xref: /qemu/target/sparc/mmu_helper.c (revision 4a1babe5)
1 /*
2  *  Sparc MMU helpers
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "qemu/qemu-print.h"
25 #include "trace.h"
26 
27 /* Sparc MMU emulation */
28 
29 #ifndef TARGET_SPARC64
30 /*
31  * Sparc V8 Reference MMU (SRMMU)
32  */
33 static const int access_table[8][8] = {
34     { 0, 0, 0, 0, 8, 0, 12, 12 },
35     { 0, 0, 0, 0, 8, 0, 0, 0 },
36     { 8, 8, 0, 0, 0, 8, 12, 12 },
37     { 8, 8, 0, 0, 0, 8, 0, 0 },
38     { 8, 0, 8, 0, 8, 8, 12, 12 },
39     { 8, 0, 8, 0, 8, 0, 8, 0 },
40     { 8, 8, 8, 0, 8, 8, 12, 12 },
41     { 8, 8, 8, 0, 8, 8, 8, 0 }
42 };
43 
44 static const int perm_table[2][8] = {
45     {
46         PAGE_READ,
47         PAGE_READ | PAGE_WRITE,
48         PAGE_READ | PAGE_EXEC,
49         PAGE_READ | PAGE_WRITE | PAGE_EXEC,
50         PAGE_EXEC,
51         PAGE_READ | PAGE_WRITE,
52         PAGE_READ | PAGE_EXEC,
53         PAGE_READ | PAGE_WRITE | PAGE_EXEC
54     },
55     {
56         PAGE_READ,
57         PAGE_READ | PAGE_WRITE,
58         PAGE_READ | PAGE_EXEC,
59         PAGE_READ | PAGE_WRITE | PAGE_EXEC,
60         PAGE_EXEC,
61         PAGE_READ,
62         0,
63         0,
64     }
65 };
66 
67 static int get_physical_address(CPUSPARCState *env, CPUTLBEntryFull *full,
68                                 int *access_index, target_ulong address,
69                                 int rw, int mmu_idx)
70 {
71     int access_perms = 0;
72     hwaddr pde_ptr;
73     uint32_t pde;
74     int error_code = 0, is_dirty, is_user;
75     unsigned long page_offset;
76     CPUState *cs = env_cpu(env);
77     MemTxResult result;
78 
79     is_user = mmu_idx == MMU_USER_IDX;
80 
81     if (mmu_idx == MMU_PHYS_IDX) {
82         full->lg_page_size = TARGET_PAGE_BITS;
83         /* Boot mode: instruction fetches are taken from PROM */
84         if (rw == 2 && (env->mmuregs[0] & env->def.mmu_bm)) {
85             full->phys_addr = env->prom_addr | (address & 0x7ffffULL);
86             full->prot = PAGE_READ | PAGE_EXEC;
87             return 0;
88         }
89         full->phys_addr = address;
90         full->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
91         return 0;
92     }
93 
94     *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user ? 0 : 1);
95     full->phys_addr = 0xffffffffffff0000ULL;
96 
97     /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
98     /* Context base + context number */
99     pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
100     pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
101     if (result != MEMTX_OK) {
102         return 4 << 2; /* Translation fault, L = 0 */
103     }
104 
105     /* Ctx pde */
106     switch (pde & PTE_ENTRYTYPE_MASK) {
107     default:
108     case 0: /* Invalid */
109         return 1 << 2;
110     case 2: /* L0 PTE, maybe should not happen? */
111     case 3: /* Reserved */
112         return 4 << 2;
113     case 1: /* L0 PDE */
114         pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
115         pde = address_space_ldl(cs->as, pde_ptr,
116                                 MEMTXATTRS_UNSPECIFIED, &result);
117         if (result != MEMTX_OK) {
118             return (1 << 8) | (4 << 2); /* Translation fault, L = 1 */
119         }
120 
121         switch (pde & PTE_ENTRYTYPE_MASK) {
122         default:
123         case 0: /* Invalid */
124             return (1 << 8) | (1 << 2);
125         case 3: /* Reserved */
126             return (1 << 8) | (4 << 2);
127         case 1: /* L1 PDE */
128             pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
129             pde = address_space_ldl(cs->as, pde_ptr,
130                                     MEMTXATTRS_UNSPECIFIED, &result);
131             if (result != MEMTX_OK) {
132                 return (2 << 8) | (4 << 2); /* Translation fault, L = 2 */
133             }
134 
135             switch (pde & PTE_ENTRYTYPE_MASK) {
136             default:
137             case 0: /* Invalid */
138                 return (2 << 8) | (1 << 2);
139             case 3: /* Reserved */
140                 return (2 << 8) | (4 << 2);
141             case 1: /* L2 PDE */
142                 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
143                 pde = address_space_ldl(cs->as, pde_ptr,
144                                         MEMTXATTRS_UNSPECIFIED, &result);
145                 if (result != MEMTX_OK) {
146                     return (3 << 8) | (4 << 2); /* Translation fault, L = 3 */
147                 }
148 
149                 switch (pde & PTE_ENTRYTYPE_MASK) {
150                 default:
151                 case 0: /* Invalid */
152                     return (3 << 8) | (1 << 2);
153                 case 1: /* PDE, should not happen */
154                 case 3: /* Reserved */
155                     return (3 << 8) | (4 << 2);
156                 case 2: /* L3 PTE */
157                     page_offset = 0;
158                 }
159                 full->lg_page_size = TARGET_PAGE_BITS;
160                 break;
161             case 2: /* L2 PTE */
162                 page_offset = address & 0x3f000;
163                 full->lg_page_size = 18;
164             }
165             break;
166         case 2: /* L1 PTE */
167             page_offset = address & 0xfff000;
168             full->lg_page_size = 24;
169             break;
170         }
171     }
172 
173     /* check access */
174     access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
175     error_code = access_table[*access_index][access_perms];
176     if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) {
177         return error_code;
178     }
179 
180     /* update page modified and dirty bits */
181     is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
182     if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
183         pde |= PG_ACCESSED_MASK;
184         if (is_dirty) {
185             pde |= PG_MODIFIED_MASK;
186         }
187         stl_phys_notdirty(cs->as, pde_ptr, pde);
188     }
189 
190     /* the page can be put in the TLB */
191     full->prot = perm_table[is_user][access_perms];
192     if (!(pde & PG_MODIFIED_MASK)) {
193         /* only set write access if already dirty... otherwise wait
194            for dirty access */
195         full->prot &= ~PAGE_WRITE;
196     }
197 
198     /* Even if large ptes, we map only one 4KB page in the cache to
199        avoid filling it too fast */
200     full->phys_addr = ((hwaddr)(pde & PTE_ADDR_MASK) << 4) + page_offset;
201     return error_code;
202 }
203 
204 /* Perform address translation */
205 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
206                         MMUAccessType access_type, int mmu_idx,
207                         bool probe, uintptr_t retaddr)
208 {
209     CPUSPARCState *env = cpu_env(cs);
210     CPUTLBEntryFull full = {};
211     target_ulong vaddr;
212     int error_code = 0, access_index;
213 
214     /*
215      * TODO: If we ever need tlb_vaddr_to_host for this target,
216      * then we must figure out how to manipulate FSR and FAR
217      * when both MMU_NF and probe are set.  In the meantime,
218      * do not support this use case.
219      */
220     assert(!probe);
221 
222     address &= TARGET_PAGE_MASK;
223     error_code = get_physical_address(env, &full, &access_index,
224                                       address, access_type, mmu_idx);
225     vaddr = address;
226     if (likely(error_code == 0)) {
227         qemu_log_mask(CPU_LOG_MMU,
228                       "Translate at %" VADDR_PRIx " -> "
229                       HWADDR_FMT_plx ", vaddr " TARGET_FMT_lx "\n",
230                       address, full.phys_addr, vaddr);
231         tlb_set_page_full(cs, mmu_idx, vaddr, &full);
232         return true;
233     }
234 
235     if (env->mmuregs[3]) { /* Fault status register */
236         env->mmuregs[3] = 1; /* overflow (not read before another fault) */
237     }
238     env->mmuregs[3] |= (access_index << 5) | error_code | 2;
239     env->mmuregs[4] = address; /* Fault address register */
240 
241     if ((env->mmuregs[0] & MMU_NF) || env->psret == 0)  {
242         /* No fault mode: if a mapping is available, just override
243            permissions. If no mapping is available, redirect accesses to
244            neverland. Fake/overridden mappings will be flushed when
245            switching to normal mode. */
246         full.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
247         tlb_set_page_full(cs, mmu_idx, vaddr, &full);
248         return true;
249     } else {
250         if (access_type == MMU_INST_FETCH) {
251             cs->exception_index = TT_TFAULT;
252         } else {
253             cs->exception_index = TT_DFAULT;
254         }
255         cpu_loop_exit_restore(cs, retaddr);
256     }
257 }
258 
259 target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev)
260 {
261     CPUState *cs = env_cpu(env);
262     hwaddr pde_ptr;
263     uint32_t pde;
264     MemTxResult result;
265 
266     /*
267      * TODO: MMU probe operations are supposed to set the fault
268      * status registers, but we don't do this.
269      */
270 
271     /* Context base + context number */
272     pde_ptr = (hwaddr)(env->mmuregs[1] << 4) +
273         (env->mmuregs[2] << 2);
274     pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
275     if (result != MEMTX_OK) {
276         return 0;
277     }
278 
279     switch (pde & PTE_ENTRYTYPE_MASK) {
280     default:
281     case 0: /* Invalid */
282     case 2: /* PTE, maybe should not happen? */
283     case 3: /* Reserved */
284         return 0;
285     case 1: /* L1 PDE */
286         if (mmulev == 3) {
287             return pde;
288         }
289         pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
290         pde = address_space_ldl(cs->as, pde_ptr,
291                                 MEMTXATTRS_UNSPECIFIED, &result);
292         if (result != MEMTX_OK) {
293             return 0;
294         }
295 
296         switch (pde & PTE_ENTRYTYPE_MASK) {
297         default:
298         case 0: /* Invalid */
299         case 3: /* Reserved */
300             return 0;
301         case 2: /* L1 PTE */
302             return pde;
303         case 1: /* L2 PDE */
304             if (mmulev == 2) {
305                 return pde;
306             }
307             pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
308             pde = address_space_ldl(cs->as, pde_ptr,
309                                     MEMTXATTRS_UNSPECIFIED, &result);
310             if (result != MEMTX_OK) {
311                 return 0;
312             }
313 
314             switch (pde & PTE_ENTRYTYPE_MASK) {
315             default:
316             case 0: /* Invalid */
317             case 3: /* Reserved */
318                 return 0;
319             case 2: /* L2 PTE */
320                 return pde;
321             case 1: /* L3 PDE */
322                 if (mmulev == 1) {
323                     return pde;
324                 }
325                 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
326                 pde = address_space_ldl(cs->as, pde_ptr,
327                                         MEMTXATTRS_UNSPECIFIED, &result);
328                 if (result != MEMTX_OK) {
329                     return 0;
330                 }
331 
332                 switch (pde & PTE_ENTRYTYPE_MASK) {
333                 default:
334                 case 0: /* Invalid */
335                 case 1: /* PDE, should not happen */
336                 case 3: /* Reserved */
337                     return 0;
338                 case 2: /* L3 PTE */
339                     return pde;
340                 }
341             }
342         }
343     }
344     return 0;
345 }
346 
347 void dump_mmu(CPUSPARCState *env)
348 {
349     CPUState *cs = env_cpu(env);
350     target_ulong va, va1, va2;
351     unsigned int n, m, o;
352     hwaddr pa;
353     uint32_t pde;
354 
355     qemu_printf("Root ptr: " HWADDR_FMT_plx ", ctx: %d\n",
356                 (hwaddr)env->mmuregs[1] << 4, env->mmuregs[2]);
357     for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
358         pde = mmu_probe(env, va, 2);
359         if (pde) {
360             pa = cpu_get_phys_page_debug(cs, va);
361             qemu_printf("VA: " TARGET_FMT_lx ", PA: " HWADDR_FMT_plx
362                         " PDE: " TARGET_FMT_lx "\n", va, pa, pde);
363             for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
364                 pde = mmu_probe(env, va1, 1);
365                 if (pde) {
366                     pa = cpu_get_phys_page_debug(cs, va1);
367                     qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
368                                 HWADDR_FMT_plx " PDE: " TARGET_FMT_lx "\n",
369                                 va1, pa, pde);
370                     for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
371                         pde = mmu_probe(env, va2, 0);
372                         if (pde) {
373                             pa = cpu_get_phys_page_debug(cs, va2);
374                             qemu_printf("  VA: " TARGET_FMT_lx ", PA: "
375                                         HWADDR_FMT_plx " PTE: "
376                                         TARGET_FMT_lx "\n",
377                                         va2, pa, pde);
378                         }
379                     }
380                 }
381             }
382         }
383     }
384 }
385 
386 /* Gdb expects all registers windows to be flushed in ram. This function handles
387  * reads (and only reads) in stack frames as if windows were flushed. We assume
388  * that the sparc ABI is followed.
389  */
390 int sparc_cpu_memory_rw_debug(CPUState *cs, vaddr address,
391                               uint8_t *buf, int len, bool is_write)
392 {
393     CPUSPARCState *env = cpu_env(cs);
394     target_ulong addr = address;
395     int i;
396     int len1;
397     int cwp = env->cwp;
398 
399     if (!is_write) {
400         for (i = 0; i < env->nwindows; i++) {
401             int off;
402             target_ulong fp = env->regbase[cwp * 16 + 22];
403 
404             /* Assume fp == 0 means end of frame.  */
405             if (fp == 0) {
406                 break;
407             }
408 
409             cwp = cpu_cwp_inc(env, cwp + 1);
410 
411             /* Invalid window ? */
412             if (env->wim & (1 << cwp)) {
413                 break;
414             }
415 
416             /* According to the ABI, the stack is growing downward.  */
417             if (addr + len < fp) {
418                 break;
419             }
420 
421             /* Not in this frame.  */
422             if (addr > fp + 64) {
423                 continue;
424             }
425 
426             /* Handle access before this window.  */
427             if (addr < fp) {
428                 len1 = fp - addr;
429                 if (cpu_memory_rw_debug(cs, addr, buf, len1, is_write) != 0) {
430                     return -1;
431                 }
432                 addr += len1;
433                 len -= len1;
434                 buf += len1;
435             }
436 
437             /* Access byte per byte to registers. Not very efficient but speed
438              * is not critical.
439              */
440             off = addr - fp;
441             len1 = 64 - off;
442 
443             if (len1 > len) {
444                 len1 = len;
445             }
446 
447             for (; len1; len1--) {
448                 int reg = cwp * 16 + 8 + (off >> 2);
449                 union {
450                     uint32_t v;
451                     uint8_t c[4];
452                 } u;
453                 u.v = cpu_to_be32(env->regbase[reg]);
454                 *buf++ = u.c[off & 3];
455                 addr++;
456                 len--;
457                 off++;
458             }
459 
460             if (len == 0) {
461                 return 0;
462             }
463         }
464     }
465     return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
466 }
467 
468 #else /* !TARGET_SPARC64 */
469 
470 /* 41 bit physical address space */
471 static inline hwaddr ultrasparc_truncate_physical(uint64_t x)
472 {
473     return x & 0x1ffffffffffULL;
474 }
475 
476 /*
477  * UltraSparc IIi I/DMMUs
478  */
479 
480 /* Returns true if TTE tag is valid and matches virtual address value
481    in context requires virtual address mask value calculated from TTE
482    entry size */
483 static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
484                                        uint64_t address, uint64_t context,
485                                        hwaddr *physical)
486 {
487     uint64_t mask = -(8192ULL << 3 * TTE_PGSIZE(tlb->tte));
488 
489     /* valid, context match, virtual address match? */
490     if (TTE_IS_VALID(tlb->tte) &&
491         (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
492         && compare_masked(address, tlb->tag, mask)) {
493         /* decode physical address */
494         *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
495         return 1;
496     }
497 
498     return 0;
499 }
500 
501 static uint64_t build_sfsr(CPUSPARCState *env, int mmu_idx, int rw)
502 {
503     uint64_t sfsr = SFSR_VALID_BIT;
504 
505     switch (mmu_idx) {
506     case MMU_PHYS_IDX:
507         sfsr |= SFSR_CT_NOTRANS;
508         break;
509     case MMU_USER_IDX:
510     case MMU_KERNEL_IDX:
511         sfsr |= SFSR_CT_PRIMARY;
512         break;
513     case MMU_USER_SECONDARY_IDX:
514     case MMU_KERNEL_SECONDARY_IDX:
515         sfsr |= SFSR_CT_SECONDARY;
516         break;
517     case MMU_NUCLEUS_IDX:
518         sfsr |= SFSR_CT_NUCLEUS;
519         break;
520     default:
521         g_assert_not_reached();
522     }
523 
524     if (rw == 1) {
525         sfsr |= SFSR_WRITE_BIT;
526     } else if (rw == 4) {
527         sfsr |= SFSR_NF_BIT;
528     }
529 
530     if (env->pstate & PS_PRIV) {
531         sfsr |= SFSR_PR_BIT;
532     }
533 
534     if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */
535         sfsr |= SFSR_OW_BIT; /* overflow (not read before another fault) */
536     }
537 
538     /* FIXME: ASI field in SFSR must be set */
539 
540     return sfsr;
541 }
542 
543 static int get_physical_address_data(CPUSPARCState *env, CPUTLBEntryFull *full,
544                                      target_ulong address, int rw, int mmu_idx)
545 {
546     CPUState *cs = env_cpu(env);
547     unsigned int i;
548     uint64_t sfsr;
549     uint64_t context;
550     bool is_user = false;
551 
552     sfsr = build_sfsr(env, mmu_idx, rw);
553 
554     switch (mmu_idx) {
555     case MMU_PHYS_IDX:
556         g_assert_not_reached();
557     case MMU_USER_IDX:
558         is_user = true;
559         /* fallthru */
560     case MMU_KERNEL_IDX:
561         context = env->dmmu.mmu_primary_context & 0x1fff;
562         break;
563     case MMU_USER_SECONDARY_IDX:
564         is_user = true;
565         /* fallthru */
566     case MMU_KERNEL_SECONDARY_IDX:
567         context = env->dmmu.mmu_secondary_context & 0x1fff;
568         break;
569     default:
570         context = 0;
571         break;
572     }
573 
574     for (i = 0; i < 64; i++) {
575         /* ctx match, vaddr match, valid? */
576         if (ultrasparc_tag_match(&env->dtlb[i], address, context,
577                                  &full->phys_addr)) {
578             int do_fault = 0;
579 
580             if (TTE_IS_IE(env->dtlb[i].tte)) {
581                 full->tlb_fill_flags |= TLB_BSWAP;
582             }
583 
584             /* access ok? */
585             /* multiple bits in SFSR.FT may be set on TT_DFAULT */
586             if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) {
587                 do_fault = 1;
588                 sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */
589                 trace_mmu_helper_dfault(address, context, mmu_idx, env->tl);
590             }
591             if (rw == 4) {
592                 if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) {
593                     do_fault = 1;
594                     sfsr |= SFSR_FT_NF_E_BIT;
595                 }
596             } else {
597                 if (TTE_IS_NFO(env->dtlb[i].tte)) {
598                     do_fault = 1;
599                     sfsr |= SFSR_FT_NFO_BIT;
600                 }
601             }
602 
603             if (do_fault) {
604                 /* faults above are reported with TT_DFAULT. */
605                 cs->exception_index = TT_DFAULT;
606             } else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) {
607                 do_fault = 1;
608                 cs->exception_index = TT_DPROT;
609 
610                 trace_mmu_helper_dprot(address, context, mmu_idx, env->tl);
611             }
612 
613             if (!do_fault) {
614                 full->prot = PAGE_READ;
615                 if (TTE_IS_W_OK(env->dtlb[i].tte)) {
616                     full->prot |= PAGE_WRITE;
617                 }
618 
619                 TTE_SET_USED(env->dtlb[i].tte);
620 
621                 return 0;
622             }
623 
624             env->dmmu.sfsr = sfsr;
625             env->dmmu.sfar = address; /* Fault address register */
626             env->dmmu.tag_access = (address & ~0x1fffULL) | context;
627             return 1;
628         }
629     }
630 
631     trace_mmu_helper_dmiss(address, context);
632 
633     /*
634      * On MMU misses:
635      * - UltraSPARC IIi: SFSR and SFAR unmodified
636      * - JPS1: SFAR updated and some fields of SFSR updated
637      */
638     env->dmmu.tag_access = (address & ~0x1fffULL) | context;
639     cs->exception_index = TT_DMISS;
640     return 1;
641 }
642 
643 static int get_physical_address_code(CPUSPARCState *env, CPUTLBEntryFull *full,
644                                      target_ulong address, int mmu_idx)
645 {
646     CPUState *cs = env_cpu(env);
647     unsigned int i;
648     uint64_t context;
649     bool is_user = false;
650 
651     switch (mmu_idx) {
652     case MMU_PHYS_IDX:
653     case MMU_USER_SECONDARY_IDX:
654     case MMU_KERNEL_SECONDARY_IDX:
655         g_assert_not_reached();
656     case MMU_USER_IDX:
657         is_user = true;
658         /* fallthru */
659     case MMU_KERNEL_IDX:
660         context = env->dmmu.mmu_primary_context & 0x1fff;
661         break;
662     default:
663         context = 0;
664         break;
665     }
666 
667     if (env->tl == 0) {
668         /* PRIMARY context */
669         context = env->dmmu.mmu_primary_context & 0x1fff;
670     } else {
671         /* NUCLEUS context */
672         context = 0;
673     }
674 
675     for (i = 0; i < 64; i++) {
676         /* ctx match, vaddr match, valid? */
677         if (ultrasparc_tag_match(&env->itlb[i],
678                                  address, context, &full->phys_addr)) {
679             /* access ok? */
680             if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) {
681                 /* Fault status register */
682                 if (env->immu.sfsr & SFSR_VALID_BIT) {
683                     env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before
684                                                      another fault) */
685                 } else {
686                     env->immu.sfsr = 0;
687                 }
688                 if (env->pstate & PS_PRIV) {
689                     env->immu.sfsr |= SFSR_PR_BIT;
690                 }
691                 if (env->tl > 0) {
692                     env->immu.sfsr |= SFSR_CT_NUCLEUS;
693                 }
694 
695                 /* FIXME: ASI field in SFSR must be set */
696                 env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT;
697                 cs->exception_index = TT_TFAULT;
698 
699                 env->immu.tag_access = (address & ~0x1fffULL) | context;
700 
701                 trace_mmu_helper_tfault(address, context);
702 
703                 return 1;
704             }
705             full->prot = PAGE_EXEC;
706             TTE_SET_USED(env->itlb[i].tte);
707             return 0;
708         }
709     }
710 
711     trace_mmu_helper_tmiss(address, context);
712 
713     /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
714     env->immu.tag_access = (address & ~0x1fffULL) | context;
715     cs->exception_index = TT_TMISS;
716     return 1;
717 }
718 
719 static int get_physical_address(CPUSPARCState *env, CPUTLBEntryFull *full,
720                                 int *access_index, target_ulong address,
721                                 int rw, int mmu_idx)
722 {
723     /* ??? We treat everything as a small page, then explicitly flush
724        everything when an entry is evicted.  */
725     full->lg_page_size = TARGET_PAGE_BITS;
726 
727     /* safety net to catch wrong softmmu index use from dynamic code */
728     if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
729         if (rw == 2) {
730             trace_mmu_helper_get_phys_addr_code(env->tl, mmu_idx,
731                                                 env->dmmu.mmu_primary_context,
732                                                 env->dmmu.mmu_secondary_context,
733                                                 address);
734         } else {
735             trace_mmu_helper_get_phys_addr_data(env->tl, mmu_idx,
736                                                 env->dmmu.mmu_primary_context,
737                                                 env->dmmu.mmu_secondary_context,
738                                                 address);
739         }
740     }
741 
742     if (mmu_idx == MMU_PHYS_IDX) {
743         full->phys_addr = ultrasparc_truncate_physical(address);
744         full->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
745         return 0;
746     }
747 
748     if (rw == 2) {
749         return get_physical_address_code(env, full, address, mmu_idx);
750     } else {
751         return get_physical_address_data(env, full, address, rw, mmu_idx);
752     }
753 }
754 
755 /* Perform address translation */
756 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
757                         MMUAccessType access_type, int mmu_idx,
758                         bool probe, uintptr_t retaddr)
759 {
760     CPUSPARCState *env = cpu_env(cs);
761     CPUTLBEntryFull full = {};
762     int error_code = 0, access_index;
763 
764     address &= TARGET_PAGE_MASK;
765     error_code = get_physical_address(env, &full, &access_index,
766                                       address, access_type, mmu_idx);
767     if (likely(error_code == 0)) {
768         trace_mmu_helper_mmu_fault(address, full.phys_addr, mmu_idx, env->tl,
769                                    env->dmmu.mmu_primary_context,
770                                    env->dmmu.mmu_secondary_context);
771         tlb_set_page_full(cs, mmu_idx, address, &full);
772         return true;
773     }
774     if (probe) {
775         return false;
776     }
777     cpu_loop_exit_restore(cs, retaddr);
778 }
779 
780 void dump_mmu(CPUSPARCState *env)
781 {
782     unsigned int i;
783     const char *mask;
784 
785     qemu_printf("MMU contexts: Primary: %" PRId64 ", Secondary: %"
786                 PRId64 "\n",
787                 env->dmmu.mmu_primary_context,
788                 env->dmmu.mmu_secondary_context);
789     qemu_printf("DMMU Tag Access: %" PRIx64 ", TSB Tag Target: %" PRIx64
790                 "\n", env->dmmu.tag_access, env->dmmu.tsb_tag_target);
791     if ((env->lsu & DMMU_E) == 0) {
792         qemu_printf("DMMU disabled\n");
793     } else {
794         qemu_printf("DMMU dump\n");
795         for (i = 0; i < 64; i++) {
796             switch (TTE_PGSIZE(env->dtlb[i].tte)) {
797             default:
798             case 0x0:
799                 mask = "  8k";
800                 break;
801             case 0x1:
802                 mask = " 64k";
803                 break;
804             case 0x2:
805                 mask = "512k";
806                 break;
807             case 0x3:
808                 mask = "  4M";
809                 break;
810             }
811             if (TTE_IS_VALID(env->dtlb[i].tte)) {
812                 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
813                             ", %s, %s, %s, %s, ie %s, ctx %" PRId64 " %s\n",
814                             i,
815                             env->dtlb[i].tag & (uint64_t)~0x1fffULL,
816                             TTE_PA(env->dtlb[i].tte),
817                             mask,
818                             TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user",
819                             TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO",
820                             TTE_IS_LOCKED(env->dtlb[i].tte) ?
821                             "locked" : "unlocked",
822                             TTE_IS_IE(env->dtlb[i].tte) ?
823                             "yes" : "no",
824                             env->dtlb[i].tag & (uint64_t)0x1fffULL,
825                             TTE_IS_GLOBAL(env->dtlb[i].tte) ?
826                             "global" : "local");
827             }
828         }
829     }
830     if ((env->lsu & IMMU_E) == 0) {
831         qemu_printf("IMMU disabled\n");
832     } else {
833         qemu_printf("IMMU dump\n");
834         for (i = 0; i < 64; i++) {
835             switch (TTE_PGSIZE(env->itlb[i].tte)) {
836             default:
837             case 0x0:
838                 mask = "  8k";
839                 break;
840             case 0x1:
841                 mask = " 64k";
842                 break;
843             case 0x2:
844                 mask = "512k";
845                 break;
846             case 0x3:
847                 mask = "  4M";
848                 break;
849             }
850             if (TTE_IS_VALID(env->itlb[i].tte)) {
851                 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
852                             ", %s, %s, %s, ctx %" PRId64 " %s\n",
853                             i,
854                             env->itlb[i].tag & (uint64_t)~0x1fffULL,
855                             TTE_PA(env->itlb[i].tte),
856                             mask,
857                             TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user",
858                             TTE_IS_LOCKED(env->itlb[i].tte) ?
859                             "locked" : "unlocked",
860                             env->itlb[i].tag & (uint64_t)0x1fffULL,
861                             TTE_IS_GLOBAL(env->itlb[i].tte) ?
862                             "global" : "local");
863             }
864         }
865     }
866 }
867 
868 #endif /* TARGET_SPARC64 */
869 
870 static int cpu_sparc_get_phys_page(CPUSPARCState *env, hwaddr *phys,
871                                    target_ulong addr, int rw, int mmu_idx)
872 {
873     CPUTLBEntryFull full = {};
874     int access_index, ret;
875 
876     ret = get_physical_address(env, &full, &access_index, addr, rw, mmu_idx);
877     if (ret == 0) {
878         *phys = full.phys_addr;
879     }
880     return ret;
881 }
882 
883 #if defined(TARGET_SPARC64)
884 hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr,
885                                            int mmu_idx)
886 {
887     hwaddr phys_addr;
888 
889     if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) {
890         return -1;
891     }
892     return phys_addr;
893 }
894 #endif
895 
896 hwaddr sparc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
897 {
898     CPUSPARCState *env = cpu_env(cs);
899     hwaddr phys_addr;
900     int mmu_idx = cpu_mmu_index(cs, false);
901 
902     if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) {
903         if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) {
904             return -1;
905         }
906     }
907     return phys_addr;
908 }
909 
910 G_NORETURN void sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
911                                               MMUAccessType access_type,
912                                               int mmu_idx,
913                                               uintptr_t retaddr)
914 {
915     CPUSPARCState *env = cpu_env(cs);
916 
917 #ifdef TARGET_SPARC64
918     env->dmmu.sfsr = build_sfsr(env, mmu_idx, access_type);
919     env->dmmu.sfar = addr;
920 #else
921     env->mmuregs[4] = addr;
922 #endif
923 
924     cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
925 }
926