xref: /qemu/target/sparc/ldst_helper.c (revision 9c707525)
1 /*
2  * Helpers for loads and stores
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "tcg/tcg.h"
24 #include "exec/helper-proto.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "asi.h"
28 
29 //#define DEBUG_MMU
30 //#define DEBUG_MXCC
31 //#define DEBUG_UNASSIGNED
32 //#define DEBUG_ASI
33 //#define DEBUG_CACHE_CONTROL
34 
35 #ifdef DEBUG_MMU
36 #define DPRINTF_MMU(fmt, ...)                                   \
37     do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF_MMU(fmt, ...) do {} while (0)
40 #endif
41 
42 #ifdef DEBUG_MXCC
43 #define DPRINTF_MXCC(fmt, ...)                                  \
44     do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
47 #endif
48 
49 #ifdef DEBUG_ASI
50 #define DPRINTF_ASI(fmt, ...)                                   \
51     do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
52 #endif
53 
54 #ifdef DEBUG_CACHE_CONTROL
55 #define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
56     do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
59 #endif
60 
61 #ifdef TARGET_SPARC64
62 #ifndef TARGET_ABI32
63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
64 #else
65 #define AM_CHECK(env1) (1)
66 #endif
67 #endif
68 
69 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
70 /* Calculates TSB pointer value for fault page size
71  * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
72  * UA2005 holds the page size configuration in mmu_ctx registers */
73 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
74                                        const SparcV9MMU *mmu, const int idx)
75 {
76     uint64_t tsb_register;
77     int page_size;
78     if (cpu_has_hypervisor(env)) {
79         int tsb_index = 0;
80         int ctx = mmu->tag_access & 0x1fffULL;
81         uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
82         tsb_index = idx;
83         tsb_index |= ctx ? 2 : 0;
84         page_size = idx ? ctx_register >> 8 : ctx_register;
85         page_size &= 7;
86         tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
87     } else {
88         page_size = idx;
89         tsb_register = mmu->tsb;
90     }
91     int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
92     int tsb_size  = tsb_register & 0xf;
93 
94     uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
95 
96     /* move va bits to correct position,
97      * the context bits will be masked out later */
98     uint64_t va = mmu->tag_access >> (3 * page_size + 9);
99 
100     /* calculate tsb_base mask and adjust va if split is in use */
101     if (tsb_split) {
102         if (idx == 0) {
103             va &= ~(1ULL << (13 + tsb_size));
104         } else {
105             va |= (1ULL << (13 + tsb_size));
106         }
107         tsb_base_mask <<= 1;
108     }
109 
110     return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
111 }
112 
113 /* Calculates tag target register value by reordering bits
114    in tag access register */
115 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
116 {
117     return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
118 }
119 
120 static void replace_tlb_entry(SparcTLBEntry *tlb,
121                               uint64_t tlb_tag, uint64_t tlb_tte,
122                               CPUSPARCState *env)
123 {
124     target_ulong mask, size, va, offset;
125 
126     /* flush page range if translation is valid */
127     if (TTE_IS_VALID(tlb->tte)) {
128         CPUState *cs = env_cpu(env);
129 
130         size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
131         mask = 1ULL + ~size;
132 
133         va = tlb->tag & mask;
134 
135         for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
136             tlb_flush_page(cs, va + offset);
137         }
138     }
139 
140     tlb->tag = tlb_tag;
141     tlb->tte = tlb_tte;
142 }
143 
144 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
145                       const char *strmmu, CPUSPARCState *env1)
146 {
147     unsigned int i;
148     target_ulong mask;
149     uint64_t context;
150 
151     int is_demap_context = (demap_addr >> 6) & 1;
152 
153     /* demap context */
154     switch ((demap_addr >> 4) & 3) {
155     case 0: /* primary */
156         context = env1->dmmu.mmu_primary_context;
157         break;
158     case 1: /* secondary */
159         context = env1->dmmu.mmu_secondary_context;
160         break;
161     case 2: /* nucleus */
162         context = 0;
163         break;
164     case 3: /* reserved */
165     default:
166         return;
167     }
168 
169     for (i = 0; i < 64; i++) {
170         if (TTE_IS_VALID(tlb[i].tte)) {
171 
172             if (is_demap_context) {
173                 /* will remove non-global entries matching context value */
174                 if (TTE_IS_GLOBAL(tlb[i].tte) ||
175                     !tlb_compare_context(&tlb[i], context)) {
176                     continue;
177                 }
178             } else {
179                 /* demap page
180                    will remove any entry matching VA */
181                 mask = 0xffffffffffffe000ULL;
182                 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
183 
184                 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
185                     continue;
186                 }
187 
188                 /* entry should be global or matching context value */
189                 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
190                     !tlb_compare_context(&tlb[i], context)) {
191                     continue;
192                 }
193             }
194 
195             replace_tlb_entry(&tlb[i], 0, 0, env1);
196 #ifdef DEBUG_MMU
197             DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
198             dump_mmu(env1);
199 #endif
200         }
201     }
202 }
203 
204 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
205                                    uint64_t sun4v_tte)
206 {
207     uint64_t sun4u_tte;
208     if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
209         /* is already in the sun4u format */
210         return sun4v_tte;
211     }
212     sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
213     sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
214     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
215     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
216     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
217     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
218                              TTE_SIDEEFFECT_BIT);
219     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
220     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
221     return sun4u_tte;
222 }
223 
224 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
225                                  uint64_t tlb_tag, uint64_t tlb_tte,
226                                  const char *strmmu, CPUSPARCState *env1,
227                                  uint64_t addr)
228 {
229     unsigned int i, replace_used;
230 
231     tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
232     if (cpu_has_hypervisor(env1)) {
233         uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
234         uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
235         uint32_t new_ctx = tlb_tag & 0x1fffU;
236         for (i = 0; i < 64; i++) {
237             uint32_t ctx = tlb[i].tag & 0x1fffU;
238             /* check if new mapping overlaps an existing one */
239             if (new_ctx == ctx) {
240                 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
241                 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
242                 if (new_vaddr == vaddr
243                     || (new_vaddr < vaddr + size
244                         && vaddr < new_vaddr + new_size)) {
245                     DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
246                                 new_vaddr);
247                     replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
248                     return;
249                 }
250             }
251 
252         }
253     }
254     /* Try replacing invalid entry */
255     for (i = 0; i < 64; i++) {
256         if (!TTE_IS_VALID(tlb[i].tte)) {
257             replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
258 #ifdef DEBUG_MMU
259             DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
260             dump_mmu(env1);
261 #endif
262             return;
263         }
264     }
265 
266     /* All entries are valid, try replacing unlocked entry */
267 
268     for (replace_used = 0; replace_used < 2; ++replace_used) {
269 
270         /* Used entries are not replaced on first pass */
271 
272         for (i = 0; i < 64; i++) {
273             if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
274 
275                 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
276 #ifdef DEBUG_MMU
277                 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
278                             strmmu, (replace_used ? "used" : "unused"), i);
279                 dump_mmu(env1);
280 #endif
281                 return;
282             }
283         }
284 
285         /* Now reset used bit and search for unused entries again */
286 
287         for (i = 0; i < 64; i++) {
288             TTE_SET_UNUSED(tlb[i].tte);
289         }
290     }
291 
292 #ifdef DEBUG_MMU
293     DPRINTF_MMU("%s lru replacement: no free entries available, "
294                 "replacing the last one\n", strmmu);
295 #endif
296     /* corner case: the last entry is replaced anyway */
297     replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
298 }
299 
300 #endif
301 
302 #ifdef TARGET_SPARC64
303 /* returns true if access using this ASI is to have address translated by MMU
304    otherwise access is to raw physical address */
305 /* TODO: check sparc32 bits */
306 static inline int is_translating_asi(int asi)
307 {
308     /* Ultrasparc IIi translating asi
309        - note this list is defined by cpu implementation
310     */
311     switch (asi) {
312     case 0x04 ... 0x11:
313     case 0x16 ... 0x19:
314     case 0x1E ... 0x1F:
315     case 0x24 ... 0x2C:
316     case 0x70 ... 0x73:
317     case 0x78 ... 0x79:
318     case 0x80 ... 0xFF:
319         return 1;
320 
321     default:
322         return 0;
323     }
324 }
325 
326 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
327 {
328     if (AM_CHECK(env1)) {
329         addr &= 0xffffffffULL;
330     }
331     return addr;
332 }
333 
334 static inline target_ulong asi_address_mask(CPUSPARCState *env,
335                                             int asi, target_ulong addr)
336 {
337     if (is_translating_asi(asi)) {
338         addr = address_mask(env, addr);
339     }
340     return addr;
341 }
342 
343 #ifndef CONFIG_USER_ONLY
344 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
345 {
346     /* ASIs >= 0x80 are user mode.
347      * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
348      * ASIs <= 0x2f are super mode.
349      */
350     if (asi < 0x80
351         && !cpu_hypervisor_mode(env)
352         && (!cpu_supervisor_mode(env)
353             || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
354         cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
355     }
356 }
357 #endif /* !CONFIG_USER_ONLY */
358 #endif
359 
360 #if defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)
361 static void do_check_align(CPUSPARCState *env, target_ulong addr,
362                            uint32_t align, uintptr_t ra)
363 {
364     if (addr & align) {
365         cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
366     }
367 }
368 #endif
369 
370 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
371     defined(DEBUG_MXCC)
372 static void dump_mxcc(CPUSPARCState *env)
373 {
374     printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
375            "\n",
376            env->mxccdata[0], env->mxccdata[1],
377            env->mxccdata[2], env->mxccdata[3]);
378     printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
379            "\n"
380            "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
381            "\n",
382            env->mxccregs[0], env->mxccregs[1],
383            env->mxccregs[2], env->mxccregs[3],
384            env->mxccregs[4], env->mxccregs[5],
385            env->mxccregs[6], env->mxccregs[7]);
386 }
387 #endif
388 
389 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
390     && defined(DEBUG_ASI)
391 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
392                      uint64_t r1)
393 {
394     switch (size) {
395     case 1:
396         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
397                     addr, asi, r1 & 0xff);
398         break;
399     case 2:
400         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
401                     addr, asi, r1 & 0xffff);
402         break;
403     case 4:
404         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
405                     addr, asi, r1 & 0xffffffff);
406         break;
407     case 8:
408         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
409                     addr, asi, r1);
410         break;
411     }
412 }
413 #endif
414 
415 #ifndef CONFIG_USER_ONLY
416 #ifndef TARGET_SPARC64
417 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
418                                   bool is_write, bool is_exec, int is_asi,
419                                   unsigned size, uintptr_t retaddr)
420 {
421     CPUSPARCState *env = cpu_env(cs);
422     int fault_type;
423 
424 #ifdef DEBUG_UNASSIGNED
425     if (is_asi) {
426         printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
427                " asi 0x%02x from " TARGET_FMT_lx "\n",
428                is_exec ? "exec" : is_write ? "write" : "read", size,
429                size == 1 ? "" : "s", addr, is_asi, env->pc);
430     } else {
431         printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
432                " from " TARGET_FMT_lx "\n",
433                is_exec ? "exec" : is_write ? "write" : "read", size,
434                size == 1 ? "" : "s", addr, env->pc);
435     }
436 #endif
437     /* Don't overwrite translation and access faults */
438     fault_type = (env->mmuregs[3] & 0x1c) >> 2;
439     if ((fault_type > 4) || (fault_type == 0)) {
440         env->mmuregs[3] = 0; /* Fault status register */
441         if (is_asi) {
442             env->mmuregs[3] |= 1 << 16;
443         }
444         if (env->psrs) {
445             env->mmuregs[3] |= 1 << 5;
446         }
447         if (is_exec) {
448             env->mmuregs[3] |= 1 << 6;
449         }
450         if (is_write) {
451             env->mmuregs[3] |= 1 << 7;
452         }
453         env->mmuregs[3] |= (5 << 2) | 2;
454         /* SuperSPARC will never place instruction fault addresses in the FAR */
455         if (!is_exec) {
456             env->mmuregs[4] = addr; /* Fault address register */
457         }
458     }
459     /* overflow (same type fault was not read before another fault) */
460     if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
461         env->mmuregs[3] |= 1;
462     }
463 
464     if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
465         int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
466         cpu_raise_exception_ra(env, tt, retaddr);
467     }
468 
469     /*
470      * flush neverland mappings created during no-fault mode,
471      * so the sequential MMU faults report proper fault types
472      */
473     if (env->mmuregs[0] & MMU_NF) {
474         tlb_flush(cs);
475     }
476 }
477 #else
478 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
479                                   bool is_write, bool is_exec, int is_asi,
480                                   unsigned size, uintptr_t retaddr)
481 {
482     CPUSPARCState *env = cpu_env(cs);
483 
484 #ifdef DEBUG_UNASSIGNED
485     printf("Unassigned mem access to " HWADDR_FMT_plx " from " TARGET_FMT_lx
486            "\n", addr, env->pc);
487 #endif
488 
489     if (is_exec) { /* XXX has_hypervisor */
490         if (env->lsu & (IMMU_E)) {
491             cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
492         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
493             cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
494         }
495     } else {
496         if (env->lsu & (DMMU_E)) {
497             cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
498         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
499             cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
500         }
501     }
502 }
503 #endif
504 #endif
505 
506 #ifndef TARGET_SPARC64
507 #ifndef CONFIG_USER_ONLY
508 
509 
510 /* Leon3 cache control */
511 
512 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
513                                    uint64_t val, int size)
514 {
515     DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
516                           addr, val, size);
517 
518     if (size != 4) {
519         DPRINTF_CACHE_CONTROL("32bits only\n");
520         return;
521     }
522 
523     switch (addr) {
524     case 0x00:              /* Cache control */
525 
526         /* These values must always be read as zeros */
527         val &= ~CACHE_CTRL_FD;
528         val &= ~CACHE_CTRL_FI;
529         val &= ~CACHE_CTRL_IB;
530         val &= ~CACHE_CTRL_IP;
531         val &= ~CACHE_CTRL_DP;
532 
533         env->cache_control = val;
534         break;
535     case 0x04:              /* Instruction cache configuration */
536     case 0x08:              /* Data cache configuration */
537         /* Read Only */
538         break;
539     default:
540         DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
541         break;
542     };
543 }
544 
545 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
546                                        int size)
547 {
548     uint64_t ret = 0;
549 
550     if (size != 4) {
551         DPRINTF_CACHE_CONTROL("32bits only\n");
552         return 0;
553     }
554 
555     switch (addr) {
556     case 0x00:              /* Cache control */
557         ret = env->cache_control;
558         break;
559 
560         /* Configuration registers are read and only always keep those
561            predefined values */
562 
563     case 0x04:              /* Instruction cache configuration */
564         ret = 0x10220000;
565         break;
566     case 0x08:              /* Data cache configuration */
567         ret = 0x18220000;
568         break;
569     default:
570         DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
571         break;
572     };
573     DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
574                           addr, ret, size);
575     return ret;
576 }
577 
578 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
579                        int asi, uint32_t memop)
580 {
581     int size = 1 << (memop & MO_SIZE);
582     int sign = memop & MO_SIGN;
583     CPUState *cs = env_cpu(env);
584     uint64_t ret = 0;
585 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
586     uint32_t last_addr = addr;
587 #endif
588     MemOpIdx oi;
589 
590     do_check_align(env, addr, size - 1, GETPC());
591     switch (asi) {
592     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
593     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
594         switch (addr) {
595         case 0x00:          /* Leon3 Cache Control */
596         case 0x08:          /* Leon3 Instruction Cache config */
597         case 0x0C:          /* Leon3 Date Cache config */
598             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
599                 ret = leon3_cache_control_ld(env, addr, size);
600             }
601             break;
602         case 0x01c00a00: /* MXCC control register */
603             if (size == 8) {
604                 ret = env->mxccregs[3];
605             } else {
606                 qemu_log_mask(LOG_UNIMP,
607                               "%08x: unimplemented access size: %d\n", addr,
608                               size);
609             }
610             break;
611         case 0x01c00a04: /* MXCC control register */
612             if (size == 4) {
613                 ret = env->mxccregs[3];
614             } else {
615                 qemu_log_mask(LOG_UNIMP,
616                               "%08x: unimplemented access size: %d\n", addr,
617                               size);
618             }
619             break;
620         case 0x01c00c00: /* Module reset register */
621             if (size == 8) {
622                 ret = env->mxccregs[5];
623                 /* should we do something here? */
624             } else {
625                 qemu_log_mask(LOG_UNIMP,
626                               "%08x: unimplemented access size: %d\n", addr,
627                               size);
628             }
629             break;
630         case 0x01c00f00: /* MBus port address register */
631             if (size == 8) {
632                 ret = env->mxccregs[7];
633             } else {
634                 qemu_log_mask(LOG_UNIMP,
635                               "%08x: unimplemented access size: %d\n", addr,
636                               size);
637             }
638             break;
639         default:
640             qemu_log_mask(LOG_UNIMP,
641                           "%08x: unimplemented address, size: %d\n", addr,
642                           size);
643             break;
644         }
645         DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
646                      "addr = %08x -> ret = %" PRIx64 ","
647                      "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
648 #ifdef DEBUG_MXCC
649         dump_mxcc(env);
650 #endif
651         break;
652     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
653     case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
654         {
655             int mmulev;
656 
657             mmulev = (addr >> 8) & 15;
658             if (mmulev > 4) {
659                 ret = 0;
660             } else {
661                 ret = mmu_probe(env, addr, mmulev);
662             }
663             DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
664                         addr, mmulev, ret);
665         }
666         break;
667     case ASI_M_MMUREGS: /* SuperSparc MMU regs */
668     case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
669         {
670             int reg = (addr >> 8) & 0x1f;
671 
672             ret = env->mmuregs[reg];
673             if (reg == 3) { /* Fault status cleared on read */
674                 env->mmuregs[3] = 0;
675             } else if (reg == 0x13) { /* Fault status read */
676                 ret = env->mmuregs[3];
677             } else if (reg == 0x14) { /* Fault address read */
678                 ret = env->mmuregs[4];
679             }
680             DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
681         }
682         break;
683     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
684     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
685     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
686         break;
687     case ASI_KERNELTXT: /* Supervisor code access */
688         oi = make_memop_idx(memop, cpu_mmu_index(env_cpu(env), true));
689         switch (size) {
690         case 1:
691             ret = cpu_ldb_code_mmu(env, addr, oi, GETPC());
692             break;
693         case 2:
694             ret = cpu_ldw_code_mmu(env, addr, oi, GETPC());
695             break;
696         default:
697         case 4:
698             ret = cpu_ldl_code_mmu(env, addr, oi, GETPC());
699             break;
700         case 8:
701             ret = cpu_ldq_code_mmu(env, addr, oi, GETPC());
702             break;
703         }
704         break;
705     case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
706     case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
707     case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
708     case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
709         break;
710     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
711     {
712         MemTxResult result;
713         hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
714 
715         switch (size) {
716         case 1:
717             ret = address_space_ldub(cs->as, access_addr,
718                                      MEMTXATTRS_UNSPECIFIED, &result);
719             break;
720         case 2:
721             ret = address_space_lduw(cs->as, access_addr,
722                                      MEMTXATTRS_UNSPECIFIED, &result);
723             break;
724         default:
725         case 4:
726             ret = address_space_ldl(cs->as, access_addr,
727                                     MEMTXATTRS_UNSPECIFIED, &result);
728             break;
729         case 8:
730             ret = address_space_ldq(cs->as, access_addr,
731                                     MEMTXATTRS_UNSPECIFIED, &result);
732             break;
733         }
734 
735         if (result != MEMTX_OK) {
736             sparc_raise_mmu_fault(cs, access_addr, false, false, false,
737                                   size, GETPC());
738         }
739         break;
740     }
741     case 0x30: /* Turbosparc secondary cache diagnostic */
742     case 0x31: /* Turbosparc RAM snoop */
743     case 0x32: /* Turbosparc page table descriptor diagnostic */
744     case 0x39: /* data cache diagnostic register */
745         ret = 0;
746         break;
747     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
748         {
749             int reg = (addr >> 8) & 3;
750 
751             switch (reg) {
752             case 0: /* Breakpoint Value (Addr) */
753                 ret = env->mmubpregs[reg];
754                 break;
755             case 1: /* Breakpoint Mask */
756                 ret = env->mmubpregs[reg];
757                 break;
758             case 2: /* Breakpoint Control */
759                 ret = env->mmubpregs[reg];
760                 break;
761             case 3: /* Breakpoint Status */
762                 ret = env->mmubpregs[reg];
763                 env->mmubpregs[reg] = 0ULL;
764                 break;
765             }
766             DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
767                         ret);
768         }
769         break;
770     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
771         ret = env->mmubpctrv;
772         break;
773     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
774         ret = env->mmubpctrc;
775         break;
776     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
777         ret = env->mmubpctrs;
778         break;
779     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
780         ret = env->mmubpaction;
781         break;
782     case ASI_USERTXT: /* User code access, XXX */
783     default:
784         sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
785         ret = 0;
786         break;
787 
788     case ASI_USERDATA: /* User data access */
789     case ASI_KERNELDATA: /* Supervisor data access */
790     case ASI_P: /* Implicit primary context data access (v9 only?) */
791     case ASI_M_BYPASS:    /* MMU passthrough */
792     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
793         /* These are always handled inline.  */
794         g_assert_not_reached();
795     }
796     if (sign) {
797         switch (size) {
798         case 1:
799             ret = (int8_t) ret;
800             break;
801         case 2:
802             ret = (int16_t) ret;
803             break;
804         case 4:
805             ret = (int32_t) ret;
806             break;
807         default:
808             break;
809         }
810     }
811 #ifdef DEBUG_ASI
812     dump_asi("read ", last_addr, asi, size, ret);
813 #endif
814     return ret;
815 }
816 
817 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
818                    int asi, uint32_t memop)
819 {
820     int size = 1 << (memop & MO_SIZE);
821     CPUState *cs = env_cpu(env);
822 
823     do_check_align(env, addr, size - 1, GETPC());
824     switch (asi) {
825     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
826     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
827         switch (addr) {
828         case 0x00:          /* Leon3 Cache Control */
829         case 0x08:          /* Leon3 Instruction Cache config */
830         case 0x0C:          /* Leon3 Date Cache config */
831             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
832                 leon3_cache_control_st(env, addr, val, size);
833             }
834             break;
835 
836         case 0x01c00000: /* MXCC stream data register 0 */
837             if (size == 8) {
838                 env->mxccdata[0] = val;
839             } else {
840                 qemu_log_mask(LOG_UNIMP,
841                               "%08x: unimplemented access size: %d\n", addr,
842                               size);
843             }
844             break;
845         case 0x01c00008: /* MXCC stream data register 1 */
846             if (size == 8) {
847                 env->mxccdata[1] = val;
848             } else {
849                 qemu_log_mask(LOG_UNIMP,
850                               "%08x: unimplemented access size: %d\n", addr,
851                               size);
852             }
853             break;
854         case 0x01c00010: /* MXCC stream data register 2 */
855             if (size == 8) {
856                 env->mxccdata[2] = val;
857             } else {
858                 qemu_log_mask(LOG_UNIMP,
859                               "%08x: unimplemented access size: %d\n", addr,
860                               size);
861             }
862             break;
863         case 0x01c00018: /* MXCC stream data register 3 */
864             if (size == 8) {
865                 env->mxccdata[3] = val;
866             } else {
867                 qemu_log_mask(LOG_UNIMP,
868                               "%08x: unimplemented access size: %d\n", addr,
869                               size);
870             }
871             break;
872         case 0x01c00100: /* MXCC stream source */
873         {
874             int i;
875 
876             if (size == 8) {
877                 env->mxccregs[0] = val;
878             } else {
879                 qemu_log_mask(LOG_UNIMP,
880                               "%08x: unimplemented access size: %d\n", addr,
881                               size);
882             }
883 
884             for (i = 0; i < 4; i++) {
885                 MemTxResult result;
886                 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
887 
888                 env->mxccdata[i] = address_space_ldq(cs->as,
889                                                      access_addr,
890                                                      MEMTXATTRS_UNSPECIFIED,
891                                                      &result);
892                 if (result != MEMTX_OK) {
893                     /* TODO: investigate whether this is the right behaviour */
894                     sparc_raise_mmu_fault(cs, access_addr, false, false,
895                                           false, size, GETPC());
896                 }
897             }
898             break;
899         }
900         case 0x01c00200: /* MXCC stream destination */
901         {
902             int i;
903 
904             if (size == 8) {
905                 env->mxccregs[1] = val;
906             } else {
907                 qemu_log_mask(LOG_UNIMP,
908                               "%08x: unimplemented access size: %d\n", addr,
909                               size);
910             }
911 
912             for (i = 0; i < 4; i++) {
913                 MemTxResult result;
914                 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
915 
916                 address_space_stq(cs->as, access_addr, env->mxccdata[i],
917                                   MEMTXATTRS_UNSPECIFIED, &result);
918 
919                 if (result != MEMTX_OK) {
920                     /* TODO: investigate whether this is the right behaviour */
921                     sparc_raise_mmu_fault(cs, access_addr, true, false,
922                                           false, size, GETPC());
923                 }
924             }
925             break;
926         }
927         case 0x01c00a00: /* MXCC control register */
928             if (size == 8) {
929                 env->mxccregs[3] = val;
930             } else {
931                 qemu_log_mask(LOG_UNIMP,
932                               "%08x: unimplemented access size: %d\n", addr,
933                               size);
934             }
935             break;
936         case 0x01c00a04: /* MXCC control register */
937             if (size == 4) {
938                 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
939                     | val;
940             } else {
941                 qemu_log_mask(LOG_UNIMP,
942                               "%08x: unimplemented access size: %d\n", addr,
943                               size);
944             }
945             break;
946         case 0x01c00e00: /* MXCC error register  */
947             /* writing a 1 bit clears the error */
948             if (size == 8) {
949                 env->mxccregs[6] &= ~val;
950             } else {
951                 qemu_log_mask(LOG_UNIMP,
952                               "%08x: unimplemented access size: %d\n", addr,
953                               size);
954             }
955             break;
956         case 0x01c00f00: /* MBus port address register */
957             if (size == 8) {
958                 env->mxccregs[7] = val;
959             } else {
960                 qemu_log_mask(LOG_UNIMP,
961                               "%08x: unimplemented access size: %d\n", addr,
962                               size);
963             }
964             break;
965         default:
966             qemu_log_mask(LOG_UNIMP,
967                           "%08x: unimplemented address, size: %d\n", addr,
968                           size);
969             break;
970         }
971         DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
972                      asi, size, addr, val);
973 #ifdef DEBUG_MXCC
974         dump_mxcc(env);
975 #endif
976         break;
977     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
978     case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
979         {
980             int mmulev;
981 
982             mmulev = (addr >> 8) & 15;
983             DPRINTF_MMU("mmu flush level %d\n", mmulev);
984             switch (mmulev) {
985             case 0: /* flush page */
986                 tlb_flush_page(cs, addr & 0xfffff000);
987                 break;
988             case 1: /* flush segment (256k) */
989             case 2: /* flush region (16M) */
990             case 3: /* flush context (4G) */
991             case 4: /* flush entire */
992                 tlb_flush(cs);
993                 break;
994             default:
995                 break;
996             }
997 #ifdef DEBUG_MMU
998             dump_mmu(env);
999 #endif
1000         }
1001         break;
1002     case ASI_M_MMUREGS: /* write MMU regs */
1003     case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
1004         {
1005             int reg = (addr >> 8) & 0x1f;
1006             uint32_t oldreg;
1007 
1008             oldreg = env->mmuregs[reg];
1009             switch (reg) {
1010             case 0: /* Control Register */
1011                 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1012                     (val & 0x00ffffff);
1013                 /* Mappings generated during no-fault mode
1014                    are invalid in normal mode.  */
1015                 if ((oldreg ^ env->mmuregs[reg])
1016                     & (MMU_NF | env->def.mmu_bm)) {
1017                     tlb_flush(cs);
1018                 }
1019                 break;
1020             case 1: /* Context Table Pointer Register */
1021                 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1022                 break;
1023             case 2: /* Context Register */
1024                 env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1025                 if (oldreg != env->mmuregs[reg]) {
1026                     /* we flush when the MMU context changes because
1027                        QEMU has no MMU context support */
1028                     tlb_flush(cs);
1029                 }
1030                 break;
1031             case 3: /* Synchronous Fault Status Register with Clear */
1032             case 4: /* Synchronous Fault Address Register */
1033                 break;
1034             case 0x10: /* TLB Replacement Control Register */
1035                 env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1036                 break;
1037             case 0x13: /* Synchronous Fault Status Register with Read
1038                           and Clear */
1039                 env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1040                 break;
1041             case 0x14: /* Synchronous Fault Address Register */
1042                 env->mmuregs[4] = val;
1043                 break;
1044             default:
1045                 env->mmuregs[reg] = val;
1046                 break;
1047             }
1048             if (oldreg != env->mmuregs[reg]) {
1049                 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1050                             reg, oldreg, env->mmuregs[reg]);
1051             }
1052 #ifdef DEBUG_MMU
1053             dump_mmu(env);
1054 #endif
1055         }
1056         break;
1057     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1058     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
1059     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
1060         break;
1061     case ASI_M_TXTC_TAG:   /* I-cache tag */
1062     case ASI_M_TXTC_DATA:  /* I-cache data */
1063     case ASI_M_DATAC_TAG:  /* D-cache tag */
1064     case ASI_M_DATAC_DATA: /* D-cache data */
1065     case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
1066     case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
1067     case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1068     case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
1069     case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
1070         break;
1071     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1072         {
1073             MemTxResult result;
1074             hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1075 
1076             switch (size) {
1077             case 1:
1078                 address_space_stb(cs->as, access_addr, val,
1079                                   MEMTXATTRS_UNSPECIFIED, &result);
1080                 break;
1081             case 2:
1082                 address_space_stw(cs->as, access_addr, val,
1083                                   MEMTXATTRS_UNSPECIFIED, &result);
1084                 break;
1085             case 4:
1086             default:
1087                 address_space_stl(cs->as, access_addr, val,
1088                                   MEMTXATTRS_UNSPECIFIED, &result);
1089                 break;
1090             case 8:
1091                 address_space_stq(cs->as, access_addr, val,
1092                                   MEMTXATTRS_UNSPECIFIED, &result);
1093                 break;
1094             }
1095             if (result != MEMTX_OK) {
1096                 sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1097                                       size, GETPC());
1098             }
1099         }
1100         break;
1101     case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1102     case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1103                   Turbosparc snoop RAM */
1104     case 0x32: /* store buffer control or Turbosparc page table
1105                   descriptor diagnostic */
1106     case 0x36: /* I-cache flash clear */
1107     case 0x37: /* D-cache flash clear */
1108         break;
1109     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1110         {
1111             int reg = (addr >> 8) & 3;
1112 
1113             switch (reg) {
1114             case 0: /* Breakpoint Value (Addr) */
1115                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1116                 break;
1117             case 1: /* Breakpoint Mask */
1118                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1119                 break;
1120             case 2: /* Breakpoint Control */
1121                 env->mmubpregs[reg] = (val & 0x7fULL);
1122                 break;
1123             case 3: /* Breakpoint Status */
1124                 env->mmubpregs[reg] = (val & 0xfULL);
1125                 break;
1126             }
1127             DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1128                         env->mmuregs[reg]);
1129         }
1130         break;
1131     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1132         env->mmubpctrv = val & 0xffffffff;
1133         break;
1134     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1135         env->mmubpctrc = val & 0x3;
1136         break;
1137     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1138         env->mmubpctrs = val & 0x3;
1139         break;
1140     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1141         env->mmubpaction = val & 0x1fff;
1142         break;
1143     case ASI_USERTXT: /* User code access, XXX */
1144     case ASI_KERNELTXT: /* Supervisor code access, XXX */
1145     default:
1146         sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1147         break;
1148 
1149     case ASI_USERDATA: /* User data access */
1150     case ASI_KERNELDATA: /* Supervisor data access */
1151     case ASI_P:
1152     case ASI_M_BYPASS:    /* MMU passthrough */
1153     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1154     case ASI_M_BCOPY: /* Block copy, sta access */
1155     case ASI_M_BFILL: /* Block fill, stda access */
1156         /* These are always handled inline.  */
1157         g_assert_not_reached();
1158     }
1159 #ifdef DEBUG_ASI
1160     dump_asi("write", addr, asi, size, val);
1161 #endif
1162 }
1163 
1164 #endif /* CONFIG_USER_ONLY */
1165 #else /* TARGET_SPARC64 */
1166 
1167 #ifdef CONFIG_USER_ONLY
1168 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1169                        int asi, uint32_t memop)
1170 {
1171     int size = 1 << (memop & MO_SIZE);
1172     int sign = memop & MO_SIGN;
1173     uint64_t ret = 0;
1174 
1175     if (asi < 0x80) {
1176         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1177     }
1178     do_check_align(env, addr, size - 1, GETPC());
1179     addr = asi_address_mask(env, asi, addr);
1180 
1181     switch (asi) {
1182     case ASI_PNF:  /* Primary no-fault */
1183     case ASI_PNFL: /* Primary no-fault LE */
1184     case ASI_SNF:  /* Secondary no-fault */
1185     case ASI_SNFL: /* Secondary no-fault LE */
1186         if (!page_check_range(addr, size, PAGE_READ)) {
1187             ret = 0;
1188             break;
1189         }
1190         switch (size) {
1191         case 1:
1192             ret = cpu_ldub_data(env, addr);
1193             break;
1194         case 2:
1195             ret = cpu_lduw_data(env, addr);
1196             break;
1197         case 4:
1198             ret = cpu_ldl_data(env, addr);
1199             break;
1200         case 8:
1201             ret = cpu_ldq_data(env, addr);
1202             break;
1203         default:
1204             g_assert_not_reached();
1205         }
1206         break;
1207         break;
1208 
1209     case ASI_P: /* Primary */
1210     case ASI_PL: /* Primary LE */
1211     case ASI_S:  /* Secondary */
1212     case ASI_SL: /* Secondary LE */
1213         /* These are always handled inline.  */
1214         g_assert_not_reached();
1215 
1216     default:
1217         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1218     }
1219 
1220     /* Convert from little endian */
1221     switch (asi) {
1222     case ASI_PNFL: /* Primary no-fault LE */
1223     case ASI_SNFL: /* Secondary no-fault LE */
1224         switch (size) {
1225         case 2:
1226             ret = bswap16(ret);
1227             break;
1228         case 4:
1229             ret = bswap32(ret);
1230             break;
1231         case 8:
1232             ret = bswap64(ret);
1233             break;
1234         }
1235     }
1236 
1237     /* Convert to signed number */
1238     if (sign) {
1239         switch (size) {
1240         case 1:
1241             ret = (int8_t) ret;
1242             break;
1243         case 2:
1244             ret = (int16_t) ret;
1245             break;
1246         case 4:
1247             ret = (int32_t) ret;
1248             break;
1249         }
1250     }
1251 #ifdef DEBUG_ASI
1252     dump_asi("read", addr, asi, size, ret);
1253 #endif
1254     return ret;
1255 }
1256 
1257 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1258                    int asi, uint32_t memop)
1259 {
1260     int size = 1 << (memop & MO_SIZE);
1261 #ifdef DEBUG_ASI
1262     dump_asi("write", addr, asi, size, val);
1263 #endif
1264     if (asi < 0x80) {
1265         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1266     }
1267     do_check_align(env, addr, size - 1, GETPC());
1268 
1269     switch (asi) {
1270     case ASI_P:  /* Primary */
1271     case ASI_PL: /* Primary LE */
1272     case ASI_S:  /* Secondary */
1273     case ASI_SL: /* Secondary LE */
1274         /* These are always handled inline.  */
1275         g_assert_not_reached();
1276 
1277     case ASI_PNF:  /* Primary no-fault, RO */
1278     case ASI_SNF:  /* Secondary no-fault, RO */
1279     case ASI_PNFL: /* Primary no-fault LE, RO */
1280     case ASI_SNFL: /* Secondary no-fault LE, RO */
1281     default:
1282         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1283     }
1284 }
1285 
1286 #else /* CONFIG_USER_ONLY */
1287 
1288 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1289                        int asi, uint32_t memop)
1290 {
1291     int size = 1 << (memop & MO_SIZE);
1292     int sign = memop & MO_SIGN;
1293     CPUState *cs = env_cpu(env);
1294     uint64_t ret = 0;
1295 #if defined(DEBUG_ASI)
1296     target_ulong last_addr = addr;
1297 #endif
1298 
1299     asi &= 0xff;
1300 
1301     do_check_asi(env, asi, GETPC());
1302     do_check_align(env, addr, size - 1, GETPC());
1303     addr = asi_address_mask(env, asi, addr);
1304 
1305     switch (asi) {
1306     case ASI_PNF:
1307     case ASI_PNFL:
1308     case ASI_SNF:
1309     case ASI_SNFL:
1310         {
1311             MemOpIdx oi;
1312             int idx = (env->pstate & PS_PRIV
1313                        ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1314                        : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1315 
1316             if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1317 #ifdef DEBUG_ASI
1318                 dump_asi("read ", last_addr, asi, size, ret);
1319 #endif
1320                 /* exception_index is set in get_physical_address_data. */
1321                 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1322             }
1323             oi = make_memop_idx(memop, idx);
1324             switch (size) {
1325             case 1:
1326                 ret = cpu_ldb_mmu(env, addr, oi, GETPC());
1327                 break;
1328             case 2:
1329                 ret = cpu_ldw_mmu(env, addr, oi, GETPC());
1330                 break;
1331             case 4:
1332                 ret = cpu_ldl_mmu(env, addr, oi, GETPC());
1333                 break;
1334             case 8:
1335                 ret = cpu_ldq_mmu(env, addr, oi, GETPC());
1336                 break;
1337             default:
1338                 g_assert_not_reached();
1339             }
1340         }
1341         break;
1342 
1343     case ASI_AIUP:  /* As if user primary */
1344     case ASI_AIUS:  /* As if user secondary */
1345     case ASI_AIUPL: /* As if user primary LE */
1346     case ASI_AIUSL: /* As if user secondary LE */
1347     case ASI_P:  /* Primary */
1348     case ASI_S:  /* Secondary */
1349     case ASI_PL: /* Primary LE */
1350     case ASI_SL: /* Secondary LE */
1351     case ASI_REAL:      /* Bypass */
1352     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1353     case ASI_REAL_L:    /* Bypass LE */
1354     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1355     case ASI_N:  /* Nucleus */
1356     case ASI_NL: /* Nucleus Little Endian (LE) */
1357     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1358     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1359     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1360     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1361     case ASI_TWINX_REAL:   /* Real address, twinx */
1362     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1363     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1364     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1365     case ASI_TWINX_N:  /* Nucleus, twinx */
1366     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1367     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1368     case ASI_TWINX_P:  /* Primary, twinx */
1369     case ASI_TWINX_PL: /* Primary, twinx, LE */
1370     case ASI_TWINX_S:  /* Secondary, twinx */
1371     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1372         /* These are always handled inline.  */
1373         g_assert_not_reached();
1374 
1375     case ASI_UPA_CONFIG: /* UPA config */
1376         /* XXX */
1377         break;
1378     case ASI_LSU_CONTROL: /* LSU */
1379         ret = env->lsu;
1380         break;
1381     case ASI_IMMU: /* I-MMU regs */
1382         {
1383             int reg = (addr >> 3) & 0xf;
1384             switch (reg) {
1385             case 0:
1386                 /* 0x00 I-TSB Tag Target register */
1387                 ret = ultrasparc_tag_target(env->immu.tag_access);
1388                 break;
1389             case 3: /* SFSR */
1390                 ret = env->immu.sfsr;
1391                 break;
1392             case 5: /* TSB access */
1393                 ret = env->immu.tsb;
1394                 break;
1395             case 6:
1396                 /* 0x30 I-TSB Tag Access register */
1397                 ret = env->immu.tag_access;
1398                 break;
1399             default:
1400                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1401                 ret = 0;
1402             }
1403             break;
1404         }
1405     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1406         {
1407             /* env->immuregs[5] holds I-MMU TSB register value
1408                env->immuregs[6] holds I-MMU Tag Access register value */
1409             ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1410             break;
1411         }
1412     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1413         {
1414             /* env->immuregs[5] holds I-MMU TSB register value
1415                env->immuregs[6] holds I-MMU Tag Access register value */
1416             ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1417             break;
1418         }
1419     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1420         {
1421             int reg = (addr >> 3) & 0x3f;
1422 
1423             ret = env->itlb[reg].tte;
1424             break;
1425         }
1426     case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1427         {
1428             int reg = (addr >> 3) & 0x3f;
1429 
1430             ret = env->itlb[reg].tag;
1431             break;
1432         }
1433     case ASI_DMMU: /* D-MMU regs */
1434         {
1435             int reg = (addr >> 3) & 0xf;
1436             switch (reg) {
1437             case 0:
1438                 /* 0x00 D-TSB Tag Target register */
1439                 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1440                 break;
1441             case 1: /* 0x08 Primary Context */
1442                 ret = env->dmmu.mmu_primary_context;
1443                 break;
1444             case 2: /* 0x10 Secondary Context */
1445                 ret = env->dmmu.mmu_secondary_context;
1446                 break;
1447             case 3: /* SFSR */
1448                 ret = env->dmmu.sfsr;
1449                 break;
1450             case 4: /* 0x20 SFAR */
1451                 ret = env->dmmu.sfar;
1452                 break;
1453             case 5: /* 0x28 TSB access */
1454                 ret = env->dmmu.tsb;
1455                 break;
1456             case 6: /* 0x30 D-TSB Tag Access register */
1457                 ret = env->dmmu.tag_access;
1458                 break;
1459             case 7:
1460                 ret = env->dmmu.virtual_watchpoint;
1461                 break;
1462             case 8:
1463                 ret = env->dmmu.physical_watchpoint;
1464                 break;
1465             default:
1466                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1467                 ret = 0;
1468             }
1469             break;
1470         }
1471     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1472         {
1473             /* env->dmmuregs[5] holds D-MMU TSB register value
1474                env->dmmuregs[6] holds D-MMU Tag Access register value */
1475             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1476             break;
1477         }
1478     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1479         {
1480             /* env->dmmuregs[5] holds D-MMU TSB register value
1481                env->dmmuregs[6] holds D-MMU Tag Access register value */
1482             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1483             break;
1484         }
1485     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1486         {
1487             int reg = (addr >> 3) & 0x3f;
1488 
1489             ret = env->dtlb[reg].tte;
1490             break;
1491         }
1492     case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1493         {
1494             int reg = (addr >> 3) & 0x3f;
1495 
1496             ret = env->dtlb[reg].tag;
1497             break;
1498         }
1499     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1500         break;
1501     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1502         ret = env->ivec_status;
1503         break;
1504     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1505         {
1506             int reg = (addr >> 4) & 0x3;
1507             if (reg < 3) {
1508                 ret = env->ivec_data[reg];
1509             }
1510             break;
1511         }
1512     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1513         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1514             /* Hyperprivileged access only */
1515             sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1516         }
1517         /* fall through */
1518     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1519         {
1520             unsigned int i = (addr >> 3) & 0x7;
1521             ret = env->scratch[i];
1522             break;
1523         }
1524     case ASI_MMU: /* UA2005 Context ID registers */
1525         switch ((addr >> 3) & 0x3) {
1526         case 1:
1527             ret = env->dmmu.mmu_primary_context;
1528             break;
1529         case 2:
1530             ret = env->dmmu.mmu_secondary_context;
1531             break;
1532         default:
1533           sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1534         }
1535         break;
1536     case ASI_DCACHE_DATA:     /* D-cache data */
1537     case ASI_DCACHE_TAG:      /* D-cache tag access */
1538     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1539     case ASI_AFSR:            /* E-cache asynchronous fault status */
1540     case ASI_AFAR:            /* E-cache asynchronous fault address */
1541     case ASI_EC_TAG_DATA:     /* E-cache tag data */
1542     case ASI_IC_INSTR:        /* I-cache instruction access */
1543     case ASI_IC_TAG:          /* I-cache tag access */
1544     case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1545     case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1546     case ASI_EC_W:            /* E-cache tag */
1547     case ASI_EC_R:            /* E-cache tag */
1548         break;
1549     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1550     case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1551     case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1552     case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1553     case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1554     case ASI_INTR_W:              /* Interrupt vector, WO */
1555     default:
1556         sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1557         ret = 0;
1558         break;
1559     }
1560 
1561     /* Convert to signed number */
1562     if (sign) {
1563         switch (size) {
1564         case 1:
1565             ret = (int8_t) ret;
1566             break;
1567         case 2:
1568             ret = (int16_t) ret;
1569             break;
1570         case 4:
1571             ret = (int32_t) ret;
1572             break;
1573         default:
1574             break;
1575         }
1576     }
1577 #ifdef DEBUG_ASI
1578     dump_asi("read ", last_addr, asi, size, ret);
1579 #endif
1580     return ret;
1581 }
1582 
1583 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1584                    int asi, uint32_t memop)
1585 {
1586     int size = 1 << (memop & MO_SIZE);
1587     CPUState *cs = env_cpu(env);
1588 
1589 #ifdef DEBUG_ASI
1590     dump_asi("write", addr, asi, size, val);
1591 #endif
1592 
1593     asi &= 0xff;
1594 
1595     do_check_asi(env, asi, GETPC());
1596     do_check_align(env, addr, size - 1, GETPC());
1597     addr = asi_address_mask(env, asi, addr);
1598 
1599     switch (asi) {
1600     case ASI_AIUP:  /* As if user primary */
1601     case ASI_AIUS:  /* As if user secondary */
1602     case ASI_AIUPL: /* As if user primary LE */
1603     case ASI_AIUSL: /* As if user secondary LE */
1604     case ASI_P:  /* Primary */
1605     case ASI_S:  /* Secondary */
1606     case ASI_PL: /* Primary LE */
1607     case ASI_SL: /* Secondary LE */
1608     case ASI_REAL:      /* Bypass */
1609     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1610     case ASI_REAL_L:    /* Bypass LE */
1611     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1612     case ASI_N:  /* Nucleus */
1613     case ASI_NL: /* Nucleus Little Endian (LE) */
1614     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1615     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1616     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1617     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1618     case ASI_TWINX_REAL:   /* Real address, twinx */
1619     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1620     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1621     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1622     case ASI_TWINX_N:  /* Nucleus, twinx */
1623     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1624     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1625     case ASI_TWINX_P:  /* Primary, twinx */
1626     case ASI_TWINX_PL: /* Primary, twinx, LE */
1627     case ASI_TWINX_S:  /* Secondary, twinx */
1628     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1629         /* These are always handled inline.  */
1630         g_assert_not_reached();
1631     /* these ASIs have different functions on UltraSPARC-IIIi
1632      * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1633      */
1634     case 0x31:
1635     case 0x32:
1636     case 0x39:
1637     case 0x3a:
1638         if (cpu_has_hypervisor(env)) {
1639             /* UA2005
1640              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1641              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1642              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1643              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1644              */
1645             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1646             env->dmmu.sun4v_tsb_pointers[idx] = val;
1647         } else {
1648             goto illegal_insn;
1649         }
1650         break;
1651     case 0x33:
1652     case 0x3b:
1653         if (cpu_has_hypervisor(env)) {
1654             /* UA2005
1655              * ASI_DMMU_CTX_ZERO_CONFIG
1656              * ASI_DMMU_CTX_NONZERO_CONFIG
1657              */
1658             env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1659         } else {
1660             goto illegal_insn;
1661         }
1662         break;
1663     case 0x35:
1664     case 0x36:
1665     case 0x3d:
1666     case 0x3e:
1667         if (cpu_has_hypervisor(env)) {
1668             /* UA2005
1669              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1670              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1671              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1672              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1673              */
1674             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1675             env->immu.sun4v_tsb_pointers[idx] = val;
1676         } else {
1677             goto illegal_insn;
1678         }
1679       break;
1680     case 0x37:
1681     case 0x3f:
1682         if (cpu_has_hypervisor(env)) {
1683             /* UA2005
1684              * ASI_IMMU_CTX_ZERO_CONFIG
1685              * ASI_IMMU_CTX_NONZERO_CONFIG
1686              */
1687             env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1688         } else {
1689             goto illegal_insn;
1690         }
1691         break;
1692     case ASI_UPA_CONFIG: /* UPA config */
1693         /* XXX */
1694         return;
1695     case ASI_LSU_CONTROL: /* LSU */
1696         env->lsu = val & (DMMU_E | IMMU_E);
1697         return;
1698     case ASI_IMMU: /* I-MMU regs */
1699         {
1700             int reg = (addr >> 3) & 0xf;
1701             uint64_t oldreg;
1702 
1703             oldreg = env->immu.mmuregs[reg];
1704             switch (reg) {
1705             case 0: /* RO */
1706                 return;
1707             case 1: /* Not in I-MMU */
1708             case 2:
1709                 return;
1710             case 3: /* SFSR */
1711                 if ((val & 1) == 0) {
1712                     val = 0; /* Clear SFSR */
1713                 }
1714                 env->immu.sfsr = val;
1715                 break;
1716             case 4: /* RO */
1717                 return;
1718             case 5: /* TSB access */
1719                 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1720                             PRIx64 "\n", env->immu.tsb, val);
1721                 env->immu.tsb = val;
1722                 break;
1723             case 6: /* Tag access */
1724                 env->immu.tag_access = val;
1725                 break;
1726             case 7:
1727             case 8:
1728                 return;
1729             default:
1730                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1731                 break;
1732             }
1733 
1734             if (oldreg != env->immu.mmuregs[reg]) {
1735                 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1736                             PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1737             }
1738 #ifdef DEBUG_MMU
1739             dump_mmu(env);
1740 #endif
1741             return;
1742         }
1743     case ASI_ITLB_DATA_IN: /* I-MMU data in */
1744         /* ignore real translation entries */
1745         if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1746             replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1747                                  val, "immu", env, addr);
1748         }
1749         return;
1750     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1751         {
1752             /* TODO: auto demap */
1753 
1754             unsigned int i = (addr >> 3) & 0x3f;
1755 
1756             /* ignore real translation entries */
1757             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1758                 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1759                                   sun4v_tte_to_sun4u(env, addr, val), env);
1760             }
1761 #ifdef DEBUG_MMU
1762             DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1763             dump_mmu(env);
1764 #endif
1765             return;
1766         }
1767     case ASI_IMMU_DEMAP: /* I-MMU demap */
1768         demap_tlb(env->itlb, addr, "immu", env);
1769         return;
1770     case ASI_DMMU: /* D-MMU regs */
1771         {
1772             int reg = (addr >> 3) & 0xf;
1773             uint64_t oldreg;
1774 
1775             oldreg = env->dmmu.mmuregs[reg];
1776             switch (reg) {
1777             case 0: /* RO */
1778             case 4:
1779                 return;
1780             case 3: /* SFSR */
1781                 if ((val & 1) == 0) {
1782                     val = 0; /* Clear SFSR, Fault address */
1783                     env->dmmu.sfar = 0;
1784                 }
1785                 env->dmmu.sfsr = val;
1786                 break;
1787             case 1: /* Primary context */
1788                 env->dmmu.mmu_primary_context = val;
1789                 /* can be optimized to only flush MMU_USER_IDX
1790                    and MMU_KERNEL_IDX entries */
1791                 tlb_flush(cs);
1792                 break;
1793             case 2: /* Secondary context */
1794                 env->dmmu.mmu_secondary_context = val;
1795                 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1796                    and MMU_KERNEL_SECONDARY_IDX entries */
1797                 tlb_flush(cs);
1798                 break;
1799             case 5: /* TSB access */
1800                 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1801                             PRIx64 "\n", env->dmmu.tsb, val);
1802                 env->dmmu.tsb = val;
1803                 break;
1804             case 6: /* Tag access */
1805                 env->dmmu.tag_access = val;
1806                 break;
1807             case 7: /* Virtual Watchpoint */
1808                 env->dmmu.virtual_watchpoint = val;
1809                 break;
1810             case 8: /* Physical Watchpoint */
1811                 env->dmmu.physical_watchpoint = val;
1812                 break;
1813             default:
1814                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1815                 break;
1816             }
1817 
1818             if (oldreg != env->dmmu.mmuregs[reg]) {
1819                 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1820                             PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1821             }
1822 #ifdef DEBUG_MMU
1823             dump_mmu(env);
1824 #endif
1825             return;
1826         }
1827     case ASI_DTLB_DATA_IN: /* D-MMU data in */
1828       /* ignore real translation entries */
1829       if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1830           replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1831                                val, "dmmu", env, addr);
1832       }
1833       return;
1834     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1835         {
1836             unsigned int i = (addr >> 3) & 0x3f;
1837 
1838             /* ignore real translation entries */
1839             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1840                 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1841                                   sun4v_tte_to_sun4u(env, addr, val), env);
1842             }
1843 #ifdef DEBUG_MMU
1844             DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1845             dump_mmu(env);
1846 #endif
1847             return;
1848         }
1849     case ASI_DMMU_DEMAP: /* D-MMU demap */
1850         demap_tlb(env->dtlb, addr, "dmmu", env);
1851         return;
1852     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1853         env->ivec_status = val & 0x20;
1854         return;
1855     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1856         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1857             /* Hyperprivileged access only */
1858             sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1859         }
1860         /* fall through */
1861     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1862         {
1863             unsigned int i = (addr >> 3) & 0x7;
1864             env->scratch[i] = val;
1865             return;
1866         }
1867     case ASI_MMU: /* UA2005 Context ID registers */
1868         {
1869           switch ((addr >> 3) & 0x3) {
1870           case 1:
1871               env->dmmu.mmu_primary_context = val;
1872               env->immu.mmu_primary_context = val;
1873               tlb_flush_by_mmuidx(cs,
1874                                   (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1875               break;
1876           case 2:
1877               env->dmmu.mmu_secondary_context = val;
1878               env->immu.mmu_secondary_context = val;
1879               tlb_flush_by_mmuidx(cs,
1880                                   (1 << MMU_USER_SECONDARY_IDX) |
1881                                   (1 << MMU_KERNEL_SECONDARY_IDX));
1882               break;
1883           default:
1884               sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1885           }
1886         }
1887         return;
1888     case ASI_QUEUE: /* UA2005 CPU mondo queue */
1889     case ASI_DCACHE_DATA: /* D-cache data */
1890     case ASI_DCACHE_TAG: /* D-cache tag access */
1891     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1892     case ASI_AFSR: /* E-cache asynchronous fault status */
1893     case ASI_AFAR: /* E-cache asynchronous fault address */
1894     case ASI_EC_TAG_DATA: /* E-cache tag data */
1895     case ASI_IC_INSTR: /* I-cache instruction access */
1896     case ASI_IC_TAG: /* I-cache tag access */
1897     case ASI_IC_PRE_DECODE: /* I-cache predecode */
1898     case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1899     case ASI_EC_W: /* E-cache tag */
1900     case ASI_EC_R: /* E-cache tag */
1901         return;
1902     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1903     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1904     case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1905     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1906     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1907     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1908     case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1909     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1910     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1911     case ASI_PNF: /* Primary no-fault, RO */
1912     case ASI_SNF: /* Secondary no-fault, RO */
1913     case ASI_PNFL: /* Primary no-fault LE, RO */
1914     case ASI_SNFL: /* Secondary no-fault LE, RO */
1915     default:
1916         sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1917         return;
1918     illegal_insn:
1919         cpu_raise_exception_ra(env, TT_ILL_INSN, GETPC());
1920     }
1921 }
1922 #endif /* CONFIG_USER_ONLY */
1923 #endif /* TARGET_SPARC64 */
1924 
1925 #if !defined(CONFIG_USER_ONLY)
1926 
1927 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1928                                      vaddr addr, unsigned size,
1929                                      MMUAccessType access_type,
1930                                      int mmu_idx, MemTxAttrs attrs,
1931                                      MemTxResult response, uintptr_t retaddr)
1932 {
1933     bool is_write = access_type == MMU_DATA_STORE;
1934     bool is_exec = access_type == MMU_INST_FETCH;
1935     bool is_asi = false;
1936 
1937     sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1938                           is_asi, size, retaddr);
1939 }
1940 #endif
1941