xref: /qemu/target/sparc/ldst_helper.c (revision b2a3cbb8)
1 /*
2  * Helpers for loads and stores
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "tcg/tcg.h"
24 #include "exec/helper-proto.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "asi.h"
28 
29 //#define DEBUG_MMU
30 //#define DEBUG_MXCC
31 //#define DEBUG_UNASSIGNED
32 //#define DEBUG_ASI
33 //#define DEBUG_CACHE_CONTROL
34 
35 #ifdef DEBUG_MMU
36 #define DPRINTF_MMU(fmt, ...)                                   \
37     do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF_MMU(fmt, ...) do {} while (0)
40 #endif
41 
42 #ifdef DEBUG_MXCC
43 #define DPRINTF_MXCC(fmt, ...)                                  \
44     do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
47 #endif
48 
49 #ifdef DEBUG_ASI
50 #define DPRINTF_ASI(fmt, ...)                                   \
51     do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
52 #endif
53 
54 #ifdef DEBUG_CACHE_CONTROL
55 #define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
56     do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
59 #endif
60 
61 #ifdef TARGET_SPARC64
62 #ifndef TARGET_ABI32
63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
64 #else
65 #define AM_CHECK(env1) (1)
66 #endif
67 #endif
68 
69 #define QT0 (env->qt0)
70 #define QT1 (env->qt1)
71 
72 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
73 /* Calculates TSB pointer value for fault page size
74  * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
75  * UA2005 holds the page size configuration in mmu_ctx registers */
76 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
77                                        const SparcV9MMU *mmu, const int idx)
78 {
79     uint64_t tsb_register;
80     int page_size;
81     if (cpu_has_hypervisor(env)) {
82         int tsb_index = 0;
83         int ctx = mmu->tag_access & 0x1fffULL;
84         uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
85         tsb_index = idx;
86         tsb_index |= ctx ? 2 : 0;
87         page_size = idx ? ctx_register >> 8 : ctx_register;
88         page_size &= 7;
89         tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
90     } else {
91         page_size = idx;
92         tsb_register = mmu->tsb;
93     }
94     int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
95     int tsb_size  = tsb_register & 0xf;
96 
97     uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
98 
99     /* move va bits to correct position,
100      * the context bits will be masked out later */
101     uint64_t va = mmu->tag_access >> (3 * page_size + 9);
102 
103     /* calculate tsb_base mask and adjust va if split is in use */
104     if (tsb_split) {
105         if (idx == 0) {
106             va &= ~(1ULL << (13 + tsb_size));
107         } else {
108             va |= (1ULL << (13 + tsb_size));
109         }
110         tsb_base_mask <<= 1;
111     }
112 
113     return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
114 }
115 
116 /* Calculates tag target register value by reordering bits
117    in tag access register */
118 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
119 {
120     return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
121 }
122 
123 static void replace_tlb_entry(SparcTLBEntry *tlb,
124                               uint64_t tlb_tag, uint64_t tlb_tte,
125                               CPUSPARCState *env)
126 {
127     target_ulong mask, size, va, offset;
128 
129     /* flush page range if translation is valid */
130     if (TTE_IS_VALID(tlb->tte)) {
131         CPUState *cs = env_cpu(env);
132 
133         size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
134         mask = 1ULL + ~size;
135 
136         va = tlb->tag & mask;
137 
138         for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
139             tlb_flush_page(cs, va + offset);
140         }
141     }
142 
143     tlb->tag = tlb_tag;
144     tlb->tte = tlb_tte;
145 }
146 
147 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
148                       const char *strmmu, CPUSPARCState *env1)
149 {
150     unsigned int i;
151     target_ulong mask;
152     uint64_t context;
153 
154     int is_demap_context = (demap_addr >> 6) & 1;
155 
156     /* demap context */
157     switch ((demap_addr >> 4) & 3) {
158     case 0: /* primary */
159         context = env1->dmmu.mmu_primary_context;
160         break;
161     case 1: /* secondary */
162         context = env1->dmmu.mmu_secondary_context;
163         break;
164     case 2: /* nucleus */
165         context = 0;
166         break;
167     case 3: /* reserved */
168     default:
169         return;
170     }
171 
172     for (i = 0; i < 64; i++) {
173         if (TTE_IS_VALID(tlb[i].tte)) {
174 
175             if (is_demap_context) {
176                 /* will remove non-global entries matching context value */
177                 if (TTE_IS_GLOBAL(tlb[i].tte) ||
178                     !tlb_compare_context(&tlb[i], context)) {
179                     continue;
180                 }
181             } else {
182                 /* demap page
183                    will remove any entry matching VA */
184                 mask = 0xffffffffffffe000ULL;
185                 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
186 
187                 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
188                     continue;
189                 }
190 
191                 /* entry should be global or matching context value */
192                 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
193                     !tlb_compare_context(&tlb[i], context)) {
194                     continue;
195                 }
196             }
197 
198             replace_tlb_entry(&tlb[i], 0, 0, env1);
199 #ifdef DEBUG_MMU
200             DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
201             dump_mmu(env1);
202 #endif
203         }
204     }
205 }
206 
207 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
208                                    uint64_t sun4v_tte)
209 {
210     uint64_t sun4u_tte;
211     if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
212         /* is already in the sun4u format */
213         return sun4v_tte;
214     }
215     sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
216     sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
217     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
218     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
219     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
220     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
221                              TTE_SIDEEFFECT_BIT);
222     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
223     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
224     return sun4u_tte;
225 }
226 
227 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
228                                  uint64_t tlb_tag, uint64_t tlb_tte,
229                                  const char *strmmu, CPUSPARCState *env1,
230                                  uint64_t addr)
231 {
232     unsigned int i, replace_used;
233 
234     tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
235     if (cpu_has_hypervisor(env1)) {
236         uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
237         uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
238         uint32_t new_ctx = tlb_tag & 0x1fffU;
239         for (i = 0; i < 64; i++) {
240             uint32_t ctx = tlb[i].tag & 0x1fffU;
241             /* check if new mapping overlaps an existing one */
242             if (new_ctx == ctx) {
243                 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
244                 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
245                 if (new_vaddr == vaddr
246                     || (new_vaddr < vaddr + size
247                         && vaddr < new_vaddr + new_size)) {
248                     DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
249                                 new_vaddr);
250                     replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
251                     return;
252                 }
253             }
254 
255         }
256     }
257     /* Try replacing invalid entry */
258     for (i = 0; i < 64; i++) {
259         if (!TTE_IS_VALID(tlb[i].tte)) {
260             replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
261 #ifdef DEBUG_MMU
262             DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
263             dump_mmu(env1);
264 #endif
265             return;
266         }
267     }
268 
269     /* All entries are valid, try replacing unlocked entry */
270 
271     for (replace_used = 0; replace_used < 2; ++replace_used) {
272 
273         /* Used entries are not replaced on first pass */
274 
275         for (i = 0; i < 64; i++) {
276             if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
277 
278                 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
279 #ifdef DEBUG_MMU
280                 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
281                             strmmu, (replace_used ? "used" : "unused"), i);
282                 dump_mmu(env1);
283 #endif
284                 return;
285             }
286         }
287 
288         /* Now reset used bit and search for unused entries again */
289 
290         for (i = 0; i < 64; i++) {
291             TTE_SET_UNUSED(tlb[i].tte);
292         }
293     }
294 
295 #ifdef DEBUG_MMU
296     DPRINTF_MMU("%s lru replacement: no free entries available, "
297                 "replacing the last one\n", strmmu);
298 #endif
299     /* corner case: the last entry is replaced anyway */
300     replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
301 }
302 
303 #endif
304 
305 #ifdef TARGET_SPARC64
306 /* returns true if access using this ASI is to have address translated by MMU
307    otherwise access is to raw physical address */
308 /* TODO: check sparc32 bits */
309 static inline int is_translating_asi(int asi)
310 {
311     /* Ultrasparc IIi translating asi
312        - note this list is defined by cpu implementation
313     */
314     switch (asi) {
315     case 0x04 ... 0x11:
316     case 0x16 ... 0x19:
317     case 0x1E ... 0x1F:
318     case 0x24 ... 0x2C:
319     case 0x70 ... 0x73:
320     case 0x78 ... 0x79:
321     case 0x80 ... 0xFF:
322         return 1;
323 
324     default:
325         return 0;
326     }
327 }
328 
329 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
330 {
331     if (AM_CHECK(env1)) {
332         addr &= 0xffffffffULL;
333     }
334     return addr;
335 }
336 
337 static inline target_ulong asi_address_mask(CPUSPARCState *env,
338                                             int asi, target_ulong addr)
339 {
340     if (is_translating_asi(asi)) {
341         addr = address_mask(env, addr);
342     }
343     return addr;
344 }
345 
346 #ifndef CONFIG_USER_ONLY
347 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
348 {
349     /* ASIs >= 0x80 are user mode.
350      * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
351      * ASIs <= 0x2f are super mode.
352      */
353     if (asi < 0x80
354         && !cpu_hypervisor_mode(env)
355         && (!cpu_supervisor_mode(env)
356             || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
357         cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
358     }
359 }
360 #endif /* !CONFIG_USER_ONLY */
361 #endif
362 
363 static void do_check_align(CPUSPARCState *env, target_ulong addr,
364                            uint32_t align, uintptr_t ra)
365 {
366     if (addr & align) {
367         cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
368     }
369 }
370 
371 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
372 {
373     do_check_align(env, addr, align, GETPC());
374 }
375 
376 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
377     defined(DEBUG_MXCC)
378 static void dump_mxcc(CPUSPARCState *env)
379 {
380     printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
381            "\n",
382            env->mxccdata[0], env->mxccdata[1],
383            env->mxccdata[2], env->mxccdata[3]);
384     printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
385            "\n"
386            "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
387            "\n",
388            env->mxccregs[0], env->mxccregs[1],
389            env->mxccregs[2], env->mxccregs[3],
390            env->mxccregs[4], env->mxccregs[5],
391            env->mxccregs[6], env->mxccregs[7]);
392 }
393 #endif
394 
395 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
396     && defined(DEBUG_ASI)
397 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
398                      uint64_t r1)
399 {
400     switch (size) {
401     case 1:
402         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
403                     addr, asi, r1 & 0xff);
404         break;
405     case 2:
406         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
407                     addr, asi, r1 & 0xffff);
408         break;
409     case 4:
410         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
411                     addr, asi, r1 & 0xffffffff);
412         break;
413     case 8:
414         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
415                     addr, asi, r1);
416         break;
417     }
418 }
419 #endif
420 
421 #ifndef CONFIG_USER_ONLY
422 #ifndef TARGET_SPARC64
423 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
424                                   bool is_write, bool is_exec, int is_asi,
425                                   unsigned size, uintptr_t retaddr)
426 {
427     SPARCCPU *cpu = SPARC_CPU(cs);
428     CPUSPARCState *env = &cpu->env;
429     int fault_type;
430 
431 #ifdef DEBUG_UNASSIGNED
432     if (is_asi) {
433         printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
434                " asi 0x%02x from " TARGET_FMT_lx "\n",
435                is_exec ? "exec" : is_write ? "write" : "read", size,
436                size == 1 ? "" : "s", addr, is_asi, env->pc);
437     } else {
438         printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
439                " from " TARGET_FMT_lx "\n",
440                is_exec ? "exec" : is_write ? "write" : "read", size,
441                size == 1 ? "" : "s", addr, env->pc);
442     }
443 #endif
444     /* Don't overwrite translation and access faults */
445     fault_type = (env->mmuregs[3] & 0x1c) >> 2;
446     if ((fault_type > 4) || (fault_type == 0)) {
447         env->mmuregs[3] = 0; /* Fault status register */
448         if (is_asi) {
449             env->mmuregs[3] |= 1 << 16;
450         }
451         if (env->psrs) {
452             env->mmuregs[3] |= 1 << 5;
453         }
454         if (is_exec) {
455             env->mmuregs[3] |= 1 << 6;
456         }
457         if (is_write) {
458             env->mmuregs[3] |= 1 << 7;
459         }
460         env->mmuregs[3] |= (5 << 2) | 2;
461         /* SuperSPARC will never place instruction fault addresses in the FAR */
462         if (!is_exec) {
463             env->mmuregs[4] = addr; /* Fault address register */
464         }
465     }
466     /* overflow (same type fault was not read before another fault) */
467     if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
468         env->mmuregs[3] |= 1;
469     }
470 
471     if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
472         int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
473         cpu_raise_exception_ra(env, tt, retaddr);
474     }
475 
476     /*
477      * flush neverland mappings created during no-fault mode,
478      * so the sequential MMU faults report proper fault types
479      */
480     if (env->mmuregs[0] & MMU_NF) {
481         tlb_flush(cs);
482     }
483 }
484 #else
485 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
486                                   bool is_write, bool is_exec, int is_asi,
487                                   unsigned size, uintptr_t retaddr)
488 {
489     SPARCCPU *cpu = SPARC_CPU(cs);
490     CPUSPARCState *env = &cpu->env;
491 
492 #ifdef DEBUG_UNASSIGNED
493     printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
494            "\n", addr, env->pc);
495 #endif
496 
497     if (is_exec) { /* XXX has_hypervisor */
498         if (env->lsu & (IMMU_E)) {
499             cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
500         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
501             cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
502         }
503     } else {
504         if (env->lsu & (DMMU_E)) {
505             cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
506         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
507             cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
508         }
509     }
510 }
511 #endif
512 #endif
513 
514 #ifndef TARGET_SPARC64
515 #ifndef CONFIG_USER_ONLY
516 
517 
518 /* Leon3 cache control */
519 
520 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
521                                    uint64_t val, int size)
522 {
523     DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
524                           addr, val, size);
525 
526     if (size != 4) {
527         DPRINTF_CACHE_CONTROL("32bits only\n");
528         return;
529     }
530 
531     switch (addr) {
532     case 0x00:              /* Cache control */
533 
534         /* These values must always be read as zeros */
535         val &= ~CACHE_CTRL_FD;
536         val &= ~CACHE_CTRL_FI;
537         val &= ~CACHE_CTRL_IB;
538         val &= ~CACHE_CTRL_IP;
539         val &= ~CACHE_CTRL_DP;
540 
541         env->cache_control = val;
542         break;
543     case 0x04:              /* Instruction cache configuration */
544     case 0x08:              /* Data cache configuration */
545         /* Read Only */
546         break;
547     default:
548         DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
549         break;
550     };
551 }
552 
553 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
554                                        int size)
555 {
556     uint64_t ret = 0;
557 
558     if (size != 4) {
559         DPRINTF_CACHE_CONTROL("32bits only\n");
560         return 0;
561     }
562 
563     switch (addr) {
564     case 0x00:              /* Cache control */
565         ret = env->cache_control;
566         break;
567 
568         /* Configuration registers are read and only always keep those
569            predefined values */
570 
571     case 0x04:              /* Instruction cache configuration */
572         ret = 0x10220000;
573         break;
574     case 0x08:              /* Data cache configuration */
575         ret = 0x18220000;
576         break;
577     default:
578         DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
579         break;
580     };
581     DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
582                           addr, ret, size);
583     return ret;
584 }
585 
586 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
587                        int asi, uint32_t memop)
588 {
589     int size = 1 << (memop & MO_SIZE);
590     int sign = memop & MO_SIGN;
591     CPUState *cs = env_cpu(env);
592     uint64_t ret = 0;
593 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
594     uint32_t last_addr = addr;
595 #endif
596 
597     do_check_align(env, addr, size - 1, GETPC());
598     switch (asi) {
599     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
600     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
601         switch (addr) {
602         case 0x00:          /* Leon3 Cache Control */
603         case 0x08:          /* Leon3 Instruction Cache config */
604         case 0x0C:          /* Leon3 Date Cache config */
605             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
606                 ret = leon3_cache_control_ld(env, addr, size);
607             }
608             break;
609         case 0x01c00a00: /* MXCC control register */
610             if (size == 8) {
611                 ret = env->mxccregs[3];
612             } else {
613                 qemu_log_mask(LOG_UNIMP,
614                               "%08x: unimplemented access size: %d\n", addr,
615                               size);
616             }
617             break;
618         case 0x01c00a04: /* MXCC control register */
619             if (size == 4) {
620                 ret = env->mxccregs[3];
621             } else {
622                 qemu_log_mask(LOG_UNIMP,
623                               "%08x: unimplemented access size: %d\n", addr,
624                               size);
625             }
626             break;
627         case 0x01c00c00: /* Module reset register */
628             if (size == 8) {
629                 ret = env->mxccregs[5];
630                 /* should we do something here? */
631             } else {
632                 qemu_log_mask(LOG_UNIMP,
633                               "%08x: unimplemented access size: %d\n", addr,
634                               size);
635             }
636             break;
637         case 0x01c00f00: /* MBus port address register */
638             if (size == 8) {
639                 ret = env->mxccregs[7];
640             } else {
641                 qemu_log_mask(LOG_UNIMP,
642                               "%08x: unimplemented access size: %d\n", addr,
643                               size);
644             }
645             break;
646         default:
647             qemu_log_mask(LOG_UNIMP,
648                           "%08x: unimplemented address, size: %d\n", addr,
649                           size);
650             break;
651         }
652         DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
653                      "addr = %08x -> ret = %" PRIx64 ","
654                      "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
655 #ifdef DEBUG_MXCC
656         dump_mxcc(env);
657 #endif
658         break;
659     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
660     case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
661         {
662             int mmulev;
663 
664             mmulev = (addr >> 8) & 15;
665             if (mmulev > 4) {
666                 ret = 0;
667             } else {
668                 ret = mmu_probe(env, addr, mmulev);
669             }
670             DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
671                         addr, mmulev, ret);
672         }
673         break;
674     case ASI_M_MMUREGS: /* SuperSparc MMU regs */
675     case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
676         {
677             int reg = (addr >> 8) & 0x1f;
678 
679             ret = env->mmuregs[reg];
680             if (reg == 3) { /* Fault status cleared on read */
681                 env->mmuregs[3] = 0;
682             } else if (reg == 0x13) { /* Fault status read */
683                 ret = env->mmuregs[3];
684             } else if (reg == 0x14) { /* Fault address read */
685                 ret = env->mmuregs[4];
686             }
687             DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
688         }
689         break;
690     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
691     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
692     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
693         break;
694     case ASI_KERNELTXT: /* Supervisor code access */
695         switch (size) {
696         case 1:
697             ret = cpu_ldub_code(env, addr);
698             break;
699         case 2:
700             ret = cpu_lduw_code(env, addr);
701             break;
702         default:
703         case 4:
704             ret = cpu_ldl_code(env, addr);
705             break;
706         case 8:
707             ret = cpu_ldq_code(env, addr);
708             break;
709         }
710         break;
711     case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
712     case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
713     case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
714     case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
715         break;
716     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
717     {
718         MemTxResult result;
719         hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
720 
721         switch (size) {
722         case 1:
723             ret = address_space_ldub(cs->as, access_addr,
724                                      MEMTXATTRS_UNSPECIFIED, &result);
725             break;
726         case 2:
727             ret = address_space_lduw(cs->as, access_addr,
728                                      MEMTXATTRS_UNSPECIFIED, &result);
729             break;
730         default:
731         case 4:
732             ret = address_space_ldl(cs->as, access_addr,
733                                     MEMTXATTRS_UNSPECIFIED, &result);
734             break;
735         case 8:
736             ret = address_space_ldq(cs->as, access_addr,
737                                     MEMTXATTRS_UNSPECIFIED, &result);
738             break;
739         }
740 
741         if (result != MEMTX_OK) {
742             sparc_raise_mmu_fault(cs, access_addr, false, false, false,
743                                   size, GETPC());
744         }
745         break;
746     }
747     case 0x30: /* Turbosparc secondary cache diagnostic */
748     case 0x31: /* Turbosparc RAM snoop */
749     case 0x32: /* Turbosparc page table descriptor diagnostic */
750     case 0x39: /* data cache diagnostic register */
751         ret = 0;
752         break;
753     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
754         {
755             int reg = (addr >> 8) & 3;
756 
757             switch (reg) {
758             case 0: /* Breakpoint Value (Addr) */
759                 ret = env->mmubpregs[reg];
760                 break;
761             case 1: /* Breakpoint Mask */
762                 ret = env->mmubpregs[reg];
763                 break;
764             case 2: /* Breakpoint Control */
765                 ret = env->mmubpregs[reg];
766                 break;
767             case 3: /* Breakpoint Status */
768                 ret = env->mmubpregs[reg];
769                 env->mmubpregs[reg] = 0ULL;
770                 break;
771             }
772             DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
773                         ret);
774         }
775         break;
776     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
777         ret = env->mmubpctrv;
778         break;
779     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
780         ret = env->mmubpctrc;
781         break;
782     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
783         ret = env->mmubpctrs;
784         break;
785     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
786         ret = env->mmubpaction;
787         break;
788     case ASI_USERTXT: /* User code access, XXX */
789     default:
790         sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
791         ret = 0;
792         break;
793 
794     case ASI_USERDATA: /* User data access */
795     case ASI_KERNELDATA: /* Supervisor data access */
796     case ASI_P: /* Implicit primary context data access (v9 only?) */
797     case ASI_M_BYPASS:    /* MMU passthrough */
798     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
799         /* These are always handled inline.  */
800         g_assert_not_reached();
801     }
802     if (sign) {
803         switch (size) {
804         case 1:
805             ret = (int8_t) ret;
806             break;
807         case 2:
808             ret = (int16_t) ret;
809             break;
810         case 4:
811             ret = (int32_t) ret;
812             break;
813         default:
814             break;
815         }
816     }
817 #ifdef DEBUG_ASI
818     dump_asi("read ", last_addr, asi, size, ret);
819 #endif
820     return ret;
821 }
822 
823 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
824                    int asi, uint32_t memop)
825 {
826     int size = 1 << (memop & MO_SIZE);
827     CPUState *cs = env_cpu(env);
828 
829     do_check_align(env, addr, size - 1, GETPC());
830     switch (asi) {
831     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
832     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
833         switch (addr) {
834         case 0x00:          /* Leon3 Cache Control */
835         case 0x08:          /* Leon3 Instruction Cache config */
836         case 0x0C:          /* Leon3 Date Cache config */
837             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
838                 leon3_cache_control_st(env, addr, val, size);
839             }
840             break;
841 
842         case 0x01c00000: /* MXCC stream data register 0 */
843             if (size == 8) {
844                 env->mxccdata[0] = val;
845             } else {
846                 qemu_log_mask(LOG_UNIMP,
847                               "%08x: unimplemented access size: %d\n", addr,
848                               size);
849             }
850             break;
851         case 0x01c00008: /* MXCC stream data register 1 */
852             if (size == 8) {
853                 env->mxccdata[1] = val;
854             } else {
855                 qemu_log_mask(LOG_UNIMP,
856                               "%08x: unimplemented access size: %d\n", addr,
857                               size);
858             }
859             break;
860         case 0x01c00010: /* MXCC stream data register 2 */
861             if (size == 8) {
862                 env->mxccdata[2] = val;
863             } else {
864                 qemu_log_mask(LOG_UNIMP,
865                               "%08x: unimplemented access size: %d\n", addr,
866                               size);
867             }
868             break;
869         case 0x01c00018: /* MXCC stream data register 3 */
870             if (size == 8) {
871                 env->mxccdata[3] = val;
872             } else {
873                 qemu_log_mask(LOG_UNIMP,
874                               "%08x: unimplemented access size: %d\n", addr,
875                               size);
876             }
877             break;
878         case 0x01c00100: /* MXCC stream source */
879         {
880             int i;
881 
882             if (size == 8) {
883                 env->mxccregs[0] = val;
884             } else {
885                 qemu_log_mask(LOG_UNIMP,
886                               "%08x: unimplemented access size: %d\n", addr,
887                               size);
888             }
889 
890             for (i = 0; i < 4; i++) {
891                 MemTxResult result;
892                 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
893 
894                 env->mxccdata[i] = address_space_ldq(cs->as,
895                                                      access_addr,
896                                                      MEMTXATTRS_UNSPECIFIED,
897                                                      &result);
898                 if (result != MEMTX_OK) {
899                     /* TODO: investigate whether this is the right behaviour */
900                     sparc_raise_mmu_fault(cs, access_addr, false, false,
901                                           false, size, GETPC());
902                 }
903             }
904             break;
905         }
906         case 0x01c00200: /* MXCC stream destination */
907         {
908             int i;
909 
910             if (size == 8) {
911                 env->mxccregs[1] = val;
912             } else {
913                 qemu_log_mask(LOG_UNIMP,
914                               "%08x: unimplemented access size: %d\n", addr,
915                               size);
916             }
917 
918             for (i = 0; i < 4; i++) {
919                 MemTxResult result;
920                 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
921 
922                 address_space_stq(cs->as, access_addr, env->mxccdata[i],
923                                   MEMTXATTRS_UNSPECIFIED, &result);
924 
925                 if (result != MEMTX_OK) {
926                     /* TODO: investigate whether this is the right behaviour */
927                     sparc_raise_mmu_fault(cs, access_addr, true, false,
928                                           false, size, GETPC());
929                 }
930             }
931             break;
932         }
933         case 0x01c00a00: /* MXCC control register */
934             if (size == 8) {
935                 env->mxccregs[3] = val;
936             } else {
937                 qemu_log_mask(LOG_UNIMP,
938                               "%08x: unimplemented access size: %d\n", addr,
939                               size);
940             }
941             break;
942         case 0x01c00a04: /* MXCC control register */
943             if (size == 4) {
944                 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
945                     | val;
946             } else {
947                 qemu_log_mask(LOG_UNIMP,
948                               "%08x: unimplemented access size: %d\n", addr,
949                               size);
950             }
951             break;
952         case 0x01c00e00: /* MXCC error register  */
953             /* writing a 1 bit clears the error */
954             if (size == 8) {
955                 env->mxccregs[6] &= ~val;
956             } else {
957                 qemu_log_mask(LOG_UNIMP,
958                               "%08x: unimplemented access size: %d\n", addr,
959                               size);
960             }
961             break;
962         case 0x01c00f00: /* MBus port address register */
963             if (size == 8) {
964                 env->mxccregs[7] = val;
965             } else {
966                 qemu_log_mask(LOG_UNIMP,
967                               "%08x: unimplemented access size: %d\n", addr,
968                               size);
969             }
970             break;
971         default:
972             qemu_log_mask(LOG_UNIMP,
973                           "%08x: unimplemented address, size: %d\n", addr,
974                           size);
975             break;
976         }
977         DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
978                      asi, size, addr, val);
979 #ifdef DEBUG_MXCC
980         dump_mxcc(env);
981 #endif
982         break;
983     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
984     case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
985         {
986             int mmulev;
987 
988             mmulev = (addr >> 8) & 15;
989             DPRINTF_MMU("mmu flush level %d\n", mmulev);
990             switch (mmulev) {
991             case 0: /* flush page */
992                 tlb_flush_page(cs, addr & 0xfffff000);
993                 break;
994             case 1: /* flush segment (256k) */
995             case 2: /* flush region (16M) */
996             case 3: /* flush context (4G) */
997             case 4: /* flush entire */
998                 tlb_flush(cs);
999                 break;
1000             default:
1001                 break;
1002             }
1003 #ifdef DEBUG_MMU
1004             dump_mmu(env);
1005 #endif
1006         }
1007         break;
1008     case ASI_M_MMUREGS: /* write MMU regs */
1009     case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
1010         {
1011             int reg = (addr >> 8) & 0x1f;
1012             uint32_t oldreg;
1013 
1014             oldreg = env->mmuregs[reg];
1015             switch (reg) {
1016             case 0: /* Control Register */
1017                 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1018                     (val & 0x00ffffff);
1019                 /* Mappings generated during no-fault mode
1020                    are invalid in normal mode.  */
1021                 if ((oldreg ^ env->mmuregs[reg])
1022                     & (MMU_NF | env->def.mmu_bm)) {
1023                     tlb_flush(cs);
1024                 }
1025                 break;
1026             case 1: /* Context Table Pointer Register */
1027                 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1028                 break;
1029             case 2: /* Context Register */
1030                 env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1031                 if (oldreg != env->mmuregs[reg]) {
1032                     /* we flush when the MMU context changes because
1033                        QEMU has no MMU context support */
1034                     tlb_flush(cs);
1035                 }
1036                 break;
1037             case 3: /* Synchronous Fault Status Register with Clear */
1038             case 4: /* Synchronous Fault Address Register */
1039                 break;
1040             case 0x10: /* TLB Replacement Control Register */
1041                 env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1042                 break;
1043             case 0x13: /* Synchronous Fault Status Register with Read
1044                           and Clear */
1045                 env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1046                 break;
1047             case 0x14: /* Synchronous Fault Address Register */
1048                 env->mmuregs[4] = val;
1049                 break;
1050             default:
1051                 env->mmuregs[reg] = val;
1052                 break;
1053             }
1054             if (oldreg != env->mmuregs[reg]) {
1055                 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1056                             reg, oldreg, env->mmuregs[reg]);
1057             }
1058 #ifdef DEBUG_MMU
1059             dump_mmu(env);
1060 #endif
1061         }
1062         break;
1063     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1064     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
1065     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
1066         break;
1067     case ASI_M_TXTC_TAG:   /* I-cache tag */
1068     case ASI_M_TXTC_DATA:  /* I-cache data */
1069     case ASI_M_DATAC_TAG:  /* D-cache tag */
1070     case ASI_M_DATAC_DATA: /* D-cache data */
1071     case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
1072     case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
1073     case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1074     case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
1075     case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
1076         break;
1077     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1078         {
1079             MemTxResult result;
1080             hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1081 
1082             switch (size) {
1083             case 1:
1084                 address_space_stb(cs->as, access_addr, val,
1085                                   MEMTXATTRS_UNSPECIFIED, &result);
1086                 break;
1087             case 2:
1088                 address_space_stw(cs->as, access_addr, val,
1089                                   MEMTXATTRS_UNSPECIFIED, &result);
1090                 break;
1091             case 4:
1092             default:
1093                 address_space_stl(cs->as, access_addr, val,
1094                                   MEMTXATTRS_UNSPECIFIED, &result);
1095                 break;
1096             case 8:
1097                 address_space_stq(cs->as, access_addr, val,
1098                                   MEMTXATTRS_UNSPECIFIED, &result);
1099                 break;
1100             }
1101             if (result != MEMTX_OK) {
1102                 sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1103                                       size, GETPC());
1104             }
1105         }
1106         break;
1107     case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1108     case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1109                   Turbosparc snoop RAM */
1110     case 0x32: /* store buffer control or Turbosparc page table
1111                   descriptor diagnostic */
1112     case 0x36: /* I-cache flash clear */
1113     case 0x37: /* D-cache flash clear */
1114         break;
1115     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1116         {
1117             int reg = (addr >> 8) & 3;
1118 
1119             switch (reg) {
1120             case 0: /* Breakpoint Value (Addr) */
1121                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1122                 break;
1123             case 1: /* Breakpoint Mask */
1124                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1125                 break;
1126             case 2: /* Breakpoint Control */
1127                 env->mmubpregs[reg] = (val & 0x7fULL);
1128                 break;
1129             case 3: /* Breakpoint Status */
1130                 env->mmubpregs[reg] = (val & 0xfULL);
1131                 break;
1132             }
1133             DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1134                         env->mmuregs[reg]);
1135         }
1136         break;
1137     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1138         env->mmubpctrv = val & 0xffffffff;
1139         break;
1140     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1141         env->mmubpctrc = val & 0x3;
1142         break;
1143     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1144         env->mmubpctrs = val & 0x3;
1145         break;
1146     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1147         env->mmubpaction = val & 0x1fff;
1148         break;
1149     case ASI_USERTXT: /* User code access, XXX */
1150     case ASI_KERNELTXT: /* Supervisor code access, XXX */
1151     default:
1152         sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1153         break;
1154 
1155     case ASI_USERDATA: /* User data access */
1156     case ASI_KERNELDATA: /* Supervisor data access */
1157     case ASI_P:
1158     case ASI_M_BYPASS:    /* MMU passthrough */
1159     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1160     case ASI_M_BCOPY: /* Block copy, sta access */
1161     case ASI_M_BFILL: /* Block fill, stda access */
1162         /* These are always handled inline.  */
1163         g_assert_not_reached();
1164     }
1165 #ifdef DEBUG_ASI
1166     dump_asi("write", addr, asi, size, val);
1167 #endif
1168 }
1169 
1170 #endif /* CONFIG_USER_ONLY */
1171 #else /* TARGET_SPARC64 */
1172 
1173 #ifdef CONFIG_USER_ONLY
1174 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1175                        int asi, uint32_t memop)
1176 {
1177     int size = 1 << (memop & MO_SIZE);
1178     int sign = memop & MO_SIGN;
1179     uint64_t ret = 0;
1180 
1181     if (asi < 0x80) {
1182         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1183     }
1184     do_check_align(env, addr, size - 1, GETPC());
1185     addr = asi_address_mask(env, asi, addr);
1186 
1187     switch (asi) {
1188     case ASI_PNF:  /* Primary no-fault */
1189     case ASI_PNFL: /* Primary no-fault LE */
1190     case ASI_SNF:  /* Secondary no-fault */
1191     case ASI_SNFL: /* Secondary no-fault LE */
1192         if (page_check_range(addr, size, PAGE_READ) == -1) {
1193             ret = 0;
1194             break;
1195         }
1196         switch (size) {
1197         case 1:
1198             ret = cpu_ldub_data(env, addr);
1199             break;
1200         case 2:
1201             ret = cpu_lduw_data(env, addr);
1202             break;
1203         case 4:
1204             ret = cpu_ldl_data(env, addr);
1205             break;
1206         case 8:
1207             ret = cpu_ldq_data(env, addr);
1208             break;
1209         default:
1210             g_assert_not_reached();
1211         }
1212         break;
1213         break;
1214 
1215     case ASI_P: /* Primary */
1216     case ASI_PL: /* Primary LE */
1217     case ASI_S:  /* Secondary */
1218     case ASI_SL: /* Secondary LE */
1219         /* These are always handled inline.  */
1220         g_assert_not_reached();
1221 
1222     default:
1223         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1224     }
1225 
1226     /* Convert from little endian */
1227     switch (asi) {
1228     case ASI_PNFL: /* Primary no-fault LE */
1229     case ASI_SNFL: /* Secondary no-fault LE */
1230         switch (size) {
1231         case 2:
1232             ret = bswap16(ret);
1233             break;
1234         case 4:
1235             ret = bswap32(ret);
1236             break;
1237         case 8:
1238             ret = bswap64(ret);
1239             break;
1240         }
1241     }
1242 
1243     /* Convert to signed number */
1244     if (sign) {
1245         switch (size) {
1246         case 1:
1247             ret = (int8_t) ret;
1248             break;
1249         case 2:
1250             ret = (int16_t) ret;
1251             break;
1252         case 4:
1253             ret = (int32_t) ret;
1254             break;
1255         }
1256     }
1257 #ifdef DEBUG_ASI
1258     dump_asi("read", addr, asi, size, ret);
1259 #endif
1260     return ret;
1261 }
1262 
1263 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1264                    int asi, uint32_t memop)
1265 {
1266     int size = 1 << (memop & MO_SIZE);
1267 #ifdef DEBUG_ASI
1268     dump_asi("write", addr, asi, size, val);
1269 #endif
1270     if (asi < 0x80) {
1271         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1272     }
1273     do_check_align(env, addr, size - 1, GETPC());
1274 
1275     switch (asi) {
1276     case ASI_P:  /* Primary */
1277     case ASI_PL: /* Primary LE */
1278     case ASI_S:  /* Secondary */
1279     case ASI_SL: /* Secondary LE */
1280         /* These are always handled inline.  */
1281         g_assert_not_reached();
1282 
1283     case ASI_PNF:  /* Primary no-fault, RO */
1284     case ASI_SNF:  /* Secondary no-fault, RO */
1285     case ASI_PNFL: /* Primary no-fault LE, RO */
1286     case ASI_SNFL: /* Secondary no-fault LE, RO */
1287     default:
1288         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1289     }
1290 }
1291 
1292 #else /* CONFIG_USER_ONLY */
1293 
1294 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1295                        int asi, uint32_t memop)
1296 {
1297     int size = 1 << (memop & MO_SIZE);
1298     int sign = memop & MO_SIGN;
1299     CPUState *cs = env_cpu(env);
1300     uint64_t ret = 0;
1301 #if defined(DEBUG_ASI)
1302     target_ulong last_addr = addr;
1303 #endif
1304 
1305     asi &= 0xff;
1306 
1307     do_check_asi(env, asi, GETPC());
1308     do_check_align(env, addr, size - 1, GETPC());
1309     addr = asi_address_mask(env, asi, addr);
1310 
1311     switch (asi) {
1312     case ASI_PNF:
1313     case ASI_PNFL:
1314     case ASI_SNF:
1315     case ASI_SNFL:
1316         {
1317             MemOpIdx oi;
1318             int idx = (env->pstate & PS_PRIV
1319                        ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1320                        : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1321 
1322             if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1323 #ifdef DEBUG_ASI
1324                 dump_asi("read ", last_addr, asi, size, ret);
1325 #endif
1326                 /* exception_index is set in get_physical_address_data. */
1327                 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1328             }
1329             oi = make_memop_idx(memop, idx);
1330             switch (size) {
1331             case 1:
1332                 ret = cpu_ldb_mmu(env, addr, oi, GETPC());
1333                 break;
1334             case 2:
1335                 if (asi & 8) {
1336                     ret = cpu_ldw_le_mmu(env, addr, oi, GETPC());
1337                 } else {
1338                     ret = cpu_ldw_be_mmu(env, addr, oi, GETPC());
1339                 }
1340                 break;
1341             case 4:
1342                 if (asi & 8) {
1343                     ret = cpu_ldl_le_mmu(env, addr, oi, GETPC());
1344                 } else {
1345                     ret = cpu_ldl_be_mmu(env, addr, oi, GETPC());
1346                 }
1347                 break;
1348             case 8:
1349                 if (asi & 8) {
1350                     ret = cpu_ldq_le_mmu(env, addr, oi, GETPC());
1351                 } else {
1352                     ret = cpu_ldq_be_mmu(env, addr, oi, GETPC());
1353                 }
1354                 break;
1355             default:
1356                 g_assert_not_reached();
1357             }
1358         }
1359         break;
1360 
1361     case ASI_AIUP:  /* As if user primary */
1362     case ASI_AIUS:  /* As if user secondary */
1363     case ASI_AIUPL: /* As if user primary LE */
1364     case ASI_AIUSL: /* As if user secondary LE */
1365     case ASI_P:  /* Primary */
1366     case ASI_S:  /* Secondary */
1367     case ASI_PL: /* Primary LE */
1368     case ASI_SL: /* Secondary LE */
1369     case ASI_REAL:      /* Bypass */
1370     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1371     case ASI_REAL_L:    /* Bypass LE */
1372     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1373     case ASI_N:  /* Nucleus */
1374     case ASI_NL: /* Nucleus Little Endian (LE) */
1375     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1376     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1377     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1378     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1379     case ASI_TWINX_REAL:   /* Real address, twinx */
1380     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1381     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1382     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1383     case ASI_TWINX_N:  /* Nucleus, twinx */
1384     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1385     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1386     case ASI_TWINX_P:  /* Primary, twinx */
1387     case ASI_TWINX_PL: /* Primary, twinx, LE */
1388     case ASI_TWINX_S:  /* Secondary, twinx */
1389     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1390         /* These are always handled inline.  */
1391         g_assert_not_reached();
1392 
1393     case ASI_UPA_CONFIG: /* UPA config */
1394         /* XXX */
1395         break;
1396     case ASI_LSU_CONTROL: /* LSU */
1397         ret = env->lsu;
1398         break;
1399     case ASI_IMMU: /* I-MMU regs */
1400         {
1401             int reg = (addr >> 3) & 0xf;
1402             switch (reg) {
1403             case 0:
1404                 /* 0x00 I-TSB Tag Target register */
1405                 ret = ultrasparc_tag_target(env->immu.tag_access);
1406                 break;
1407             case 3: /* SFSR */
1408                 ret = env->immu.sfsr;
1409                 break;
1410             case 5: /* TSB access */
1411                 ret = env->immu.tsb;
1412                 break;
1413             case 6:
1414                 /* 0x30 I-TSB Tag Access register */
1415                 ret = env->immu.tag_access;
1416                 break;
1417             default:
1418                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1419                 ret = 0;
1420             }
1421             break;
1422         }
1423     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1424         {
1425             /* env->immuregs[5] holds I-MMU TSB register value
1426                env->immuregs[6] holds I-MMU Tag Access register value */
1427             ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1428             break;
1429         }
1430     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1431         {
1432             /* env->immuregs[5] holds I-MMU TSB register value
1433                env->immuregs[6] holds I-MMU Tag Access register value */
1434             ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1435             break;
1436         }
1437     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1438         {
1439             int reg = (addr >> 3) & 0x3f;
1440 
1441             ret = env->itlb[reg].tte;
1442             break;
1443         }
1444     case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1445         {
1446             int reg = (addr >> 3) & 0x3f;
1447 
1448             ret = env->itlb[reg].tag;
1449             break;
1450         }
1451     case ASI_DMMU: /* D-MMU regs */
1452         {
1453             int reg = (addr >> 3) & 0xf;
1454             switch (reg) {
1455             case 0:
1456                 /* 0x00 D-TSB Tag Target register */
1457                 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1458                 break;
1459             case 1: /* 0x08 Primary Context */
1460                 ret = env->dmmu.mmu_primary_context;
1461                 break;
1462             case 2: /* 0x10 Secondary Context */
1463                 ret = env->dmmu.mmu_secondary_context;
1464                 break;
1465             case 3: /* SFSR */
1466                 ret = env->dmmu.sfsr;
1467                 break;
1468             case 4: /* 0x20 SFAR */
1469                 ret = env->dmmu.sfar;
1470                 break;
1471             case 5: /* 0x28 TSB access */
1472                 ret = env->dmmu.tsb;
1473                 break;
1474             case 6: /* 0x30 D-TSB Tag Access register */
1475                 ret = env->dmmu.tag_access;
1476                 break;
1477             case 7:
1478                 ret = env->dmmu.virtual_watchpoint;
1479                 break;
1480             case 8:
1481                 ret = env->dmmu.physical_watchpoint;
1482                 break;
1483             default:
1484                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1485                 ret = 0;
1486             }
1487             break;
1488         }
1489     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1490         {
1491             /* env->dmmuregs[5] holds D-MMU TSB register value
1492                env->dmmuregs[6] holds D-MMU Tag Access register value */
1493             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1494             break;
1495         }
1496     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1497         {
1498             /* env->dmmuregs[5] holds D-MMU TSB register value
1499                env->dmmuregs[6] holds D-MMU Tag Access register value */
1500             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1501             break;
1502         }
1503     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1504         {
1505             int reg = (addr >> 3) & 0x3f;
1506 
1507             ret = env->dtlb[reg].tte;
1508             break;
1509         }
1510     case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1511         {
1512             int reg = (addr >> 3) & 0x3f;
1513 
1514             ret = env->dtlb[reg].tag;
1515             break;
1516         }
1517     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1518         break;
1519     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1520         ret = env->ivec_status;
1521         break;
1522     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1523         {
1524             int reg = (addr >> 4) & 0x3;
1525             if (reg < 3) {
1526                 ret = env->ivec_data[reg];
1527             }
1528             break;
1529         }
1530     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1531         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1532             /* Hyperprivileged access only */
1533             sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1534         }
1535         /* fall through */
1536     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1537         {
1538             unsigned int i = (addr >> 3) & 0x7;
1539             ret = env->scratch[i];
1540             break;
1541         }
1542     case ASI_MMU: /* UA2005 Context ID registers */
1543         switch ((addr >> 3) & 0x3) {
1544         case 1:
1545             ret = env->dmmu.mmu_primary_context;
1546             break;
1547         case 2:
1548             ret = env->dmmu.mmu_secondary_context;
1549             break;
1550         default:
1551           sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1552         }
1553         break;
1554     case ASI_DCACHE_DATA:     /* D-cache data */
1555     case ASI_DCACHE_TAG:      /* D-cache tag access */
1556     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1557     case ASI_AFSR:            /* E-cache asynchronous fault status */
1558     case ASI_AFAR:            /* E-cache asynchronous fault address */
1559     case ASI_EC_TAG_DATA:     /* E-cache tag data */
1560     case ASI_IC_INSTR:        /* I-cache instruction access */
1561     case ASI_IC_TAG:          /* I-cache tag access */
1562     case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1563     case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1564     case ASI_EC_W:            /* E-cache tag */
1565     case ASI_EC_R:            /* E-cache tag */
1566         break;
1567     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1568     case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1569     case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1570     case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1571     case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1572     case ASI_INTR_W:              /* Interrupt vector, WO */
1573     default:
1574         sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1575         ret = 0;
1576         break;
1577     }
1578 
1579     /* Convert to signed number */
1580     if (sign) {
1581         switch (size) {
1582         case 1:
1583             ret = (int8_t) ret;
1584             break;
1585         case 2:
1586             ret = (int16_t) ret;
1587             break;
1588         case 4:
1589             ret = (int32_t) ret;
1590             break;
1591         default:
1592             break;
1593         }
1594     }
1595 #ifdef DEBUG_ASI
1596     dump_asi("read ", last_addr, asi, size, ret);
1597 #endif
1598     return ret;
1599 }
1600 
1601 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1602                    int asi, uint32_t memop)
1603 {
1604     int size = 1 << (memop & MO_SIZE);
1605     CPUState *cs = env_cpu(env);
1606 
1607 #ifdef DEBUG_ASI
1608     dump_asi("write", addr, asi, size, val);
1609 #endif
1610 
1611     asi &= 0xff;
1612 
1613     do_check_asi(env, asi, GETPC());
1614     do_check_align(env, addr, size - 1, GETPC());
1615     addr = asi_address_mask(env, asi, addr);
1616 
1617     switch (asi) {
1618     case ASI_AIUP:  /* As if user primary */
1619     case ASI_AIUS:  /* As if user secondary */
1620     case ASI_AIUPL: /* As if user primary LE */
1621     case ASI_AIUSL: /* As if user secondary LE */
1622     case ASI_P:  /* Primary */
1623     case ASI_S:  /* Secondary */
1624     case ASI_PL: /* Primary LE */
1625     case ASI_SL: /* Secondary LE */
1626     case ASI_REAL:      /* Bypass */
1627     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1628     case ASI_REAL_L:    /* Bypass LE */
1629     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1630     case ASI_N:  /* Nucleus */
1631     case ASI_NL: /* Nucleus Little Endian (LE) */
1632     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1633     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1634     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1635     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1636     case ASI_TWINX_REAL:   /* Real address, twinx */
1637     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1638     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1639     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1640     case ASI_TWINX_N:  /* Nucleus, twinx */
1641     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1642     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1643     case ASI_TWINX_P:  /* Primary, twinx */
1644     case ASI_TWINX_PL: /* Primary, twinx, LE */
1645     case ASI_TWINX_S:  /* Secondary, twinx */
1646     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1647         /* These are always handled inline.  */
1648         g_assert_not_reached();
1649     /* these ASIs have different functions on UltraSPARC-IIIi
1650      * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1651      */
1652     case 0x31:
1653     case 0x32:
1654     case 0x39:
1655     case 0x3a:
1656         if (cpu_has_hypervisor(env)) {
1657             /* UA2005
1658              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1659              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1660              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1661              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1662              */
1663             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1664             env->dmmu.sun4v_tsb_pointers[idx] = val;
1665         } else {
1666             helper_raise_exception(env, TT_ILL_INSN);
1667         }
1668         break;
1669     case 0x33:
1670     case 0x3b:
1671         if (cpu_has_hypervisor(env)) {
1672             /* UA2005
1673              * ASI_DMMU_CTX_ZERO_CONFIG
1674              * ASI_DMMU_CTX_NONZERO_CONFIG
1675              */
1676             env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1677         } else {
1678             helper_raise_exception(env, TT_ILL_INSN);
1679         }
1680         break;
1681     case 0x35:
1682     case 0x36:
1683     case 0x3d:
1684     case 0x3e:
1685         if (cpu_has_hypervisor(env)) {
1686             /* UA2005
1687              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1688              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1689              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1690              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1691              */
1692             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1693             env->immu.sun4v_tsb_pointers[idx] = val;
1694         } else {
1695             helper_raise_exception(env, TT_ILL_INSN);
1696         }
1697       break;
1698     case 0x37:
1699     case 0x3f:
1700         if (cpu_has_hypervisor(env)) {
1701             /* UA2005
1702              * ASI_IMMU_CTX_ZERO_CONFIG
1703              * ASI_IMMU_CTX_NONZERO_CONFIG
1704              */
1705             env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1706         } else {
1707           helper_raise_exception(env, TT_ILL_INSN);
1708         }
1709         break;
1710     case ASI_UPA_CONFIG: /* UPA config */
1711         /* XXX */
1712         return;
1713     case ASI_LSU_CONTROL: /* LSU */
1714         env->lsu = val & (DMMU_E | IMMU_E);
1715         return;
1716     case ASI_IMMU: /* I-MMU regs */
1717         {
1718             int reg = (addr >> 3) & 0xf;
1719             uint64_t oldreg;
1720 
1721             oldreg = env->immu.mmuregs[reg];
1722             switch (reg) {
1723             case 0: /* RO */
1724                 return;
1725             case 1: /* Not in I-MMU */
1726             case 2:
1727                 return;
1728             case 3: /* SFSR */
1729                 if ((val & 1) == 0) {
1730                     val = 0; /* Clear SFSR */
1731                 }
1732                 env->immu.sfsr = val;
1733                 break;
1734             case 4: /* RO */
1735                 return;
1736             case 5: /* TSB access */
1737                 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1738                             PRIx64 "\n", env->immu.tsb, val);
1739                 env->immu.tsb = val;
1740                 break;
1741             case 6: /* Tag access */
1742                 env->immu.tag_access = val;
1743                 break;
1744             case 7:
1745             case 8:
1746                 return;
1747             default:
1748                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1749                 break;
1750             }
1751 
1752             if (oldreg != env->immu.mmuregs[reg]) {
1753                 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1754                             PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1755             }
1756 #ifdef DEBUG_MMU
1757             dump_mmu(env);
1758 #endif
1759             return;
1760         }
1761     case ASI_ITLB_DATA_IN: /* I-MMU data in */
1762         /* ignore real translation entries */
1763         if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1764             replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1765                                  val, "immu", env, addr);
1766         }
1767         return;
1768     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1769         {
1770             /* TODO: auto demap */
1771 
1772             unsigned int i = (addr >> 3) & 0x3f;
1773 
1774             /* ignore real translation entries */
1775             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1776                 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1777                                   sun4v_tte_to_sun4u(env, addr, val), env);
1778             }
1779 #ifdef DEBUG_MMU
1780             DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1781             dump_mmu(env);
1782 #endif
1783             return;
1784         }
1785     case ASI_IMMU_DEMAP: /* I-MMU demap */
1786         demap_tlb(env->itlb, addr, "immu", env);
1787         return;
1788     case ASI_DMMU: /* D-MMU regs */
1789         {
1790             int reg = (addr >> 3) & 0xf;
1791             uint64_t oldreg;
1792 
1793             oldreg = env->dmmu.mmuregs[reg];
1794             switch (reg) {
1795             case 0: /* RO */
1796             case 4:
1797                 return;
1798             case 3: /* SFSR */
1799                 if ((val & 1) == 0) {
1800                     val = 0; /* Clear SFSR, Fault address */
1801                     env->dmmu.sfar = 0;
1802                 }
1803                 env->dmmu.sfsr = val;
1804                 break;
1805             case 1: /* Primary context */
1806                 env->dmmu.mmu_primary_context = val;
1807                 /* can be optimized to only flush MMU_USER_IDX
1808                    and MMU_KERNEL_IDX entries */
1809                 tlb_flush(cs);
1810                 break;
1811             case 2: /* Secondary context */
1812                 env->dmmu.mmu_secondary_context = val;
1813                 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1814                    and MMU_KERNEL_SECONDARY_IDX entries */
1815                 tlb_flush(cs);
1816                 break;
1817             case 5: /* TSB access */
1818                 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1819                             PRIx64 "\n", env->dmmu.tsb, val);
1820                 env->dmmu.tsb = val;
1821                 break;
1822             case 6: /* Tag access */
1823                 env->dmmu.tag_access = val;
1824                 break;
1825             case 7: /* Virtual Watchpoint */
1826                 env->dmmu.virtual_watchpoint = val;
1827                 break;
1828             case 8: /* Physical Watchpoint */
1829                 env->dmmu.physical_watchpoint = val;
1830                 break;
1831             default:
1832                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1833                 break;
1834             }
1835 
1836             if (oldreg != env->dmmu.mmuregs[reg]) {
1837                 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1838                             PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1839             }
1840 #ifdef DEBUG_MMU
1841             dump_mmu(env);
1842 #endif
1843             return;
1844         }
1845     case ASI_DTLB_DATA_IN: /* D-MMU data in */
1846       /* ignore real translation entries */
1847       if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1848           replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1849                                val, "dmmu", env, addr);
1850       }
1851       return;
1852     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1853         {
1854             unsigned int i = (addr >> 3) & 0x3f;
1855 
1856             /* ignore real translation entries */
1857             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1858                 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1859                                   sun4v_tte_to_sun4u(env, addr, val), env);
1860             }
1861 #ifdef DEBUG_MMU
1862             DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1863             dump_mmu(env);
1864 #endif
1865             return;
1866         }
1867     case ASI_DMMU_DEMAP: /* D-MMU demap */
1868         demap_tlb(env->dtlb, addr, "dmmu", env);
1869         return;
1870     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1871         env->ivec_status = val & 0x20;
1872         return;
1873     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1874         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1875             /* Hyperprivileged access only */
1876             sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1877         }
1878         /* fall through */
1879     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1880         {
1881             unsigned int i = (addr >> 3) & 0x7;
1882             env->scratch[i] = val;
1883             return;
1884         }
1885     case ASI_MMU: /* UA2005 Context ID registers */
1886         {
1887           switch ((addr >> 3) & 0x3) {
1888           case 1:
1889               env->dmmu.mmu_primary_context = val;
1890               env->immu.mmu_primary_context = val;
1891               tlb_flush_by_mmuidx(cs,
1892                                   (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1893               break;
1894           case 2:
1895               env->dmmu.mmu_secondary_context = val;
1896               env->immu.mmu_secondary_context = val;
1897               tlb_flush_by_mmuidx(cs,
1898                                   (1 << MMU_USER_SECONDARY_IDX) |
1899                                   (1 << MMU_KERNEL_SECONDARY_IDX));
1900               break;
1901           default:
1902               sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1903           }
1904         }
1905         return;
1906     case ASI_QUEUE: /* UA2005 CPU mondo queue */
1907     case ASI_DCACHE_DATA: /* D-cache data */
1908     case ASI_DCACHE_TAG: /* D-cache tag access */
1909     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1910     case ASI_AFSR: /* E-cache asynchronous fault status */
1911     case ASI_AFAR: /* E-cache asynchronous fault address */
1912     case ASI_EC_TAG_DATA: /* E-cache tag data */
1913     case ASI_IC_INSTR: /* I-cache instruction access */
1914     case ASI_IC_TAG: /* I-cache tag access */
1915     case ASI_IC_PRE_DECODE: /* I-cache predecode */
1916     case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1917     case ASI_EC_W: /* E-cache tag */
1918     case ASI_EC_R: /* E-cache tag */
1919         return;
1920     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1921     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1922     case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1923     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1924     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1925     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1926     case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1927     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1928     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1929     case ASI_PNF: /* Primary no-fault, RO */
1930     case ASI_SNF: /* Secondary no-fault, RO */
1931     case ASI_PNFL: /* Primary no-fault LE, RO */
1932     case ASI_SNFL: /* Secondary no-fault LE, RO */
1933     default:
1934         sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1935         return;
1936     }
1937 }
1938 #endif /* CONFIG_USER_ONLY */
1939 #endif /* TARGET_SPARC64 */
1940 
1941 #if !defined(CONFIG_USER_ONLY)
1942 
1943 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1944                                      vaddr addr, unsigned size,
1945                                      MMUAccessType access_type,
1946                                      int mmu_idx, MemTxAttrs attrs,
1947                                      MemTxResult response, uintptr_t retaddr)
1948 {
1949     bool is_write = access_type == MMU_DATA_STORE;
1950     bool is_exec = access_type == MMU_INST_FETCH;
1951     bool is_asi = false;
1952 
1953     sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1954                           is_asi, size, retaddr);
1955 }
1956 #endif
1957