb_flush_by_mmuidx(cs,
1900                                   (1 << MMU_USER_SECONDARY_IDX) |
1901                                   (1 << MMU_KERNEL_SECONDARY_IDX));
1902               break;
1903           default:
1904               sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1905           }
1906         }
1907         return;
1908     case ASI_QUEUE: /* UA2005 CPU mondo queue */
1909     case ASI_DCACHE_DATA: /* D-cache data */
1910     case ASI_DCACHE_TAG: /* D-cache tag access */
1911     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1912     case ASI_AFSR: /* E-cache asynchronous fault status */
1913     case ASI_AFAR: /* E-cache asynchronous fault address */
1914     case ASI_EC_TAG_DATA: /* E-cache tag data */
1915     case ASI_IC_INSTR: /* I-cache instruction access */
1916     case ASI_IC_TAG: /* I-cache tag access */
1917     case ASI_IC_PRE_DECODE: /* I-cache predecode */
1918     case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1919     case ASI_EC_W: /* E-cache tag */
1920     case ASI_EC_R: /* E-cache tag */
1921         return;
1922     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1923     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1924     case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1925     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1926     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1927     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1928     case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1929     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1930     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1931     case ASI_PNF: /* Primary no-fault, RO */
1932     case ASI_SNF: /* Secondary no-fault, RO */
1933     case ASI_PNFL: /* Primary no-fault LE, RO */
1934     case ASI_SNFL: /* Secondary no-fault LE, RO */
1935     default:
1936         sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1937         return;
1938     }
1939 }
1940 #endif /* CONFIG_USER_ONLY */
1941 #endif /* TARGET_SPARC64 */
1942 
1943 #if !defined(CONFIG_USER_ONLY)
1944 
1945 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1946                                      vaddr addr, unsigned size,
1947                                      MMUAccessType access_type,
1948                                      int mmu_idx, MemTxAttrs attrs,
1949                                      MemTxResult response, uintptr_t retaddr)
1950 {
1951     bool is_write = access_type == MMU_DATA_STORE;
1952     bool is_exec = access_type == MMU_INST_FETCH;
1953     bool is_asi = false;
1954 
1955     sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1956                           is_asi, size, retaddr);
1957 }
1958 #endif
1959