xref: /qemu/target/sparc/mmu_helper.c (revision b83a80e8)
1 /*
2  *  Sparc MMU helpers
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/qemu-print.h"
24 #include "trace.h"
25 
26 /* Sparc MMU emulation */
27 
28 #ifndef TARGET_SPARC64
29 /*
30  * Sparc V8 Reference MMU (SRMMU)
31  */
32 static const int access_table[8][8] = {
33     { 0, 0, 0, 0, 8, 0, 12, 12 },
34     { 0, 0, 0, 0, 8, 0, 0, 0 },
35     { 8, 8, 0, 0, 0, 8, 12, 12 },
36     { 8, 8, 0, 0, 0, 8, 0, 0 },
37     { 8, 0, 8, 0, 8, 8, 12, 12 },
38     { 8, 0, 8, 0, 8, 0, 8, 0 },
39     { 8, 8, 8, 0, 8, 8, 12, 12 },
40     { 8, 8, 8, 0, 8, 8, 8, 0 }
41 };
42 
43 static const int perm_table[2][8] = {
44     {
45         PAGE_READ,
46         PAGE_READ | PAGE_WRITE,
47         PAGE_READ | PAGE_EXEC,
48         PAGE_READ | PAGE_WRITE | PAGE_EXEC,
49         PAGE_EXEC,
50         PAGE_READ | PAGE_WRITE,
51         PAGE_READ | PAGE_EXEC,
52         PAGE_READ | PAGE_WRITE | PAGE_EXEC
53     },
54     {
55         PAGE_READ,
56         PAGE_READ | PAGE_WRITE,
57         PAGE_READ | PAGE_EXEC,
58         PAGE_READ | PAGE_WRITE | PAGE_EXEC,
59         PAGE_EXEC,
60         PAGE_READ,
61         0,
62         0,
63     }
64 };
65 
66 static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
67                                 int *prot, int *access_index, MemTxAttrs *attrs,
68                                 target_ulong address, int rw, int mmu_idx,
69                                 target_ulong *page_size)
70 {
71     int access_perms = 0;
72     hwaddr pde_ptr;
73     uint32_t pde;
74     int error_code = 0, is_dirty, is_user;
75     unsigned long page_offset;
76     CPUState *cs = env_cpu(env);
77     MemTxResult result;
78 
79     is_user = mmu_idx == MMU_USER_IDX;
80 
81     if (mmu_idx == MMU_PHYS_IDX) {
82         *page_size = TARGET_PAGE_SIZE;
83         /* Boot mode: instruction fetches are taken from PROM */
84         if (rw == 2 && (env->mmuregs[0] & env->def.mmu_bm)) {
85             *physical = env->prom_addr | (address & 0x7ffffULL);
86             *prot = PAGE_READ | PAGE_EXEC;
87             return 0;
88         }
89         *physical = address;
90         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
91         return 0;
92     }
93 
94     *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user ? 0 : 1);
95     *physical = 0xffffffffffff0000ULL;
96 
97     /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
98     /* Context base + context number */
99     pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
100     pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
101     if (result != MEMTX_OK) {
102         return 4 << 2; /* Translation fault, L = 0 */
103     }
104 
105     /* Ctx pde */
106     switch (pde & PTE_ENTRYTYPE_MASK) {
107     default:
108     case 0: /* Invalid */
109         return 1 << 2;
110     case 2: /* L0 PTE, maybe should not happen? */
111     case 3: /* Reserved */
112         return 4 << 2;
113     case 1: /* L0 PDE */
114         pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
115         pde = address_space_ldl(cs->as, pde_ptr,
116                                 MEMTXATTRS_UNSPECIFIED, &result);
117         if (result != MEMTX_OK) {
118             return (1 << 8) | (4 << 2); /* Translation fault, L = 1 */
119         }
120 
121         switch (pde & PTE_ENTRYTYPE_MASK) {
122         default:
123         case 0: /* Invalid */
124             return (1 << 8) | (1 << 2);
125         case 3: /* Reserved */
126             return (1 << 8) | (4 << 2);
127         case 1: /* L1 PDE */
128             pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
129             pde = address_space_ldl(cs->as, pde_ptr,
130                                     MEMTXATTRS_UNSPECIFIED, &result);
131             if (result != MEMTX_OK) {
132                 return (2 << 8) | (4 << 2); /* Translation fault, L = 2 */
133             }
134 
135             switch (pde & PTE_ENTRYTYPE_MASK) {
136             default:
137             case 0: /* Invalid */
138                 return (2 << 8) | (1 << 2);
139             case 3: /* Reserved */
140                 return (2 << 8) | (4 << 2);
141             case 1: /* L2 PDE */
142                 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
143                 pde = address_space_ldl(cs->as, pde_ptr,
144                                         MEMTXATTRS_UNSPECIFIED, &result);
145                 if (result != MEMTX_OK) {
146                     return (3 << 8) | (4 << 2); /* Translation fault, L = 3 */
147                 }
148 
149                 switch (pde & PTE_ENTRYTYPE_MASK) {
150                 default:
151                 case 0: /* Invalid */
152                     return (3 << 8) | (1 << 2);
153                 case 1: /* PDE, should not happen */
154                 case 3: /* Reserved */
155                     return (3 << 8) | (4 << 2);
156                 case 2: /* L3 PTE */
157                     page_offset = 0;
158                 }
159                 *page_size = TARGET_PAGE_SIZE;
160                 break;
161             case 2: /* L2 PTE */
162                 page_offset = address & 0x3f000;
163                 *page_size = 0x40000;
164             }
165             break;
166         case 2: /* L1 PTE */
167             page_offset = address & 0xfff000;
168             *page_size = 0x1000000;
169         }
170     }
171 
172     /* check access */
173     access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
174     error_code = access_table[*access_index][access_perms];
175     if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) {
176         return error_code;
177     }
178 
179     /* update page modified and dirty bits */
180     is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
181     if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
182         pde |= PG_ACCESSED_MASK;
183         if (is_dirty) {
184             pde |= PG_MODIFIED_MASK;
185         }
186         stl_phys_notdirty(cs->as, pde_ptr, pde);
187     }
188 
189     /* the page can be put in the TLB */
190     *prot = perm_table[is_user][access_perms];
191     if (!(pde & PG_MODIFIED_MASK)) {
192         /* only set write access if already dirty... otherwise wait
193            for dirty access */
194         *prot &= ~PAGE_WRITE;
195     }
196 
197     /* Even if large ptes, we map only one 4KB page in the cache to
198        avoid filling it too fast */
199     *physical = ((hwaddr)(pde & PTE_ADDR_MASK) << 4) + page_offset;
200     return error_code;
201 }
202 
203 /* Perform address translation */
204 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
205                         MMUAccessType access_type, int mmu_idx,
206                         bool probe, uintptr_t retaddr)
207 {
208     SPARCCPU *cpu = SPARC_CPU(cs);
209     CPUSPARCState *env = &cpu->env;
210     hwaddr paddr;
211     target_ulong vaddr;
212     target_ulong page_size;
213     int error_code = 0, prot, access_index;
214     MemTxAttrs attrs = {};
215 
216     /*
217      * TODO: If we ever need tlb_vaddr_to_host for this target,
218      * then we must figure out how to manipulate FSR and FAR
219      * when both MMU_NF and probe are set.  In the meantime,
220      * do not support this use case.
221      */
222     assert(!probe);
223 
224     address &= TARGET_PAGE_MASK;
225     error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
226                                       address, access_type,
227                                       mmu_idx, &page_size);
228     vaddr = address;
229     if (likely(error_code == 0)) {
230         qemu_log_mask(CPU_LOG_MMU,
231                       "Translate at %" VADDR_PRIx " -> "
232                       TARGET_FMT_plx ", vaddr " TARGET_FMT_lx "\n",
233                       address, paddr, vaddr);
234         tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, page_size);
235         return true;
236     }
237 
238     if (env->mmuregs[3]) { /* Fault status register */
239         env->mmuregs[3] = 1; /* overflow (not read before another fault) */
240     }
241     env->mmuregs[3] |= (access_index << 5) | error_code | 2;
242     env->mmuregs[4] = address; /* Fault address register */
243 
244     if ((env->mmuregs[0] & MMU_NF) || env->psret == 0)  {
245         /* No fault mode: if a mapping is available, just override
246            permissions. If no mapping is available, redirect accesses to
247            neverland. Fake/overridden mappings will be flushed when
248            switching to normal mode. */
249         prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
250         tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, TARGET_PAGE_SIZE);
251         return true;
252     } else {
253         if (access_type == MMU_INST_FETCH) {
254             cs->exception_index = TT_TFAULT;
255         } else {
256             cs->exception_index = TT_DFAULT;
257         }
258         cpu_loop_exit_restore(cs, retaddr);
259     }
260 }
261 
262 target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev)
263 {
264     CPUState *cs = env_cpu(env);
265     hwaddr pde_ptr;
266     uint32_t pde;
267     MemTxResult result;
268 
269     /*
270      * TODO: MMU probe operations are supposed to set the fault
271      * status registers, but we don't do this.
272      */
273 
274     /* Context base + context number */
275     pde_ptr = (hwaddr)(env->mmuregs[1] << 4) +
276         (env->mmuregs[2] << 2);
277     pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
278     if (result != MEMTX_OK) {
279         return 0;
280     }
281 
282     switch (pde & PTE_ENTRYTYPE_MASK) {
283     default:
284     case 0: /* Invalid */
285     case 2: /* PTE, maybe should not happen? */
286     case 3: /* Reserved */
287         return 0;
288     case 1: /* L1 PDE */
289         if (mmulev == 3) {
290             return pde;
291         }
292         pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
293         pde = address_space_ldl(cs->as, pde_ptr,
294                                 MEMTXATTRS_UNSPECIFIED, &result);
295         if (result != MEMTX_OK) {
296             return 0;
297         }
298 
299         switch (pde & PTE_ENTRYTYPE_MASK) {
300         default:
301         case 0: /* Invalid */
302         case 3: /* Reserved */
303             return 0;
304         case 2: /* L1 PTE */
305             return pde;
306         case 1: /* L2 PDE */
307             if (mmulev == 2) {
308                 return pde;
309             }
310             pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
311             pde = address_space_ldl(cs->as, pde_ptr,
312                                     MEMTXATTRS_UNSPECIFIED, &result);
313             if (result != MEMTX_OK) {
314                 return 0;
315             }
316 
317             switch (pde & PTE_ENTRYTYPE_MASK) {
318             default:
319             case 0: /* Invalid */
320             case 3: /* Reserved */
321                 return 0;
322             case 2: /* L2 PTE */
323                 return pde;
324             case 1: /* L3 PDE */
325                 if (mmulev == 1) {
326                     return pde;
327                 }
328                 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
329                 pde = address_space_ldl(cs->as, pde_ptr,
330                                         MEMTXATTRS_UNSPECIFIED, &result);
331                 if (result != MEMTX_OK) {
332                     return 0;
333                 }
334 
335                 switch (pde & PTE_ENTRYTYPE_MASK) {
336                 default:
337                 case 0: /* Invalid */
338                 case 1: /* PDE, should not happen */
339                 case 3: /* Reserved */
340                     return 0;
341                 case 2: /* L3 PTE */
342                     return pde;
343                 }
344             }
345         }
346     }
347     return 0;
348 }
349 
350 void dump_mmu(CPUSPARCState *env)
351 {
352     CPUState *cs = env_cpu(env);
353     target_ulong va, va1, va2;
354     unsigned int n, m, o;
355     hwaddr pa;
356     uint32_t pde;
357 
358     qemu_printf("Root ptr: " TARGET_FMT_plx ", ctx: %d\n",
359                 (hwaddr)env->mmuregs[1] << 4, env->mmuregs[2]);
360     for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
361         pde = mmu_probe(env, va, 2);
362         if (pde) {
363             pa = cpu_get_phys_page_debug(cs, va);
364             qemu_printf("VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx
365                         " PDE: " TARGET_FMT_lx "\n", va, pa, pde);
366             for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
367                 pde = mmu_probe(env, va1, 1);
368                 if (pde) {
369                     pa = cpu_get_phys_page_debug(cs, va1);
370                     qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
371                                 TARGET_FMT_plx " PDE: " TARGET_FMT_lx "\n",
372                                 va1, pa, pde);
373                     for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
374                         pde = mmu_probe(env, va2, 0);
375                         if (pde) {
376                             pa = cpu_get_phys_page_debug(cs, va2);
377                             qemu_printf("  VA: " TARGET_FMT_lx ", PA: "
378                                         TARGET_FMT_plx " PTE: "
379                                         TARGET_FMT_lx "\n",
380                                         va2, pa, pde);
381                         }
382                     }
383                 }
384             }
385         }
386     }
387 }
388 
389 /* Gdb expects all registers windows to be flushed in ram. This function handles
390  * reads (and only reads) in stack frames as if windows were flushed. We assume
391  * that the sparc ABI is followed.
392  */
393 int sparc_cpu_memory_rw_debug(CPUState *cs, vaddr address,
394                               uint8_t *buf, int len, bool is_write)
395 {
396     SPARCCPU *cpu = SPARC_CPU(cs);
397     CPUSPARCState *env = &cpu->env;
398     target_ulong addr = address;
399     int i;
400     int len1;
401     int cwp = env->cwp;
402 
403     if (!is_write) {
404         for (i = 0; i < env->nwindows; i++) {
405             int off;
406             target_ulong fp = env->regbase[cwp * 16 + 22];
407 
408             /* Assume fp == 0 means end of frame.  */
409             if (fp == 0) {
410                 break;
411             }
412 
413             cwp = cpu_cwp_inc(env, cwp + 1);
414 
415             /* Invalid window ? */
416             if (env->wim & (1 << cwp)) {
417                 break;
418             }
419 
420             /* According to the ABI, the stack is growing downward.  */
421             if (addr + len < fp) {
422                 break;
423             }
424 
425             /* Not in this frame.  */
426             if (addr > fp + 64) {
427                 continue;
428             }
429 
430             /* Handle access before this window.  */
431             if (addr < fp) {
432                 len1 = fp - addr;
433                 if (cpu_memory_rw_debug(cs, addr, buf, len1, is_write) != 0) {
434                     return -1;
435                 }
436                 addr += len1;
437                 len -= len1;
438                 buf += len1;
439             }
440 
441             /* Access byte per byte to registers. Not very efficient but speed
442              * is not critical.
443              */
444             off = addr - fp;
445             len1 = 64 - off;
446 
447             if (len1 > len) {
448                 len1 = len;
449             }
450 
451             for (; len1; len1--) {
452                 int reg = cwp * 16 + 8 + (off >> 2);
453                 union {
454                     uint32_t v;
455                     uint8_t c[4];
456                 } u;
457                 u.v = cpu_to_be32(env->regbase[reg]);
458                 *buf++ = u.c[off & 3];
459                 addr++;
460                 len--;
461                 off++;
462             }
463 
464             if (len == 0) {
465                 return 0;
466             }
467         }
468     }
469     return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
470 }
471 
472 #else /* !TARGET_SPARC64 */
473 
474 /* 41 bit physical address space */
475 static inline hwaddr ultrasparc_truncate_physical(uint64_t x)
476 {
477     return x & 0x1ffffffffffULL;
478 }
479 
480 /*
481  * UltraSparc IIi I/DMMUs
482  */
483 
484 /* Returns true if TTE tag is valid and matches virtual address value
485    in context requires virtual address mask value calculated from TTE
486    entry size */
487 static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
488                                        uint64_t address, uint64_t context,
489                                        hwaddr *physical)
490 {
491     uint64_t mask = -(8192ULL << 3 * TTE_PGSIZE(tlb->tte));
492 
493     /* valid, context match, virtual address match? */
494     if (TTE_IS_VALID(tlb->tte) &&
495         (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
496         && compare_masked(address, tlb->tag, mask)) {
497         /* decode physical address */
498         *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
499         return 1;
500     }
501 
502     return 0;
503 }
504 
505 static uint64_t build_sfsr(CPUSPARCState *env, int mmu_idx, int rw)
506 {
507     uint64_t sfsr = SFSR_VALID_BIT;
508 
509     switch (mmu_idx) {
510     case MMU_PHYS_IDX:
511         sfsr |= SFSR_CT_NOTRANS;
512         break;
513     case MMU_USER_IDX:
514     case MMU_KERNEL_IDX:
515         sfsr |= SFSR_CT_PRIMARY;
516         break;
517     case MMU_USER_SECONDARY_IDX:
518     case MMU_KERNEL_SECONDARY_IDX:
519         sfsr |= SFSR_CT_SECONDARY;
520         break;
521     case MMU_NUCLEUS_IDX:
522         sfsr |= SFSR_CT_NUCLEUS;
523         break;
524     default:
525         g_assert_not_reached();
526     }
527 
528     if (rw == 1) {
529         sfsr |= SFSR_WRITE_BIT;
530     } else if (rw == 4) {
531         sfsr |= SFSR_NF_BIT;
532     }
533 
534     if (env->pstate & PS_PRIV) {
535         sfsr |= SFSR_PR_BIT;
536     }
537 
538     if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */
539         sfsr |= SFSR_OW_BIT; /* overflow (not read before another fault) */
540     }
541 
542     /* FIXME: ASI field in SFSR must be set */
543 
544     return sfsr;
545 }
546 
547 static int get_physical_address_data(CPUSPARCState *env, hwaddr *physical,
548                                      int *prot, MemTxAttrs *attrs,
549                                      target_ulong address, int rw, int mmu_idx)
550 {
551     CPUState *cs = env_cpu(env);
552     unsigned int i;
553     uint64_t sfsr;
554     uint64_t context;
555     bool is_user = false;
556 
557     sfsr = build_sfsr(env, mmu_idx, rw);
558 
559     switch (mmu_idx) {
560     case MMU_PHYS_IDX:
561         g_assert_not_reached();
562     case MMU_USER_IDX:
563         is_user = true;
564         /* fallthru */
565     case MMU_KERNEL_IDX:
566         context = env->dmmu.mmu_primary_context & 0x1fff;
567         break;
568     case MMU_USER_SECONDARY_IDX:
569         is_user = true;
570         /* fallthru */
571     case MMU_KERNEL_SECONDARY_IDX:
572         context = env->dmmu.mmu_secondary_context & 0x1fff;
573         break;
574     default:
575         context = 0;
576         break;
577     }
578 
579     for (i = 0; i < 64; i++) {
580         /* ctx match, vaddr match, valid? */
581         if (ultrasparc_tag_match(&env->dtlb[i], address, context, physical)) {
582             int do_fault = 0;
583 
584             if (TTE_IS_IE(env->dtlb[i].tte)) {
585                 attrs->byte_swap = true;
586             }
587 
588             /* access ok? */
589             /* multiple bits in SFSR.FT may be set on TT_DFAULT */
590             if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) {
591                 do_fault = 1;
592                 sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */
593                 trace_mmu_helper_dfault(address, context, mmu_idx, env->tl);
594             }
595             if (rw == 4) {
596                 if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) {
597                     do_fault = 1;
598                     sfsr |= SFSR_FT_NF_E_BIT;
599                 }
600             } else {
601                 if (TTE_IS_NFO(env->dtlb[i].tte)) {
602                     do_fault = 1;
603                     sfsr |= SFSR_FT_NFO_BIT;
604                 }
605             }
606 
607             if (do_fault) {
608                 /* faults above are reported with TT_DFAULT. */
609                 cs->exception_index = TT_DFAULT;
610             } else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) {
611                 do_fault = 1;
612                 cs->exception_index = TT_DPROT;
613 
614                 trace_mmu_helper_dprot(address, context, mmu_idx, env->tl);
615             }
616 
617             if (!do_fault) {
618                 *prot = PAGE_READ;
619                 if (TTE_IS_W_OK(env->dtlb[i].tte)) {
620                     *prot |= PAGE_WRITE;
621                 }
622 
623                 TTE_SET_USED(env->dtlb[i].tte);
624 
625                 return 0;
626             }
627 
628             env->dmmu.sfsr = sfsr;
629             env->dmmu.sfar = address; /* Fault address register */
630             env->dmmu.tag_access = (address & ~0x1fffULL) | context;
631             return 1;
632         }
633     }
634 
635     trace_mmu_helper_dmiss(address, context);
636 
637     /*
638      * On MMU misses:
639      * - UltraSPARC IIi: SFSR and SFAR unmodified
640      * - JPS1: SFAR updated and some fields of SFSR updated
641      */
642     env->dmmu.tag_access = (address & ~0x1fffULL) | context;
643     cs->exception_index = TT_DMISS;
644     return 1;
645 }
646 
647 static int get_physical_address_code(CPUSPARCState *env, hwaddr *physical,
648                                      int *prot, MemTxAttrs *attrs,
649                                      target_ulong address, int mmu_idx)
650 {
651     CPUState *cs = env_cpu(env);
652     unsigned int i;
653     uint64_t context;
654     bool is_user = false;
655 
656     switch (mmu_idx) {
657     case MMU_PHYS_IDX:
658     case MMU_USER_SECONDARY_IDX:
659     case MMU_KERNEL_SECONDARY_IDX:
660         g_assert_not_reached();
661     case MMU_USER_IDX:
662         is_user = true;
663         /* fallthru */
664     case MMU_KERNEL_IDX:
665         context = env->dmmu.mmu_primary_context & 0x1fff;
666         break;
667     default:
668         context = 0;
669         break;
670     }
671 
672     if (env->tl == 0) {
673         /* PRIMARY context */
674         context = env->dmmu.mmu_primary_context & 0x1fff;
675     } else {
676         /* NUCLEUS context */
677         context = 0;
678     }
679 
680     for (i = 0; i < 64; i++) {
681         /* ctx match, vaddr match, valid? */
682         if (ultrasparc_tag_match(&env->itlb[i],
683                                  address, context, physical)) {
684             /* access ok? */
685             if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) {
686                 /* Fault status register */
687                 if (env->immu.sfsr & SFSR_VALID_BIT) {
688                     env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before
689                                                      another fault) */
690                 } else {
691                     env->immu.sfsr = 0;
692                 }
693                 if (env->pstate & PS_PRIV) {
694                     env->immu.sfsr |= SFSR_PR_BIT;
695                 }
696                 if (env->tl > 0) {
697                     env->immu.sfsr |= SFSR_CT_NUCLEUS;
698                 }
699 
700                 /* FIXME: ASI field in SFSR must be set */
701                 env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT;
702                 cs->exception_index = TT_TFAULT;
703 
704                 env->immu.tag_access = (address & ~0x1fffULL) | context;
705 
706                 trace_mmu_helper_tfault(address, context);
707 
708                 return 1;
709             }
710             *prot = PAGE_EXEC;
711             TTE_SET_USED(env->itlb[i].tte);
712             return 0;
713         }
714     }
715 
716     trace_mmu_helper_tmiss(address, context);
717 
718     /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
719     env->immu.tag_access = (address & ~0x1fffULL) | context;
720     cs->exception_index = TT_TMISS;
721     return 1;
722 }
723 
724 static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
725                                 int *prot, int *access_index, MemTxAttrs *attrs,
726                                 target_ulong address, int rw, int mmu_idx,
727                                 target_ulong *page_size)
728 {
729     /* ??? We treat everything as a small page, then explicitly flush
730        everything when an entry is evicted.  */
731     *page_size = TARGET_PAGE_SIZE;
732 
733     /* safety net to catch wrong softmmu index use from dynamic code */
734     if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
735         if (rw == 2) {
736             trace_mmu_helper_get_phys_addr_code(env->tl, mmu_idx,
737                                                 env->dmmu.mmu_primary_context,
738                                                 env->dmmu.mmu_secondary_context,
739                                                 address);
740         } else {
741             trace_mmu_helper_get_phys_addr_data(env->tl, mmu_idx,
742                                                 env->dmmu.mmu_primary_context,
743                                                 env->dmmu.mmu_secondary_context,
744                                                 address);
745         }
746     }
747 
748     if (mmu_idx == MMU_PHYS_IDX) {
749         *physical = ultrasparc_truncate_physical(address);
750         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
751         return 0;
752     }
753 
754     if (rw == 2) {
755         return get_physical_address_code(env, physical, prot, attrs, address,
756                                          mmu_idx);
757     } else {
758         return get_physical_address_data(env, physical, prot, attrs, address,
759                                          rw, mmu_idx);
760     }
761 }
762 
763 /* Perform address translation */
764 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
765                         MMUAccessType access_type, int mmu_idx,
766                         bool probe, uintptr_t retaddr)
767 {
768     SPARCCPU *cpu = SPARC_CPU(cs);
769     CPUSPARCState *env = &cpu->env;
770     target_ulong vaddr;
771     hwaddr paddr;
772     target_ulong page_size;
773     MemTxAttrs attrs = {};
774     int error_code = 0, prot, access_index;
775 
776     address &= TARGET_PAGE_MASK;
777     error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
778                                       address, access_type,
779                                       mmu_idx, &page_size);
780     if (likely(error_code == 0)) {
781         vaddr = address;
782 
783         trace_mmu_helper_mmu_fault(address, paddr, mmu_idx, env->tl,
784                                    env->dmmu.mmu_primary_context,
785                                    env->dmmu.mmu_secondary_context);
786 
787         tlb_set_page_with_attrs(cs, vaddr, paddr, attrs, prot, mmu_idx,
788                                 page_size);
789         return true;
790     }
791     if (probe) {
792         return false;
793     }
794     cpu_loop_exit_restore(cs, retaddr);
795 }
796 
797 void dump_mmu(CPUSPARCState *env)
798 {
799     unsigned int i;
800     const char *mask;
801 
802     qemu_printf("MMU contexts: Primary: %" PRId64 ", Secondary: %"
803                 PRId64 "\n",
804                 env->dmmu.mmu_primary_context,
805                 env->dmmu.mmu_secondary_context);
806     qemu_printf("DMMU Tag Access: %" PRIx64 ", TSB Tag Target: %" PRIx64
807                 "\n", env->dmmu.tag_access, env->dmmu.tsb_tag_target);
808     if ((env->lsu & DMMU_E) == 0) {
809         qemu_printf("DMMU disabled\n");
810     } else {
811         qemu_printf("DMMU dump\n");
812         for (i = 0; i < 64; i++) {
813             switch (TTE_PGSIZE(env->dtlb[i].tte)) {
814             default:
815             case 0x0:
816                 mask = "  8k";
817                 break;
818             case 0x1:
819                 mask = " 64k";
820                 break;
821             case 0x2:
822                 mask = "512k";
823                 break;
824             case 0x3:
825                 mask = "  4M";
826                 break;
827             }
828             if (TTE_IS_VALID(env->dtlb[i].tte)) {
829                 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
830                             ", %s, %s, %s, %s, ie %s, ctx %" PRId64 " %s\n",
831                             i,
832                             env->dtlb[i].tag & (uint64_t)~0x1fffULL,
833                             TTE_PA(env->dtlb[i].tte),
834                             mask,
835                             TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user",
836                             TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO",
837                             TTE_IS_LOCKED(env->dtlb[i].tte) ?
838                             "locked" : "unlocked",
839                             TTE_IS_IE(env->dtlb[i].tte) ?
840                             "yes" : "no",
841                             env->dtlb[i].tag & (uint64_t)0x1fffULL,
842                             TTE_IS_GLOBAL(env->dtlb[i].tte) ?
843                             "global" : "local");
844             }
845         }
846     }
847     if ((env->lsu & IMMU_E) == 0) {
848         qemu_printf("IMMU disabled\n");
849     } else {
850         qemu_printf("IMMU dump\n");
851         for (i = 0; i < 64; i++) {
852             switch (TTE_PGSIZE(env->itlb[i].tte)) {
853             default:
854             case 0x0:
855                 mask = "  8k";
856                 break;
857             case 0x1:
858                 mask = " 64k";
859                 break;
860             case 0x2:
861                 mask = "512k";
862                 break;
863             case 0x3:
864                 mask = "  4M";
865                 break;
866             }
867             if (TTE_IS_VALID(env->itlb[i].tte)) {
868                 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
869                             ", %s, %s, %s, ctx %" PRId64 " %s\n",
870                             i,
871                             env->itlb[i].tag & (uint64_t)~0x1fffULL,
872                             TTE_PA(env->itlb[i].tte),
873                             mask,
874                             TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user",
875                             TTE_IS_LOCKED(env->itlb[i].tte) ?
876                             "locked" : "unlocked",
877                             env->itlb[i].tag & (uint64_t)0x1fffULL,
878                             TTE_IS_GLOBAL(env->itlb[i].tte) ?
879                             "global" : "local");
880             }
881         }
882     }
883 }
884 
885 #endif /* TARGET_SPARC64 */
886 
887 static int cpu_sparc_get_phys_page(CPUSPARCState *env, hwaddr *phys,
888                                    target_ulong addr, int rw, int mmu_idx)
889 {
890     target_ulong page_size;
891     int prot, access_index;
892     MemTxAttrs attrs = {};
893 
894     return get_physical_address(env, phys, &prot, &access_index, &attrs, addr,
895                                 rw, mmu_idx, &page_size);
896 }
897 
898 #if defined(TARGET_SPARC64)
899 hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr,
900                                            int mmu_idx)
901 {
902     hwaddr phys_addr;
903 
904     if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) {
905         return -1;
906     }
907     return phys_addr;
908 }
909 #endif
910 
911 hwaddr sparc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
912 {
913     SPARCCPU *cpu = SPARC_CPU(cs);
914     CPUSPARCState *env = &cpu->env;
915     hwaddr phys_addr;
916     int mmu_idx = cpu_mmu_index(env, false);
917 
918     if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) {
919         if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) {
920             return -1;
921         }
922     }
923     return phys_addr;
924 }
925 
926 #ifndef CONFIG_USER_ONLY
927 void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
928                                                  MMUAccessType access_type,
929                                                  int mmu_idx,
930                                                  uintptr_t retaddr)
931 {
932     SPARCCPU *cpu = SPARC_CPU(cs);
933     CPUSPARCState *env = &cpu->env;
934 
935 #ifdef TARGET_SPARC64
936     env->dmmu.sfsr = build_sfsr(env, mmu_idx, access_type);
937     env->dmmu.sfar = addr;
938 #else
939     env->mmuregs[4] = addr;
940 #endif
941 
942     cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
943 }
944 #endif /* !CONFIG_USER_ONLY */
945