xref: /qemu/target/sparc/ldst_helper.c (revision 3e775730)
1 /*
2  * Helpers for loads and stores
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "tcg/tcg.h"
24 #include "exec/helper-proto.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "asi.h"
28 
29 //#define DEBUG_MMU
30 //#define DEBUG_MXCC
31 //#define DEBUG_UNASSIGNED
32 //#define DEBUG_ASI
33 //#define DEBUG_CACHE_CONTROL
34 
35 #ifdef DEBUG_MMU
36 #define DPRINTF_MMU(fmt, ...)                                   \
37     do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF_MMU(fmt, ...) do {} while (0)
40 #endif
41 
42 #ifdef DEBUG_MXCC
43 #define DPRINTF_MXCC(fmt, ...)                                  \
44     do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
47 #endif
48 
49 #ifdef DEBUG_ASI
50 #define DPRINTF_ASI(fmt, ...)                                   \
51     do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
52 #endif
53 
54 #ifdef DEBUG_CACHE_CONTROL
55 #define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
56     do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
59 #endif
60 
61 #ifdef TARGET_SPARC64
62 #ifndef TARGET_ABI32
63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
64 #else
65 #define AM_CHECK(env1) (1)
66 #endif
67 #endif
68 
69 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
70 /* Calculates TSB pointer value for fault page size
71  * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
72  * UA2005 holds the page size configuration in mmu_ctx registers */
73 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
74                                        const SparcV9MMU *mmu, const int idx)
75 {
76     uint64_t tsb_register;
77     int page_size;
78     if (cpu_has_hypervisor(env)) {
79         int tsb_index = 0;
80         int ctx = mmu->tag_access & 0x1fffULL;
81         uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
82         tsb_index = idx;
83         tsb_index |= ctx ? 2 : 0;
84         page_size = idx ? ctx_register >> 8 : ctx_register;
85         page_size &= 7;
86         tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
87     } else {
88         page_size = idx;
89         tsb_register = mmu->tsb;
90     }
91     int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
92     int tsb_size  = tsb_register & 0xf;
93 
94     uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
95 
96     /* move va bits to correct position,
97      * the context bits will be masked out later */
98     uint64_t va = mmu->tag_access >> (3 * page_size + 9);
99 
100     /* calculate tsb_base mask and adjust va if split is in use */
101     if (tsb_split) {
102         if (idx == 0) {
103             va &= ~(1ULL << (13 + tsb_size));
104         } else {
105             va |= (1ULL << (13 + tsb_size));
106         }
107         tsb_base_mask <<= 1;
108     }
109 
110     return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
111 }
112 
113 /* Calculates tag target register value by reordering bits
114    in tag access register */
115 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
116 {
117     return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
118 }
119 
120 static void replace_tlb_entry(SparcTLBEntry *tlb,
121                               uint64_t tlb_tag, uint64_t tlb_tte,
122                               CPUSPARCState *env)
123 {
124     target_ulong mask, size, va, offset;
125 
126     /* flush page range if translation is valid */
127     if (TTE_IS_VALID(tlb->tte)) {
128         CPUState *cs = env_cpu(env);
129 
130         size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
131         mask = 1ULL + ~size;
132 
133         va = tlb->tag & mask;
134 
135         for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
136             tlb_flush_page(cs, va + offset);
137         }
138     }
139 
140     tlb->tag = tlb_tag;
141     tlb->tte = tlb_tte;
142 }
143 
144 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
145                       const char *strmmu, CPUSPARCState *env1)
146 {
147     unsigned int i;
148     target_ulong mask;
149     uint64_t context;
150 
151     int is_demap_context = (demap_addr >> 6) & 1;
152 
153     /* demap context */
154     switch ((demap_addr >> 4) & 3) {
155     case 0: /* primary */
156         context = env1->dmmu.mmu_primary_context;
157         break;
158     case 1: /* secondary */
159         context = env1->dmmu.mmu_secondary_context;
160         break;
161     case 2: /* nucleus */
162         context = 0;
163         break;
164     case 3: /* reserved */
165     default:
166         return;
167     }
168 
169     for (i = 0; i < 64; i++) {
170         if (TTE_IS_VALID(tlb[i].tte)) {
171 
172             if (is_demap_context) {
173                 /* will remove non-global entries matching context value */
174                 if (TTE_IS_GLOBAL(tlb[i].tte) ||
175                     !tlb_compare_context(&tlb[i], context)) {
176                     continue;
177                 }
178             } else {
179                 /* demap page
180                    will remove any entry matching VA */
181                 mask = 0xffffffffffffe000ULL;
182                 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
183 
184                 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
185                     continue;
186                 }
187 
188                 /* entry should be global or matching context value */
189                 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
190                     !tlb_compare_context(&tlb[i], context)) {
191                     continue;
192                 }
193             }
194 
195             replace_tlb_entry(&tlb[i], 0, 0, env1);
196 #ifdef DEBUG_MMU
197             DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
198             dump_mmu(env1);
199 #endif
200         }
201     }
202 }
203 
204 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
205                                    uint64_t sun4v_tte)
206 {
207     uint64_t sun4u_tte;
208     if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
209         /* is already in the sun4u format */
210         return sun4v_tte;
211     }
212     sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
213     sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
214     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
215     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
216     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
217     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
218                              TTE_SIDEEFFECT_BIT);
219     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
220     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
221     return sun4u_tte;
222 }
223 
224 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
225                                  uint64_t tlb_tag, uint64_t tlb_tte,
226                                  const char *strmmu, CPUSPARCState *env1,
227                                  uint64_t addr)
228 {
229     unsigned int i, replace_used;
230 
231     tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
232     if (cpu_has_hypervisor(env1)) {
233         uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
234         uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
235         uint32_t new_ctx = tlb_tag & 0x1fffU;
236         for (i = 0; i < 64; i++) {
237             uint32_t ctx = tlb[i].tag & 0x1fffU;
238             /* check if new mapping overlaps an existing one */
239             if (new_ctx == ctx) {
240                 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
241                 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
242                 if (new_vaddr == vaddr
243                     || (new_vaddr < vaddr + size
244                         && vaddr < new_vaddr + new_size)) {
245                     DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
246                                 new_vaddr);
247                     replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
248                     return;
249                 }
250             }
251 
252         }
253     }
254     /* Try replacing invalid entry */
255     for (i = 0; i < 64; i++) {
256         if (!TTE_IS_VALID(tlb[i].tte)) {
257             replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
258 #ifdef DEBUG_MMU
259             DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
260             dump_mmu(env1);
261 #endif
262             return;
263         }
264     }
265 
266     /* All entries are valid, try replacing unlocked entry */
267 
268     for (replace_used = 0; replace_used < 2; ++replace_used) {
269 
270         /* Used entries are not replaced on first pass */
271 
272         for (i = 0; i < 64; i++) {
273             if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
274 
275                 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
276 #ifdef DEBUG_MMU
277                 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
278                             strmmu, (replace_used ? "used" : "unused"), i);
279                 dump_mmu(env1);
280 #endif
281                 return;
282             }
283         }
284 
285         /* Now reset used bit and search for unused entries again */
286 
287         for (i = 0; i < 64; i++) {
288             TTE_SET_UNUSED(tlb[i].tte);
289         }
290     }
291 
292 #ifdef DEBUG_MMU
293     DPRINTF_MMU("%s lru replacement: no free entries available, "
294                 "replacing the last one\n", strmmu);
295 #endif
296     /* corner case: the last entry is replaced anyway */
297     replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
298 }
299 
300 #endif
301 
302 #ifdef TARGET_SPARC64
303 /* returns true if access using this ASI is to have address translated by MMU
304    otherwise access is to raw physical address */
305 /* TODO: check sparc32 bits */
306 static inline int is_translating_asi(int asi)
307 {
308     /* Ultrasparc IIi translating asi
309        - note this list is defined by cpu implementation
310     */
311     switch (asi) {
312     case 0x04 ... 0x11:
313     case 0x16 ... 0x19:
314     case 0x1E ... 0x1F:
315     case 0x24 ... 0x2C:
316     case 0x70 ... 0x73:
317     case 0x78 ... 0x79:
318     case 0x80 ... 0xFF:
319         return 1;
320 
321     default:
322         return 0;
323     }
324 }
325 
326 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
327 {
328     if (AM_CHECK(env1)) {
329         addr &= 0xffffffffULL;
330     }
331     return addr;
332 }
333 
334 static inline target_ulong asi_address_mask(CPUSPARCState *env,
335                                             int asi, target_ulong addr)
336 {
337     if (is_translating_asi(asi)) {
338         addr = address_mask(env, addr);
339     }
340     return addr;
341 }
342 
343 #ifndef CONFIG_USER_ONLY
344 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
345 {
346     /* ASIs >= 0x80 are user mode.
347      * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
348      * ASIs <= 0x2f are super mode.
349      */
350     if (asi < 0x80
351         && !cpu_hypervisor_mode(env)
352         && (!cpu_supervisor_mode(env)
353             || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
354         cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
355     }
356 }
357 #endif /* !CONFIG_USER_ONLY */
358 #endif
359 
360 #if defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)
361 static void do_check_align(CPUSPARCState *env, target_ulong addr,
362                            uint32_t align, uintptr_t ra)
363 {
364     if (addr & align) {
365         cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
366     }
367 }
368 #endif
369 
370 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
371     defined(DEBUG_MXCC)
372 static void dump_mxcc(CPUSPARCState *env)
373 {
374     printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
375            "\n",
376            env->mxccdata[0], env->mxccdata[1],
377            env->mxccdata[2], env->mxccdata[3]);
378     printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
379            "\n"
380            "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
381            "\n",
382            env->mxccregs[0], env->mxccregs[1],
383            env->mxccregs[2], env->mxccregs[3],
384            env->mxccregs[4], env->mxccregs[5],
385            env->mxccregs[6], env->mxccregs[7]);
386 }
387 #endif
388 
389 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
390     && defined(DEBUG_ASI)
391 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
392                      uint64_t r1)
393 {
394     switch (size) {
395     case 1:
396         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
397                     addr, asi, r1 & 0xff);
398         break;
399     case 2:
400         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
401                     addr, asi, r1 & 0xffff);
402         break;
403     case 4:
404         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
405                     addr, asi, r1 & 0xffffffff);
406         break;
407     case 8:
408         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
409                     addr, asi, r1);
410         break;
411     }
412 }
413 #endif
414 
415 #ifndef CONFIG_USER_ONLY
416 #ifndef TARGET_SPARC64
417 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
418                                   bool is_write, bool is_exec, int is_asi,
419                                   unsigned size, uintptr_t retaddr)
420 {
421     SPARCCPU *cpu = SPARC_CPU(cs);
422     CPUSPARCState *env = &cpu->env;
423     int fault_type;
424 
425 #ifdef DEBUG_UNASSIGNED
426     if (is_asi) {
427         printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
428                " asi 0x%02x from " TARGET_FMT_lx "\n",
429                is_exec ? "exec" : is_write ? "write" : "read", size,
430                size == 1 ? "" : "s", addr, is_asi, env->pc);
431     } else {
432         printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
433                " from " TARGET_FMT_lx "\n",
434                is_exec ? "exec" : is_write ? "write" : "read", size,
435                size == 1 ? "" : "s", addr, env->pc);
436     }
437 #endif
438     /* Don't overwrite translation and access faults */
439     fault_type = (env->mmuregs[3] & 0x1c) >> 2;
440     if ((fault_type > 4) || (fault_type == 0)) {
441         env->mmuregs[3] = 0; /* Fault status register */
442         if (is_asi) {
443             env->mmuregs[3] |= 1 << 16;
444         }
445         if (env->psrs) {
446             env->mmuregs[3] |= 1 << 5;
447         }
448         if (is_exec) {
449             env->mmuregs[3] |= 1 << 6;
450         }
451         if (is_write) {
452             env->mmuregs[3] |= 1 << 7;
453         }
454         env->mmuregs[3] |= (5 << 2) | 2;
455         /* SuperSPARC will never place instruction fault addresses in the FAR */
456         if (!is_exec) {
457             env->mmuregs[4] = addr; /* Fault address register */
458         }
459     }
460     /* overflow (same type fault was not read before another fault) */
461     if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
462         env->mmuregs[3] |= 1;
463     }
464 
465     if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
466         int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
467         cpu_raise_exception_ra(env, tt, retaddr);
468     }
469 
470     /*
471      * flush neverland mappings created during no-fault mode,
472      * so the sequential MMU faults report proper fault types
473      */
474     if (env->mmuregs[0] & MMU_NF) {
475         tlb_flush(cs);
476     }
477 }
478 #else
479 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
480                                   bool is_write, bool is_exec, int is_asi,
481                                   unsigned size, uintptr_t retaddr)
482 {
483     SPARCCPU *cpu = SPARC_CPU(cs);
484     CPUSPARCState *env = &cpu->env;
485 
486 #ifdef DEBUG_UNASSIGNED
487     printf("Unassigned mem access to " HWADDR_FMT_plx " from " TARGET_FMT_lx
488            "\n", addr, env->pc);
489 #endif
490 
491     if (is_exec) { /* XXX has_hypervisor */
492         if (env->lsu & (IMMU_E)) {
493             cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
494         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
495             cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
496         }
497     } else {
498         if (env->lsu & (DMMU_E)) {
499             cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
500         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
501             cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
502         }
503     }
504 }
505 #endif
506 #endif
507 
508 #ifndef TARGET_SPARC64
509 #ifndef CONFIG_USER_ONLY
510 
511 
512 /* Leon3 cache control */
513 
514 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
515                                    uint64_t val, int size)
516 {
517     DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
518                           addr, val, size);
519 
520     if (size != 4) {
521         DPRINTF_CACHE_CONTROL("32bits only\n");
522         return;
523     }
524 
525     switch (addr) {
526     case 0x00:              /* Cache control */
527 
528         /* These values must always be read as zeros */
529         val &= ~CACHE_CTRL_FD;
530         val &= ~CACHE_CTRL_FI;
531         val &= ~CACHE_CTRL_IB;
532         val &= ~CACHE_CTRL_IP;
533         val &= ~CACHE_CTRL_DP;
534 
535         env->cache_control = val;
536         break;
537     case 0x04:              /* Instruction cache configuration */
538     case 0x08:              /* Data cache configuration */
539         /* Read Only */
540         break;
541     default:
542         DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
543         break;
544     };
545 }
546 
547 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
548                                        int size)
549 {
550     uint64_t ret = 0;
551 
552     if (size != 4) {
553         DPRINTF_CACHE_CONTROL("32bits only\n");
554         return 0;
555     }
556 
557     switch (addr) {
558     case 0x00:              /* Cache control */
559         ret = env->cache_control;
560         break;
561 
562         /* Configuration registers are read and only always keep those
563            predefined values */
564 
565     case 0x04:              /* Instruction cache configuration */
566         ret = 0x10220000;
567         break;
568     case 0x08:              /* Data cache configuration */
569         ret = 0x18220000;
570         break;
571     default:
572         DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
573         break;
574     };
575     DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
576                           addr, ret, size);
577     return ret;
578 }
579 
580 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
581                        int asi, uint32_t memop)
582 {
583     int size = 1 << (memop & MO_SIZE);
584     int sign = memop & MO_SIGN;
585     CPUState *cs = env_cpu(env);
586     uint64_t ret = 0;
587 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
588     uint32_t last_addr = addr;
589 #endif
590     MemOpIdx oi;
591 
592     do_check_align(env, addr, size - 1, GETPC());
593     switch (asi) {
594     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
595     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
596         switch (addr) {
597         case 0x00:          /* Leon3 Cache Control */
598         case 0x08:          /* Leon3 Instruction Cache config */
599         case 0x0C:          /* Leon3 Date Cache config */
600             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
601                 ret = leon3_cache_control_ld(env, addr, size);
602             }
603             break;
604         case 0x01c00a00: /* MXCC control register */
605             if (size == 8) {
606                 ret = env->mxccregs[3];
607             } else {
608                 qemu_log_mask(LOG_UNIMP,
609                               "%08x: unimplemented access size: %d\n", addr,
610                               size);
611             }
612             break;
613         case 0x01c00a04: /* MXCC control register */
614             if (size == 4) {
615                 ret = env->mxccregs[3];
616             } else {
617                 qemu_log_mask(LOG_UNIMP,
618                               "%08x: unimplemented access size: %d\n", addr,
619                               size);
620             }
621             break;
622         case 0x01c00c00: /* Module reset register */
623             if (size == 8) {
624                 ret = env->mxccregs[5];
625                 /* should we do something here? */
626             } else {
627                 qemu_log_mask(LOG_UNIMP,
628                               "%08x: unimplemented access size: %d\n", addr,
629                               size);
630             }
631             break;
632         case 0x01c00f00: /* MBus port address register */
633             if (size == 8) {
634                 ret = env->mxccregs[7];
635             } else {
636                 qemu_log_mask(LOG_UNIMP,
637                               "%08x: unimplemented access size: %d\n", addr,
638                               size);
639             }
640             break;
641         default:
642             qemu_log_mask(LOG_UNIMP,
643                           "%08x: unimplemented address, size: %d\n", addr,
644                           size);
645             break;
646         }
647         DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
648                      "addr = %08x -> ret = %" PRIx64 ","
649                      "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
650 #ifdef DEBUG_MXCC
651         dump_mxcc(env);
652 #endif
653         break;
654     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
655     case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
656         {
657             int mmulev;
658 
659             mmulev = (addr >> 8) & 15;
660             if (mmulev > 4) {
661                 ret = 0;
662             } else {
663                 ret = mmu_probe(env, addr, mmulev);
664             }
665             DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
666                         addr, mmulev, ret);
667         }
668         break;
669     case ASI_M_MMUREGS: /* SuperSparc MMU regs */
670     case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
671         {
672             int reg = (addr >> 8) & 0x1f;
673 
674             ret = env->mmuregs[reg];
675             if (reg == 3) { /* Fault status cleared on read */
676                 env->mmuregs[3] = 0;
677             } else if (reg == 0x13) { /* Fault status read */
678                 ret = env->mmuregs[3];
679             } else if (reg == 0x14) { /* Fault address read */
680                 ret = env->mmuregs[4];
681             }
682             DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
683         }
684         break;
685     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
686     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
687     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
688         break;
689     case ASI_KERNELTXT: /* Supervisor code access */
690         oi = make_memop_idx(memop, cpu_mmu_index(env_cpu(env), true));
691         switch (size) {
692         case 1:
693             ret = cpu_ldb_code_mmu(env, addr, oi, GETPC());
694             break;
695         case 2:
696             ret = cpu_ldw_code_mmu(env, addr, oi, GETPC());
697             break;
698         default:
699         case 4:
700             ret = cpu_ldl_code_mmu(env, addr, oi, GETPC());
701             break;
702         case 8:
703             ret = cpu_ldq_code_mmu(env, addr, oi, GETPC());
704             break;
705         }
706         break;
707     case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
708     case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
709     case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
710     case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
711         break;
712     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
713     {
714         MemTxResult result;
715         hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
716 
717         switch (size) {
718         case 1:
719             ret = address_space_ldub(cs->as, access_addr,
720                                      MEMTXATTRS_UNSPECIFIED, &result);
721             break;
722         case 2:
723             ret = address_space_lduw(cs->as, access_addr,
724                                      MEMTXATTRS_UNSPECIFIED, &result);
725             break;
726         default:
727         case 4:
728             ret = address_space_ldl(cs->as, access_addr,
729                                     MEMTXATTRS_UNSPECIFIED, &result);
730             break;
731         case 8:
732             ret = address_space_ldq(cs->as, access_addr,
733                                     MEMTXATTRS_UNSPECIFIED, &result);
734             break;
735         }
736 
737         if (result != MEMTX_OK) {
738             sparc_raise_mmu_fault(cs, access_addr, false, false, false,
739                                   size, GETPC());
740         }
741         break;
742     }
743     case 0x30: /* Turbosparc secondary cache diagnostic */
744     case 0x31: /* Turbosparc RAM snoop */
745     case 0x32: /* Turbosparc page table descriptor diagnostic */
746     case 0x39: /* data cache diagnostic register */
747         ret = 0;
748         break;
749     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
750         {
751             int reg = (addr >> 8) & 3;
752 
753             switch (reg) {
754             case 0: /* Breakpoint Value (Addr) */
755                 ret = env->mmubpregs[reg];
756                 break;
757             case 1: /* Breakpoint Mask */
758                 ret = env->mmubpregs[reg];
759                 break;
760             case 2: /* Breakpoint Control */
761                 ret = env->mmubpregs[reg];
762                 break;
763             case 3: /* Breakpoint Status */
764                 ret = env->mmubpregs[reg];
765                 env->mmubpregs[reg] = 0ULL;
766                 break;
767             }
768             DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
769                         ret);
770         }
771         break;
772     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
773         ret = env->mmubpctrv;
774         break;
775     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
776         ret = env->mmubpctrc;
777         break;
778     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
779         ret = env->mmubpctrs;
780         break;
781     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
782         ret = env->mmubpaction;
783         break;
784     case ASI_USERTXT: /* User code access, XXX */
785     default:
786         sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
787         ret = 0;
788         break;
789 
790     case ASI_USERDATA: /* User data access */
791     case ASI_KERNELDATA: /* Supervisor data access */
792     case ASI_P: /* Implicit primary context data access (v9 only?) */
793     case ASI_M_BYPASS:    /* MMU passthrough */
794     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
795         /* These are always handled inline.  */
796         g_assert_not_reached();
797     }
798     if (sign) {
799         switch (size) {
800         case 1:
801             ret = (int8_t) ret;
802             break;
803         case 2:
804             ret = (int16_t) ret;
805             break;
806         case 4:
807             ret = (int32_t) ret;
808             break;
809         default:
810             break;
811         }
812     }
813 #ifdef DEBUG_ASI
814     dump_asi("read ", last_addr, asi, size, ret);
815 #endif
816     return ret;
817 }
818 
819 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
820                    int asi, uint32_t memop)
821 {
822     int size = 1 << (memop & MO_SIZE);
823     CPUState *cs = env_cpu(env);
824 
825     do_check_align(env, addr, size - 1, GETPC());
826     switch (asi) {
827     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
828     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
829         switch (addr) {
830         case 0x00:          /* Leon3 Cache Control */
831         case 0x08:          /* Leon3 Instruction Cache config */
832         case 0x0C:          /* Leon3 Date Cache config */
833             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
834                 leon3_cache_control_st(env, addr, val, size);
835             }
836             break;
837 
838         case 0x01c00000: /* MXCC stream data register 0 */
839             if (size == 8) {
840                 env->mxccdata[0] = val;
841             } else {
842                 qemu_log_mask(LOG_UNIMP,
843                               "%08x: unimplemented access size: %d\n", addr,
844                               size);
845             }
846             break;
847         case 0x01c00008: /* MXCC stream data register 1 */
848             if (size == 8) {
849                 env->mxccdata[1] = val;
850             } else {
851                 qemu_log_mask(LOG_UNIMP,
852                               "%08x: unimplemented access size: %d\n", addr,
853                               size);
854             }
855             break;
856         case 0x01c00010: /* MXCC stream data register 2 */
857             if (size == 8) {
858                 env->mxccdata[2] = val;
859             } else {
860                 qemu_log_mask(LOG_UNIMP,
861                               "%08x: unimplemented access size: %d\n", addr,
862                               size);
863             }
864             break;
865         case 0x01c00018: /* MXCC stream data register 3 */
866             if (size == 8) {
867                 env->mxccdata[3] = val;
868             } else {
869                 qemu_log_mask(LOG_UNIMP,
870                               "%08x: unimplemented access size: %d\n", addr,
871                               size);
872             }
873             break;
874         case 0x01c00100: /* MXCC stream source */
875         {
876             int i;
877 
878             if (size == 8) {
879                 env->mxccregs[0] = val;
880             } else {
881                 qemu_log_mask(LOG_UNIMP,
882                               "%08x: unimplemented access size: %d\n", addr,
883                               size);
884             }
885 
886             for (i = 0; i < 4; i++) {
887                 MemTxResult result;
888                 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
889 
890                 env->mxccdata[i] = address_space_ldq(cs->as,
891                                                      access_addr,
892                                                      MEMTXATTRS_UNSPECIFIED,
893                                                      &result);
894                 if (result != MEMTX_OK) {
895                     /* TODO: investigate whether this is the right behaviour */
896                     sparc_raise_mmu_fault(cs, access_addr, false, false,
897                                           false, size, GETPC());
898                 }
899             }
900             break;
901         }
902         case 0x01c00200: /* MXCC stream destination */
903         {
904             int i;
905 
906             if (size == 8) {
907                 env->mxccregs[1] = val;
908             } else {
909                 qemu_log_mask(LOG_UNIMP,
910                               "%08x: unimplemented access size: %d\n", addr,
911                               size);
912             }
913 
914             for (i = 0; i < 4; i++) {
915                 MemTxResult result;
916                 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
917 
918                 address_space_stq(cs->as, access_addr, env->mxccdata[i],
919                                   MEMTXATTRS_UNSPECIFIED, &result);
920 
921                 if (result != MEMTX_OK) {
922                     /* TODO: investigate whether this is the right behaviour */
923                     sparc_raise_mmu_fault(cs, access_addr, true, false,
924                                           false, size, GETPC());
925                 }
926             }
927             break;
928         }
929         case 0x01c00a00: /* MXCC control register */
930             if (size == 8) {
931                 env->mxccregs[3] = val;
932             } else {
933                 qemu_log_mask(LOG_UNIMP,
934                               "%08x: unimplemented access size: %d\n", addr,
935                               size);
936             }
937             break;
938         case 0x01c00a04: /* MXCC control register */
939             if (size == 4) {
940                 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
941                     | val;
942             } else {
943                 qemu_log_mask(LOG_UNIMP,
944                               "%08x: unimplemented access size: %d\n", addr,
945                               size);
946             }
947             break;
948         case 0x01c00e00: /* MXCC error register  */
949             /* writing a 1 bit clears the error */
950             if (size == 8) {
951                 env->mxccregs[6] &= ~val;
952             } else {
953                 qemu_log_mask(LOG_UNIMP,
954                               "%08x: unimplemented access size: %d\n", addr,
955                               size);
956             }
957             break;
958         case 0x01c00f00: /* MBus port address register */
959             if (size == 8) {
960                 env->mxccregs[7] = val;
961             } else {
962                 qemu_log_mask(LOG_UNIMP,
963                               "%08x: unimplemented access size: %d\n", addr,
964                               size);
965             }
966             break;
967         default:
968             qemu_log_mask(LOG_UNIMP,
969                           "%08x: unimplemented address, size: %d\n", addr,
970                           size);
971             break;
972         }
973         DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
974                      asi, size, addr, val);
975 #ifdef DEBUG_MXCC
976         dump_mxcc(env);
977 #endif
978         break;
979     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
980     case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
981         {
982             int mmulev;
983 
984             mmulev = (addr >> 8) & 15;
985             DPRINTF_MMU("mmu flush level %d\n", mmulev);
986             switch (mmulev) {
987             case 0: /* flush page */
988                 tlb_flush_page(cs, addr & 0xfffff000);
989                 break;
990             case 1: /* flush segment (256k) */
991             case 2: /* flush region (16M) */
992             case 3: /* flush context (4G) */
993             case 4: /* flush entire */
994                 tlb_flush(cs);
995                 break;
996             default:
997                 break;
998             }
999 #ifdef DEBUG_MMU
1000             dump_mmu(env);
1001 #endif
1002         }
1003         break;
1004     case ASI_M_MMUREGS: /* write MMU regs */
1005     case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
1006         {
1007             int reg = (addr >> 8) & 0x1f;
1008             uint32_t oldreg;
1009 
1010             oldreg = env->mmuregs[reg];
1011             switch (reg) {
1012             case 0: /* Control Register */
1013                 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1014                     (val & 0x00ffffff);
1015                 /* Mappings generated during no-fault mode
1016                    are invalid in normal mode.  */
1017                 if ((oldreg ^ env->mmuregs[reg])
1018                     & (MMU_NF | env->def.mmu_bm)) {
1019                     tlb_flush(cs);
1020                 }
1021                 break;
1022             case 1: /* Context Table Pointer Register */
1023                 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1024                 break;
1025             case 2: /* Context Register */
1026                 env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1027                 if (oldreg != env->mmuregs[reg]) {
1028                     /* we flush when the MMU context changes because
1029                        QEMU has no MMU context support */
1030                     tlb_flush(cs);
1031                 }
1032                 break;
1033             case 3: /* Synchronous Fault Status Register with Clear */
1034             case 4: /* Synchronous Fault Address Register */
1035                 break;
1036             case 0x10: /* TLB Replacement Control Register */
1037                 env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1038                 break;
1039             case 0x13: /* Synchronous Fault Status Register with Read
1040                           and Clear */
1041                 env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1042                 break;
1043             case 0x14: /* Synchronous Fault Address Register */
1044                 env->mmuregs[4] = val;
1045                 break;
1046             default:
1047                 env->mmuregs[reg] = val;
1048                 break;
1049             }
1050             if (oldreg != env->mmuregs[reg]) {
1051                 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1052                             reg, oldreg, env->mmuregs[reg]);
1053             }
1054 #ifdef DEBUG_MMU
1055             dump_mmu(env);
1056 #endif
1057         }
1058         break;
1059     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1060     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
1061     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
1062         break;
1063     case ASI_M_TXTC_TAG:   /* I-cache tag */
1064     case ASI_M_TXTC_DATA:  /* I-cache data */
1065     case ASI_M_DATAC_TAG:  /* D-cache tag */
1066     case ASI_M_DATAC_DATA: /* D-cache data */
1067     case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
1068     case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
1069     case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1070     case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
1071     case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
1072         break;
1073     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1074         {
1075             MemTxResult result;
1076             hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1077 
1078             switch (size) {
1079             case 1:
1080                 address_space_stb(cs->as, access_addr, val,
1081                                   MEMTXATTRS_UNSPECIFIED, &result);
1082                 break;
1083             case 2:
1084                 address_space_stw(cs->as, access_addr, val,
1085                                   MEMTXATTRS_UNSPECIFIED, &result);
1086                 break;
1087             case 4:
1088             default:
1089                 address_space_stl(cs->as, access_addr, val,
1090                                   MEMTXATTRS_UNSPECIFIED, &result);
1091                 break;
1092             case 8:
1093                 address_space_stq(cs->as, access_addr, val,
1094                                   MEMTXATTRS_UNSPECIFIED, &result);
1095                 break;
1096             }
1097             if (result != MEMTX_OK) {
1098                 sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1099                                       size, GETPC());
1100             }
1101         }
1102         break;
1103     case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1104     case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1105                   Turbosparc snoop RAM */
1106     case 0x32: /* store buffer control or Turbosparc page table
1107                   descriptor diagnostic */
1108     case 0x36: /* I-cache flash clear */
1109     case 0x37: /* D-cache flash clear */
1110         break;
1111     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1112         {
1113             int reg = (addr >> 8) & 3;
1114 
1115             switch (reg) {
1116             case 0: /* Breakpoint Value (Addr) */
1117                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1118                 break;
1119             case 1: /* Breakpoint Mask */
1120                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1121                 break;
1122             case 2: /* Breakpoint Control */
1123                 env->mmubpregs[reg] = (val & 0x7fULL);
1124                 break;
1125             case 3: /* Breakpoint Status */
1126                 env->mmubpregs[reg] = (val & 0xfULL);
1127                 break;
1128             }
1129             DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1130                         env->mmuregs[reg]);
1131         }
1132         break;
1133     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1134         env->mmubpctrv = val & 0xffffffff;
1135         break;
1136     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1137         env->mmubpctrc = val & 0x3;
1138         break;
1139     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1140         env->mmubpctrs = val & 0x3;
1141         break;
1142     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1143         env->mmubpaction = val & 0x1fff;
1144         break;
1145     case ASI_USERTXT: /* User code access, XXX */
1146     case ASI_KERNELTXT: /* Supervisor code access, XXX */
1147     default:
1148         sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1149         break;
1150 
1151     case ASI_USERDATA: /* User data access */
1152     case ASI_KERNELDATA: /* Supervisor data access */
1153     case ASI_P:
1154     case ASI_M_BYPASS:    /* MMU passthrough */
1155     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1156     case ASI_M_BCOPY: /* Block copy, sta access */
1157     case ASI_M_BFILL: /* Block fill, stda access */
1158         /* These are always handled inline.  */
1159         g_assert_not_reached();
1160     }
1161 #ifdef DEBUG_ASI
1162     dump_asi("write", addr, asi, size, val);
1163 #endif
1164 }
1165 
1166 #endif /* CONFIG_USER_ONLY */
1167 #else /* TARGET_SPARC64 */
1168 
1169 #ifdef CONFIG_USER_ONLY
1170 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1171                        int asi, uint32_t memop)
1172 {
1173     int size = 1 << (memop & MO_SIZE);
1174     int sign = memop & MO_SIGN;
1175     uint64_t ret = 0;
1176 
1177     if (asi < 0x80) {
1178         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1179     }
1180     do_check_align(env, addr, size - 1, GETPC());
1181     addr = asi_address_mask(env, asi, addr);
1182 
1183     switch (asi) {
1184     case ASI_PNF:  /* Primary no-fault */
1185     case ASI_PNFL: /* Primary no-fault LE */
1186     case ASI_SNF:  /* Secondary no-fault */
1187     case ASI_SNFL: /* Secondary no-fault LE */
1188         if (!page_check_range(addr, size, PAGE_READ)) {
1189             ret = 0;
1190             break;
1191         }
1192         switch (size) {
1193         case 1:
1194             ret = cpu_ldub_data(env, addr);
1195             break;
1196         case 2:
1197             ret = cpu_lduw_data(env, addr);
1198             break;
1199         case 4:
1200             ret = cpu_ldl_data(env, addr);
1201             break;
1202         case 8:
1203             ret = cpu_ldq_data(env, addr);
1204             break;
1205         default:
1206             g_assert_not_reached();
1207         }
1208         break;
1209         break;
1210 
1211     case ASI_P: /* Primary */
1212     case ASI_PL: /* Primary LE */
1213     case ASI_S:  /* Secondary */
1214     case ASI_SL: /* Secondary LE */
1215         /* These are always handled inline.  */
1216         g_assert_not_reached();
1217 
1218     default:
1219         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1220     }
1221 
1222     /* Convert from little endian */
1223     switch (asi) {
1224     case ASI_PNFL: /* Primary no-fault LE */
1225     case ASI_SNFL: /* Secondary no-fault LE */
1226         switch (size) {
1227         case 2:
1228             ret = bswap16(ret);
1229             break;
1230         case 4:
1231             ret = bswap32(ret);
1232             break;
1233         case 8:
1234             ret = bswap64(ret);
1235             break;
1236         }
1237     }
1238 
1239     /* Convert to signed number */
1240     if (sign) {
1241         switch (size) {
1242         case 1:
1243             ret = (int8_t) ret;
1244             break;
1245         case 2:
1246             ret = (int16_t) ret;
1247             break;
1248         case 4:
1249             ret = (int32_t) ret;
1250             break;
1251         }
1252     }
1253 #ifdef DEBUG_ASI
1254     dump_asi("read", addr, asi, size, ret);
1255 #endif
1256     return ret;
1257 }
1258 
1259 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1260                    int asi, uint32_t memop)
1261 {
1262     int size = 1 << (memop & MO_SIZE);
1263 #ifdef DEBUG_ASI
1264     dump_asi("write", addr, asi, size, val);
1265 #endif
1266     if (asi < 0x80) {
1267         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1268     }
1269     do_check_align(env, addr, size - 1, GETPC());
1270 
1271     switch (asi) {
1272     case ASI_P:  /* Primary */
1273     case ASI_PL: /* Primary LE */
1274     case ASI_S:  /* Secondary */
1275     case ASI_SL: /* Secondary LE */
1276         /* These are always handled inline.  */
1277         g_assert_not_reached();
1278 
1279     case ASI_PNF:  /* Primary no-fault, RO */
1280     case ASI_SNF:  /* Secondary no-fault, RO */
1281     case ASI_PNFL: /* Primary no-fault LE, RO */
1282     case ASI_SNFL: /* Secondary no-fault LE, RO */
1283     default:
1284         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1285     }
1286 }
1287 
1288 #else /* CONFIG_USER_ONLY */
1289 
1290 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1291                        int asi, uint32_t memop)
1292 {
1293     int size = 1 << (memop & MO_SIZE);
1294     int sign = memop & MO_SIGN;
1295     CPUState *cs = env_cpu(env);
1296     uint64_t ret = 0;
1297 #if defined(DEBUG_ASI)
1298     target_ulong last_addr = addr;
1299 #endif
1300 
1301     asi &= 0xff;
1302 
1303     do_check_asi(env, asi, GETPC());
1304     do_check_align(env, addr, size - 1, GETPC());
1305     addr = asi_address_mask(env, asi, addr);
1306 
1307     switch (asi) {
1308     case ASI_PNF:
1309     case ASI_PNFL:
1310     case ASI_SNF:
1311     case ASI_SNFL:
1312         {
1313             MemOpIdx oi;
1314             int idx = (env->pstate & PS_PRIV
1315                        ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1316                        : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1317 
1318             if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1319 #ifdef DEBUG_ASI
1320                 dump_asi("read ", last_addr, asi, size, ret);
1321 #endif
1322                 /* exception_index is set in get_physical_address_data. */
1323                 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1324             }
1325             oi = make_memop_idx(memop, idx);
1326             switch (size) {
1327             case 1:
1328                 ret = cpu_ldb_mmu(env, addr, oi, GETPC());
1329                 break;
1330             case 2:
1331                 ret = cpu_ldw_mmu(env, addr, oi, GETPC());
1332                 break;
1333             case 4:
1334                 ret = cpu_ldl_mmu(env, addr, oi, GETPC());
1335                 break;
1336             case 8:
1337                 ret = cpu_ldq_mmu(env, addr, oi, GETPC());
1338                 break;
1339             default:
1340                 g_assert_not_reached();
1341             }
1342         }
1343         break;
1344 
1345     case ASI_AIUP:  /* As if user primary */
1346     case ASI_AIUS:  /* As if user secondary */
1347     case ASI_AIUPL: /* As if user primary LE */
1348     case ASI_AIUSL: /* As if user secondary LE */
1349     case ASI_P:  /* Primary */
1350     case ASI_S:  /* Secondary */
1351     case ASI_PL: /* Primary LE */
1352     case ASI_SL: /* Secondary LE */
1353     case ASI_REAL:      /* Bypass */
1354     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1355     case ASI_REAL_L:    /* Bypass LE */
1356     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1357     case ASI_N:  /* Nucleus */
1358     case ASI_NL: /* Nucleus Little Endian (LE) */
1359     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1360     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1361     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1362     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1363     case ASI_TWINX_REAL:   /* Real address, twinx */
1364     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1365     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1366     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1367     case ASI_TWINX_N:  /* Nucleus, twinx */
1368     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1369     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1370     case ASI_TWINX_P:  /* Primary, twinx */
1371     case ASI_TWINX_PL: /* Primary, twinx, LE */
1372     case ASI_TWINX_S:  /* Secondary, twinx */
1373     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1374         /* These are always handled inline.  */
1375         g_assert_not_reached();
1376 
1377     case ASI_UPA_CONFIG: /* UPA config */
1378         /* XXX */
1379         break;
1380     case ASI_LSU_CONTROL: /* LSU */
1381         ret = env->lsu;
1382         break;
1383     case ASI_IMMU: /* I-MMU regs */
1384         {
1385             int reg = (addr >> 3) & 0xf;
1386             switch (reg) {
1387             case 0:
1388                 /* 0x00 I-TSB Tag Target register */
1389                 ret = ultrasparc_tag_target(env->immu.tag_access);
1390                 break;
1391             case 3: /* SFSR */
1392                 ret = env->immu.sfsr;
1393                 break;
1394             case 5: /* TSB access */
1395                 ret = env->immu.tsb;
1396                 break;
1397             case 6:
1398                 /* 0x30 I-TSB Tag Access register */
1399                 ret = env->immu.tag_access;
1400                 break;
1401             default:
1402                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1403                 ret = 0;
1404             }
1405             break;
1406         }
1407     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1408         {
1409             /* env->immuregs[5] holds I-MMU TSB register value
1410                env->immuregs[6] holds I-MMU Tag Access register value */
1411             ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1412             break;
1413         }
1414     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1415         {
1416             /* env->immuregs[5] holds I-MMU TSB register value
1417                env->immuregs[6] holds I-MMU Tag Access register value */
1418             ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1419             break;
1420         }
1421     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1422         {
1423             int reg = (addr >> 3) & 0x3f;
1424 
1425             ret = env->itlb[reg].tte;
1426             break;
1427         }
1428     case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1429         {
1430             int reg = (addr >> 3) & 0x3f;
1431 
1432             ret = env->itlb[reg].tag;
1433             break;
1434         }
1435     case ASI_DMMU: /* D-MMU regs */
1436         {
1437             int reg = (addr >> 3) & 0xf;
1438             switch (reg) {
1439             case 0:
1440                 /* 0x00 D-TSB Tag Target register */
1441                 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1442                 break;
1443             case 1: /* 0x08 Primary Context */
1444                 ret = env->dmmu.mmu_primary_context;
1445                 break;
1446             case 2: /* 0x10 Secondary Context */
1447                 ret = env->dmmu.mmu_secondary_context;
1448                 break;
1449             case 3: /* SFSR */
1450                 ret = env->dmmu.sfsr;
1451                 break;
1452             case 4: /* 0x20 SFAR */
1453                 ret = env->dmmu.sfar;
1454                 break;
1455             case 5: /* 0x28 TSB access */
1456                 ret = env->dmmu.tsb;
1457                 break;
1458             case 6: /* 0x30 D-TSB Tag Access register */
1459                 ret = env->dmmu.tag_access;
1460                 break;
1461             case 7:
1462                 ret = env->dmmu.virtual_watchpoint;
1463                 break;
1464             case 8:
1465                 ret = env->dmmu.physical_watchpoint;
1466                 break;
1467             default:
1468                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1469                 ret = 0;
1470             }
1471             break;
1472         }
1473     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1474         {
1475             /* env->dmmuregs[5] holds D-MMU TSB register value
1476                env->dmmuregs[6] holds D-MMU Tag Access register value */
1477             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1478             break;
1479         }
1480     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1481         {
1482             /* env->dmmuregs[5] holds D-MMU TSB register value
1483                env->dmmuregs[6] holds D-MMU Tag Access register value */
1484             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1485             break;
1486         }
1487     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1488         {
1489             int reg = (addr >> 3) & 0x3f;
1490 
1491             ret = env->dtlb[reg].tte;
1492             break;
1493         }
1494     case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1495         {
1496             int reg = (addr >> 3) & 0x3f;
1497 
1498             ret = env->dtlb[reg].tag;
1499             break;
1500         }
1501     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1502         break;
1503     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1504         ret = env->ivec_status;
1505         break;
1506     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1507         {
1508             int reg = (addr >> 4) & 0x3;
1509             if (reg < 3) {
1510                 ret = env->ivec_data[reg];
1511             }
1512             break;
1513         }
1514     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1515         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1516             /* Hyperprivileged access only */
1517             sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1518         }
1519         /* fall through */
1520     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1521         {
1522             unsigned int i = (addr >> 3) & 0x7;
1523             ret = env->scratch[i];
1524             break;
1525         }
1526     case ASI_MMU: /* UA2005 Context ID registers */
1527         switch ((addr >> 3) & 0x3) {
1528         case 1:
1529             ret = env->dmmu.mmu_primary_context;
1530             break;
1531         case 2:
1532             ret = env->dmmu.mmu_secondary_context;
1533             break;
1534         default:
1535           sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1536         }
1537         break;
1538     case ASI_DCACHE_DATA:     /* D-cache data */
1539     case ASI_DCACHE_TAG:      /* D-cache tag access */
1540     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1541     case ASI_AFSR:            /* E-cache asynchronous fault status */
1542     case ASI_AFAR:            /* E-cache asynchronous fault address */
1543     case ASI_EC_TAG_DATA:     /* E-cache tag data */
1544     case ASI_IC_INSTR:        /* I-cache instruction access */
1545     case ASI_IC_TAG:          /* I-cache tag access */
1546     case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1547     case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1548     case ASI_EC_W:            /* E-cache tag */
1549     case ASI_EC_R:            /* E-cache tag */
1550         break;
1551     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1552     case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1553     case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1554     case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1555     case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1556     case ASI_INTR_W:              /* Interrupt vector, WO */
1557     default:
1558         sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1559         ret = 0;
1560         break;
1561     }
1562 
1563     /* Convert to signed number */
1564     if (sign) {
1565         switch (size) {
1566         case 1:
1567             ret = (int8_t) ret;
1568             break;
1569         case 2:
1570             ret = (int16_t) ret;
1571             break;
1572         case 4:
1573             ret = (int32_t) ret;
1574             break;
1575         default:
1576             break;
1577         }
1578     }
1579 #ifdef DEBUG_ASI
1580     dump_asi("read ", last_addr, asi, size, ret);
1581 #endif
1582     return ret;
1583 }
1584 
1585 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1586                    int asi, uint32_t memop)
1587 {
1588     int size = 1 << (memop & MO_SIZE);
1589     CPUState *cs = env_cpu(env);
1590 
1591 #ifdef DEBUG_ASI
1592     dump_asi("write", addr, asi, size, val);
1593 #endif
1594 
1595     asi &= 0xff;
1596 
1597     do_check_asi(env, asi, GETPC());
1598     do_check_align(env, addr, size - 1, GETPC());
1599     addr = asi_address_mask(env, asi, addr);
1600 
1601     switch (asi) {
1602     case ASI_AIUP:  /* As if user primary */
1603     case ASI_AIUS:  /* As if user secondary */
1604     case ASI_AIUPL: /* As if user primary LE */
1605     case ASI_AIUSL: /* As if user secondary LE */
1606     case ASI_P:  /* Primary */
1607     case ASI_S:  /* Secondary */
1608     case ASI_PL: /* Primary LE */
1609     case ASI_SL: /* Secondary LE */
1610     case ASI_REAL:      /* Bypass */
1611     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1612     case ASI_REAL_L:    /* Bypass LE */
1613     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1614     case ASI_N:  /* Nucleus */
1615     case ASI_NL: /* Nucleus Little Endian (LE) */
1616     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1617     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1618     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1619     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1620     case ASI_TWINX_REAL:   /* Real address, twinx */
1621     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1622     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1623     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1624     case ASI_TWINX_N:  /* Nucleus, twinx */
1625     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1626     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1627     case ASI_TWINX_P:  /* Primary, twinx */
1628     case ASI_TWINX_PL: /* Primary, twinx, LE */
1629     case ASI_TWINX_S:  /* Secondary, twinx */
1630     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1631         /* These are always handled inline.  */
1632         g_assert_not_reached();
1633     /* these ASIs have different functions on UltraSPARC-IIIi
1634      * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1635      */
1636     case 0x31:
1637     case 0x32:
1638     case 0x39:
1639     case 0x3a:
1640         if (cpu_has_hypervisor(env)) {
1641             /* UA2005
1642              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1643              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1644              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1645              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1646              */
1647             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1648             env->dmmu.sun4v_tsb_pointers[idx] = val;
1649         } else {
1650             goto illegal_insn;
1651         }
1652         break;
1653     case 0x33:
1654     case 0x3b:
1655         if (cpu_has_hypervisor(env)) {
1656             /* UA2005
1657              * ASI_DMMU_CTX_ZERO_CONFIG
1658              * ASI_DMMU_CTX_NONZERO_CONFIG
1659              */
1660             env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1661         } else {
1662             goto illegal_insn;
1663         }
1664         break;
1665     case 0x35:
1666     case 0x36:
1667     case 0x3d:
1668     case 0x3e:
1669         if (cpu_has_hypervisor(env)) {
1670             /* UA2005
1671              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1672              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1673              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1674              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1675              */
1676             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1677             env->immu.sun4v_tsb_pointers[idx] = val;
1678         } else {
1679             goto illegal_insn;
1680         }
1681       break;
1682     case 0x37:
1683     case 0x3f:
1684         if (cpu_has_hypervisor(env)) {
1685             /* UA2005
1686              * ASI_IMMU_CTX_ZERO_CONFIG
1687              * ASI_IMMU_CTX_NONZERO_CONFIG
1688              */
1689             env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1690         } else {
1691             goto illegal_insn;
1692         }
1693         break;
1694     case ASI_UPA_CONFIG: /* UPA config */
1695         /* XXX */
1696         return;
1697     case ASI_LSU_CONTROL: /* LSU */
1698         env->lsu = val & (DMMU_E | IMMU_E);
1699         return;
1700     case ASI_IMMU: /* I-MMU regs */
1701         {
1702             int reg = (addr >> 3) & 0xf;
1703             uint64_t oldreg;
1704 
1705             oldreg = env->immu.mmuregs[reg];
1706             switch (reg) {
1707             case 0: /* RO */
1708                 return;
1709             case 1: /* Not in I-MMU */
1710             case 2:
1711                 return;
1712             case 3: /* SFSR */
1713                 if ((val & 1) == 0) {
1714                     val = 0; /* Clear SFSR */
1715                 }
1716                 env->immu.sfsr = val;
1717                 break;
1718             case 4: /* RO */
1719                 return;
1720             case 5: /* TSB access */
1721                 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1722                             PRIx64 "\n", env->immu.tsb, val);
1723                 env->immu.tsb = val;
1724                 break;
1725             case 6: /* Tag access */
1726                 env->immu.tag_access = val;
1727                 break;
1728             case 7:
1729             case 8:
1730                 return;
1731             default:
1732                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1733                 break;
1734             }
1735 
1736             if (oldreg != env->immu.mmuregs[reg]) {
1737                 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1738                             PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1739             }
1740 #ifdef DEBUG_MMU
1741             dump_mmu(env);
1742 #endif
1743             return;
1744         }
1745     case ASI_ITLB_DATA_IN: /* I-MMU data in */
1746         /* ignore real translation entries */
1747         if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1748             replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1749                                  val, "immu", env, addr);
1750         }
1751         return;
1752     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1753         {
1754             /* TODO: auto demap */
1755 
1756             unsigned int i = (addr >> 3) & 0x3f;
1757 
1758             /* ignore real translation entries */
1759             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1760                 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1761                                   sun4v_tte_to_sun4u(env, addr, val), env);
1762             }
1763 #ifdef DEBUG_MMU
1764             DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1765             dump_mmu(env);
1766 #endif
1767             return;
1768         }
1769     case ASI_IMMU_DEMAP: /* I-MMU demap */
1770         demap_tlb(env->itlb, addr, "immu", env);
1771         return;
1772     case ASI_DMMU: /* D-MMU regs */
1773         {
1774             int reg = (addr >> 3) & 0xf;
1775             uint64_t oldreg;
1776 
1777             oldreg = env->dmmu.mmuregs[reg];
1778             switch (reg) {
1779             case 0: /* RO */
1780             case 4:
1781                 return;
1782             case 3: /* SFSR */
1783                 if ((val & 1) == 0) {
1784                     val = 0; /* Clear SFSR, Fault address */
1785                     env->dmmu.sfar = 0;
1786                 }
1787                 env->dmmu.sfsr = val;
1788                 break;
1789             case 1: /* Primary context */
1790                 env->dmmu.mmu_primary_context = val;
1791                 /* can be optimized to only flush MMU_USER_IDX
1792                    and MMU_KERNEL_IDX entries */
1793                 tlb_flush(cs);
1794                 break;
1795             case 2: /* Secondary context */
1796                 env->dmmu.mmu_secondary_context = val;
1797                 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1798                    and MMU_KERNEL_SECONDARY_IDX entries */
1799                 tlb_flush(cs);
1800                 break;
1801             case 5: /* TSB access */
1802                 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1803                             PRIx64 "\n", env->dmmu.tsb, val);
1804                 env->dmmu.tsb = val;
1805                 break;
1806             case 6: /* Tag access */
1807                 env->dmmu.tag_access = val;
1808                 break;
1809             case 7: /* Virtual Watchpoint */
1810                 env->dmmu.virtual_watchpoint = val;
1811                 break;
1812             case 8: /* Physical Watchpoint */
1813                 env->dmmu.physical_watchpoint = val;
1814                 break;
1815             default:
1816                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1817                 break;
1818             }
1819 
1820             if (oldreg != env->dmmu.mmuregs[reg]) {
1821                 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1822                             PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1823             }
1824 #ifdef DEBUG_MMU
1825             dump_mmu(env);
1826 #endif
1827             return;
1828         }
1829     case ASI_DTLB_DATA_IN: /* D-MMU data in */
1830       /* ignore real translation entries */
1831       if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1832           replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1833                                val, "dmmu", env, addr);
1834       }
1835       return;
1836     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1837         {
1838             unsigned int i = (addr >> 3) & 0x3f;
1839 
1840             /* ignore real translation entries */
1841             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1842                 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1843                                   sun4v_tte_to_sun4u(env, addr, val), env);
1844             }
1845 #ifdef DEBUG_MMU
1846             DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1847             dump_mmu(env);
1848 #endif
1849             return;
1850         }
1851     case ASI_DMMU_DEMAP: /* D-MMU demap */
1852         demap_tlb(env->dtlb, addr, "dmmu", env);
1853         return;
1854     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1855         env->ivec_status = val & 0x20;
1856         return;
1857     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1858         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1859             /* Hyperprivileged access only */
1860             sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1861         }
1862         /* fall through */
1863     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1864         {
1865             unsigned int i = (addr >> 3) & 0x7;
1866             env->scratch[i] = val;
1867             return;
1868         }
1869     case ASI_MMU: /* UA2005 Context ID registers */
1870         {
1871           switch ((addr >> 3) & 0x3) {
1872           case 1:
1873               env->dmmu.mmu_primary_context = val;
1874               env->immu.mmu_primary_context = val;
1875               tlb_flush_by_mmuidx(cs,
1876                                   (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1877               break;
1878           case 2:
1879               env->dmmu.mmu_secondary_context = val;
1880               env->immu.mmu_secondary_context = val;
1881               tlb_flush_by_mmuidx(cs,
1882                                   (1 << MMU_USER_SECONDARY_IDX) |
1883                                   (1 << MMU_KERNEL_SECONDARY_IDX));
1884               break;
1885           default:
1886               sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1887           }
1888         }
1889         return;
1890     case ASI_QUEUE: /* UA2005 CPU mondo queue */
1891     case ASI_DCACHE_DATA: /* D-cache data */
1892     case ASI_DCACHE_TAG: /* D-cache tag access */
1893     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1894     case ASI_AFSR: /* E-cache asynchronous fault status */
1895     case ASI_AFAR: /* E-cache asynchronous fault address */
1896     case ASI_EC_TAG_DATA: /* E-cache tag data */
1897     case ASI_IC_INSTR: /* I-cache instruction access */
1898     case ASI_IC_TAG: /* I-cache tag access */
1899     case ASI_IC_PRE_DECODE: /* I-cache predecode */
1900     case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1901     case ASI_EC_W: /* E-cache tag */
1902     case ASI_EC_R: /* E-cache tag */
1903         return;
1904     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1905     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1906     case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1907     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1908     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1909     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1910     case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1911     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1912     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1913     case ASI_PNF: /* Primary no-fault, RO */
1914     case ASI_SNF: /* Secondary no-fault, RO */
1915     case ASI_PNFL: /* Primary no-fault LE, RO */
1916     case ASI_SNFL: /* Secondary no-fault LE, RO */
1917     default:
1918         sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1919         return;
1920     illegal_insn:
1921         cpu_raise_exception_ra(env, TT_ILL_INSN, GETPC());
1922     }
1923 }
1924 #endif /* CONFIG_USER_ONLY */
1925 #endif /* TARGET_SPARC64 */
1926 
1927 #if !defined(CONFIG_USER_ONLY)
1928 
1929 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1930                                      vaddr addr, unsigned size,
1931                                      MMUAccessType access_type,
1932                                      int mmu_idx, MemTxAttrs attrs,
1933                                      MemTxResult response, uintptr_t retaddr)
1934 {
1935     bool is_write = access_type == MMU_DATA_STORE;
1936     bool is_exec = access_type == MMU_INST_FETCH;
1937     bool is_asi = false;
1938 
1939     sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1940                           is_asi, size, retaddr);
1941 }
1942 #endif
1943