xref: /qemu/target/sparc/mmu_helper.c (revision ca61e750)
1 /*
2  *  Sparc MMU helpers
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "qemu/qemu-print.h"
25 #include "trace.h"
26 
27 /* Sparc MMU emulation */
28 
29 #ifndef TARGET_SPARC64
30 /*
31  * Sparc V8 Reference MMU (SRMMU)
32  */
33 static const int access_table[8][8] = {
34     { 0, 0, 0, 0, 8, 0, 12, 12 },
35     { 0, 0, 0, 0, 8, 0, 0, 0 },
36     { 8, 8, 0, 0, 0, 8, 12, 12 },
37     { 8, 8, 0, 0, 0, 8, 0, 0 },
38     { 8, 0, 8, 0, 8, 8, 12, 12 },
39     { 8, 0, 8, 0, 8, 0, 8, 0 },
40     { 8, 8, 8, 0, 8, 8, 12, 12 },
41     { 8, 8, 8, 0, 8, 8, 8, 0 }
42 };
43 
44 static const int perm_table[2][8] = {
45     {
46         PAGE_READ,
47         PAGE_READ | PAGE_WRITE,
48         PAGE_READ | PAGE_EXEC,
49         PAGE_READ | PAGE_WRITE | PAGE_EXEC,
50         PAGE_EXEC,
51         PAGE_READ | PAGE_WRITE,
52         PAGE_READ | PAGE_EXEC,
53         PAGE_READ | PAGE_WRITE | PAGE_EXEC
54     },
55     {
56         PAGE_READ,
57         PAGE_READ | PAGE_WRITE,
58         PAGE_READ | PAGE_EXEC,
59         PAGE_READ | PAGE_WRITE | PAGE_EXEC,
60         PAGE_EXEC,
61         PAGE_READ,
62         0,
63         0,
64     }
65 };
66 
67 static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
68                                 int *prot, int *access_index, MemTxAttrs *attrs,
69                                 target_ulong address, int rw, int mmu_idx,
70                                 target_ulong *page_size)
71 {
72     int access_perms = 0;
73     hwaddr pde_ptr;
74     uint32_t pde;
75     int error_code = 0, is_dirty, is_user;
76     unsigned long page_offset;
77     CPUState *cs = env_cpu(env);
78     MemTxResult result;
79 
80     is_user = mmu_idx == MMU_USER_IDX;
81 
82     if (mmu_idx == MMU_PHYS_IDX) {
83         *page_size = TARGET_PAGE_SIZE;
84         /* Boot mode: instruction fetches are taken from PROM */
85         if (rw == 2 && (env->mmuregs[0] & env->def.mmu_bm)) {
86             *physical = env->prom_addr | (address & 0x7ffffULL);
87             *prot = PAGE_READ | PAGE_EXEC;
88             return 0;
89         }
90         *physical = address;
91         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
92         return 0;
93     }
94 
95     *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user ? 0 : 1);
96     *physical = 0xffffffffffff0000ULL;
97 
98     /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
99     /* Context base + context number */
100     pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
101     pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
102     if (result != MEMTX_OK) {
103         return 4 << 2; /* Translation fault, L = 0 */
104     }
105 
106     /* Ctx pde */
107     switch (pde & PTE_ENTRYTYPE_MASK) {
108     default:
109     case 0: /* Invalid */
110         return 1 << 2;
111     case 2: /* L0 PTE, maybe should not happen? */
112     case 3: /* Reserved */
113         return 4 << 2;
114     case 1: /* L0 PDE */
115         pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
116         pde = address_space_ldl(cs->as, pde_ptr,
117                                 MEMTXATTRS_UNSPECIFIED, &result);
118         if (result != MEMTX_OK) {
119             return (1 << 8) | (4 << 2); /* Translation fault, L = 1 */
120         }
121 
122         switch (pde & PTE_ENTRYTYPE_MASK) {
123         default:
124         case 0: /* Invalid */
125             return (1 << 8) | (1 << 2);
126         case 3: /* Reserved */
127             return (1 << 8) | (4 << 2);
128         case 1: /* L1 PDE */
129             pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
130             pde = address_space_ldl(cs->as, pde_ptr,
131                                     MEMTXATTRS_UNSPECIFIED, &result);
132             if (result != MEMTX_OK) {
133                 return (2 << 8) | (4 << 2); /* Translation fault, L = 2 */
134             }
135 
136             switch (pde & PTE_ENTRYTYPE_MASK) {
137             default:
138             case 0: /* Invalid */
139                 return (2 << 8) | (1 << 2);
140             case 3: /* Reserved */
141                 return (2 << 8) | (4 << 2);
142             case 1: /* L2 PDE */
143                 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
144                 pde = address_space_ldl(cs->as, pde_ptr,
145                                         MEMTXATTRS_UNSPECIFIED, &result);
146                 if (result != MEMTX_OK) {
147                     return (3 << 8) | (4 << 2); /* Translation fault, L = 3 */
148                 }
149 
150                 switch (pde & PTE_ENTRYTYPE_MASK) {
151                 default:
152                 case 0: /* Invalid */
153                     return (3 << 8) | (1 << 2);
154                 case 1: /* PDE, should not happen */
155                 case 3: /* Reserved */
156                     return (3 << 8) | (4 << 2);
157                 case 2: /* L3 PTE */
158                     page_offset = 0;
159                 }
160                 *page_size = TARGET_PAGE_SIZE;
161                 break;
162             case 2: /* L2 PTE */
163                 page_offset = address & 0x3f000;
164                 *page_size = 0x40000;
165             }
166             break;
167         case 2: /* L1 PTE */
168             page_offset = address & 0xfff000;
169             *page_size = 0x1000000;
170         }
171     }
172 
173     /* check access */
174     access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
175     error_code = access_table[*access_index][access_perms];
176     if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) {
177         return error_code;
178     }
179 
180     /* update page modified and dirty bits */
181     is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
182     if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
183         pde |= PG_ACCESSED_MASK;
184         if (is_dirty) {
185             pde |= PG_MODIFIED_MASK;
186         }
187         stl_phys_notdirty(cs->as, pde_ptr, pde);
188     }
189 
190     /* the page can be put in the TLB */
191     *prot = perm_table[is_user][access_perms];
192     if (!(pde & PG_MODIFIED_MASK)) {
193         /* only set write access if already dirty... otherwise wait
194            for dirty access */
195         *prot &= ~PAGE_WRITE;
196     }
197 
198     /* Even if large ptes, we map only one 4KB page in the cache to
199        avoid filling it too fast */
200     *physical = ((hwaddr)(pde & PTE_ADDR_MASK) << 4) + page_offset;
201     return error_code;
202 }
203 
204 /* Perform address translation */
205 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
206                         MMUAccessType access_type, int mmu_idx,
207                         bool probe, uintptr_t retaddr)
208 {
209     SPARCCPU *cpu = SPARC_CPU(cs);
210     CPUSPARCState *env = &cpu->env;
211     hwaddr paddr;
212     target_ulong vaddr;
213     target_ulong page_size;
214     int error_code = 0, prot, access_index;
215     MemTxAttrs attrs = {};
216 
217     /*
218      * TODO: If we ever need tlb_vaddr_to_host for this target,
219      * then we must figure out how to manipulate FSR and FAR
220      * when both MMU_NF and probe are set.  In the meantime,
221      * do not support this use case.
222      */
223     assert(!probe);
224 
225     address &= TARGET_PAGE_MASK;
226     error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
227                                       address, access_type,
228                                       mmu_idx, &page_size);
229     vaddr = address;
230     if (likely(error_code == 0)) {
231         qemu_log_mask(CPU_LOG_MMU,
232                       "Translate at %" VADDR_PRIx " -> "
233                       TARGET_FMT_plx ", vaddr " TARGET_FMT_lx "\n",
234                       address, paddr, vaddr);
235         tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, page_size);
236         return true;
237     }
238 
239     if (env->mmuregs[3]) { /* Fault status register */
240         env->mmuregs[3] = 1; /* overflow (not read before another fault) */
241     }
242     env->mmuregs[3] |= (access_index << 5) | error_code | 2;
243     env->mmuregs[4] = address; /* Fault address register */
244 
245     if ((env->mmuregs[0] & MMU_NF) || env->psret == 0)  {
246         /* No fault mode: if a mapping is available, just override
247            permissions. If no mapping is available, redirect accesses to
248            neverland. Fake/overridden mappings will be flushed when
249            switching to normal mode. */
250         prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
251         tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, TARGET_PAGE_SIZE);
252         return true;
253     } else {
254         if (access_type == MMU_INST_FETCH) {
255             cs->exception_index = TT_TFAULT;
256         } else {
257             cs->exception_index = TT_DFAULT;
258         }
259         cpu_loop_exit_restore(cs, retaddr);
260     }
261 }
262 
263 target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev)
264 {
265     CPUState *cs = env_cpu(env);
266     hwaddr pde_ptr;
267     uint32_t pde;
268     MemTxResult result;
269 
270     /*
271      * TODO: MMU probe operations are supposed to set the fault
272      * status registers, but we don't do this.
273      */
274 
275     /* Context base + context number */
276     pde_ptr = (hwaddr)(env->mmuregs[1] << 4) +
277         (env->mmuregs[2] << 2);
278     pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
279     if (result != MEMTX_OK) {
280         return 0;
281     }
282 
283     switch (pde & PTE_ENTRYTYPE_MASK) {
284     default:
285     case 0: /* Invalid */
286     case 2: /* PTE, maybe should not happen? */
287     case 3: /* Reserved */
288         return 0;
289     case 1: /* L1 PDE */
290         if (mmulev == 3) {
291             return pde;
292         }
293         pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
294         pde = address_space_ldl(cs->as, pde_ptr,
295                                 MEMTXATTRS_UNSPECIFIED, &result);
296         if (result != MEMTX_OK) {
297             return 0;
298         }
299 
300         switch (pde & PTE_ENTRYTYPE_MASK) {
301         default:
302         case 0: /* Invalid */
303         case 3: /* Reserved */
304             return 0;
305         case 2: /* L1 PTE */
306             return pde;
307         case 1: /* L2 PDE */
308             if (mmulev == 2) {
309                 return pde;
310             }
311             pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
312             pde = address_space_ldl(cs->as, pde_ptr,
313                                     MEMTXATTRS_UNSPECIFIED, &result);
314             if (result != MEMTX_OK) {
315                 return 0;
316             }
317 
318             switch (pde & PTE_ENTRYTYPE_MASK) {
319             default:
320             case 0: /* Invalid */
321             case 3: /* Reserved */
322                 return 0;
323             case 2: /* L2 PTE */
324                 return pde;
325             case 1: /* L3 PDE */
326                 if (mmulev == 1) {
327                     return pde;
328                 }
329                 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
330                 pde = address_space_ldl(cs->as, pde_ptr,
331                                         MEMTXATTRS_UNSPECIFIED, &result);
332                 if (result != MEMTX_OK) {
333                     return 0;
334                 }
335 
336                 switch (pde & PTE_ENTRYTYPE_MASK) {
337                 default:
338                 case 0: /* Invalid */
339                 case 1: /* PDE, should not happen */
340                 case 3: /* Reserved */
341                     return 0;
342                 case 2: /* L3 PTE */
343                     return pde;
344                 }
345             }
346         }
347     }
348     return 0;
349 }
350 
351 void dump_mmu(CPUSPARCState *env)
352 {
353     CPUState *cs = env_cpu(env);
354     target_ulong va, va1, va2;
355     unsigned int n, m, o;
356     hwaddr pa;
357     uint32_t pde;
358 
359     qemu_printf("Root ptr: " TARGET_FMT_plx ", ctx: %d\n",
360                 (hwaddr)env->mmuregs[1] << 4, env->mmuregs[2]);
361     for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
362         pde = mmu_probe(env, va, 2);
363         if (pde) {
364             pa = cpu_get_phys_page_debug(cs, va);
365             qemu_printf("VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx
366                         " PDE: " TARGET_FMT_lx "\n", va, pa, pde);
367             for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
368                 pde = mmu_probe(env, va1, 1);
369                 if (pde) {
370                     pa = cpu_get_phys_page_debug(cs, va1);
371                     qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
372                                 TARGET_FMT_plx " PDE: " TARGET_FMT_lx "\n",
373                                 va1, pa, pde);
374                     for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
375                         pde = mmu_probe(env, va2, 0);
376                         if (pde) {
377                             pa = cpu_get_phys_page_debug(cs, va2);
378                             qemu_printf("  VA: " TARGET_FMT_lx ", PA: "
379                                         TARGET_FMT_plx " PTE: "
380                                         TARGET_FMT_lx "\n",
381                                         va2, pa, pde);
382                         }
383                     }
384                 }
385             }
386         }
387     }
388 }
389 
390 /* Gdb expects all registers windows to be flushed in ram. This function handles
391  * reads (and only reads) in stack frames as if windows were flushed. We assume
392  * that the sparc ABI is followed.
393  */
394 int sparc_cpu_memory_rw_debug(CPUState *cs, vaddr address,
395                               uint8_t *buf, int len, bool is_write)
396 {
397     SPARCCPU *cpu = SPARC_CPU(cs);
398     CPUSPARCState *env = &cpu->env;
399     target_ulong addr = address;
400     int i;
401     int len1;
402     int cwp = env->cwp;
403 
404     if (!is_write) {
405         for (i = 0; i < env->nwindows; i++) {
406             int off;
407             target_ulong fp = env->regbase[cwp * 16 + 22];
408 
409             /* Assume fp == 0 means end of frame.  */
410             if (fp == 0) {
411                 break;
412             }
413 
414             cwp = cpu_cwp_inc(env, cwp + 1);
415 
416             /* Invalid window ? */
417             if (env->wim & (1 << cwp)) {
418                 break;
419             }
420 
421             /* According to the ABI, the stack is growing downward.  */
422             if (addr + len < fp) {
423                 break;
424             }
425 
426             /* Not in this frame.  */
427             if (addr > fp + 64) {
428                 continue;
429             }
430 
431             /* Handle access before this window.  */
432             if (addr < fp) {
433                 len1 = fp - addr;
434                 if (cpu_memory_rw_debug(cs, addr, buf, len1, is_write) != 0) {
435                     return -1;
436                 }
437                 addr += len1;
438                 len -= len1;
439                 buf += len1;
440             }
441 
442             /* Access byte per byte to registers. Not very efficient but speed
443              * is not critical.
444              */
445             off = addr - fp;
446             len1 = 64 - off;
447 
448             if (len1 > len) {
449                 len1 = len;
450             }
451 
452             for (; len1; len1--) {
453                 int reg = cwp * 16 + 8 + (off >> 2);
454                 union {
455                     uint32_t v;
456                     uint8_t c[4];
457                 } u;
458                 u.v = cpu_to_be32(env->regbase[reg]);
459                 *buf++ = u.c[off & 3];
460                 addr++;
461                 len--;
462                 off++;
463             }
464 
465             if (len == 0) {
466                 return 0;
467             }
468         }
469     }
470     return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
471 }
472 
473 #else /* !TARGET_SPARC64 */
474 
475 /* 41 bit physical address space */
476 static inline hwaddr ultrasparc_truncate_physical(uint64_t x)
477 {
478     return x & 0x1ffffffffffULL;
479 }
480 
481 /*
482  * UltraSparc IIi I/DMMUs
483  */
484 
485 /* Returns true if TTE tag is valid and matches virtual address value
486    in context requires virtual address mask value calculated from TTE
487    entry size */
488 static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
489                                        uint64_t address, uint64_t context,
490                                        hwaddr *physical)
491 {
492     uint64_t mask = -(8192ULL << 3 * TTE_PGSIZE(tlb->tte));
493 
494     /* valid, context match, virtual address match? */
495     if (TTE_IS_VALID(tlb->tte) &&
496         (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
497         && compare_masked(address, tlb->tag, mask)) {
498         /* decode physical address */
499         *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
500         return 1;
501     }
502 
503     return 0;
504 }
505 
506 static uint64_t build_sfsr(CPUSPARCState *env, int mmu_idx, int rw)
507 {
508     uint64_t sfsr = SFSR_VALID_BIT;
509 
510     switch (mmu_idx) {
511     case MMU_PHYS_IDX:
512         sfsr |= SFSR_CT_NOTRANS;
513         break;
514     case MMU_USER_IDX:
515     case MMU_KERNEL_IDX:
516         sfsr |= SFSR_CT_PRIMARY;
517         break;
518     case MMU_USER_SECONDARY_IDX:
519     case MMU_KERNEL_SECONDARY_IDX:
520         sfsr |= SFSR_CT_SECONDARY;
521         break;
522     case MMU_NUCLEUS_IDX:
523         sfsr |= SFSR_CT_NUCLEUS;
524         break;
525     default:
526         g_assert_not_reached();
527     }
528 
529     if (rw == 1) {
530         sfsr |= SFSR_WRITE_BIT;
531     } else if (rw == 4) {
532         sfsr |= SFSR_NF_BIT;
533     }
534 
535     if (env->pstate & PS_PRIV) {
536         sfsr |= SFSR_PR_BIT;
537     }
538 
539     if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */
540         sfsr |= SFSR_OW_BIT; /* overflow (not read before another fault) */
541     }
542 
543     /* FIXME: ASI field in SFSR must be set */
544 
545     return sfsr;
546 }
547 
548 static int get_physical_address_data(CPUSPARCState *env, hwaddr *physical,
549                                      int *prot, MemTxAttrs *attrs,
550                                      target_ulong address, int rw, int mmu_idx)
551 {
552     CPUState *cs = env_cpu(env);
553     unsigned int i;
554     uint64_t sfsr;
555     uint64_t context;
556     bool is_user = false;
557 
558     sfsr = build_sfsr(env, mmu_idx, rw);
559 
560     switch (mmu_idx) {
561     case MMU_PHYS_IDX:
562         g_assert_not_reached();
563     case MMU_USER_IDX:
564         is_user = true;
565         /* fallthru */
566     case MMU_KERNEL_IDX:
567         context = env->dmmu.mmu_primary_context & 0x1fff;
568         break;
569     case MMU_USER_SECONDARY_IDX:
570         is_user = true;
571         /* fallthru */
572     case MMU_KERNEL_SECONDARY_IDX:
573         context = env->dmmu.mmu_secondary_context & 0x1fff;
574         break;
575     default:
576         context = 0;
577         break;
578     }
579 
580     for (i = 0; i < 64; i++) {
581         /* ctx match, vaddr match, valid? */
582         if (ultrasparc_tag_match(&env->dtlb[i], address, context, physical)) {
583             int do_fault = 0;
584 
585             if (TTE_IS_IE(env->dtlb[i].tte)) {
586                 attrs->byte_swap = true;
587             }
588 
589             /* access ok? */
590             /* multiple bits in SFSR.FT may be set on TT_DFAULT */
591             if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) {
592                 do_fault = 1;
593                 sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */
594                 trace_mmu_helper_dfault(address, context, mmu_idx, env->tl);
595             }
596             if (rw == 4) {
597                 if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) {
598                     do_fault = 1;
599                     sfsr |= SFSR_FT_NF_E_BIT;
600                 }
601             } else {
602                 if (TTE_IS_NFO(env->dtlb[i].tte)) {
603                     do_fault = 1;
604                     sfsr |= SFSR_FT_NFO_BIT;
605                 }
606             }
607 
608             if (do_fault) {
609                 /* faults above are reported with TT_DFAULT. */
610                 cs->exception_index = TT_DFAULT;
611             } else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) {
612                 do_fault = 1;
613                 cs->exception_index = TT_DPROT;
614 
615                 trace_mmu_helper_dprot(address, context, mmu_idx, env->tl);
616             }
617 
618             if (!do_fault) {
619                 *prot = PAGE_READ;
620                 if (TTE_IS_W_OK(env->dtlb[i].tte)) {
621                     *prot |= PAGE_WRITE;
622                 }
623 
624                 TTE_SET_USED(env->dtlb[i].tte);
625 
626                 return 0;
627             }
628 
629             env->dmmu.sfsr = sfsr;
630             env->dmmu.sfar = address; /* Fault address register */
631             env->dmmu.tag_access = (address & ~0x1fffULL) | context;
632             return 1;
633         }
634     }
635 
636     trace_mmu_helper_dmiss(address, context);
637 
638     /*
639      * On MMU misses:
640      * - UltraSPARC IIi: SFSR and SFAR unmodified
641      * - JPS1: SFAR updated and some fields of SFSR updated
642      */
643     env->dmmu.tag_access = (address & ~0x1fffULL) | context;
644     cs->exception_index = TT_DMISS;
645     return 1;
646 }
647 
648 static int get_physical_address_code(CPUSPARCState *env, hwaddr *physical,
649                                      int *prot, MemTxAttrs *attrs,
650                                      target_ulong address, int mmu_idx)
651 {
652     CPUState *cs = env_cpu(env);
653     unsigned int i;
654     uint64_t context;
655     bool is_user = false;
656 
657     switch (mmu_idx) {
658     case MMU_PHYS_IDX:
659     case MMU_USER_SECONDARY_IDX:
660     case MMU_KERNEL_SECONDARY_IDX:
661         g_assert_not_reached();
662     case MMU_USER_IDX:
663         is_user = true;
664         /* fallthru */
665     case MMU_KERNEL_IDX:
666         context = env->dmmu.mmu_primary_context & 0x1fff;
667         break;
668     default:
669         context = 0;
670         break;
671     }
672 
673     if (env->tl == 0) {
674         /* PRIMARY context */
675         context = env->dmmu.mmu_primary_context & 0x1fff;
676     } else {
677         /* NUCLEUS context */
678         context = 0;
679     }
680 
681     for (i = 0; i < 64; i++) {
682         /* ctx match, vaddr match, valid? */
683         if (ultrasparc_tag_match(&env->itlb[i],
684                                  address, context, physical)) {
685             /* access ok? */
686             if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) {
687                 /* Fault status register */
688                 if (env->immu.sfsr & SFSR_VALID_BIT) {
689                     env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before
690                                                      another fault) */
691                 } else {
692                     env->immu.sfsr = 0;
693                 }
694                 if (env->pstate & PS_PRIV) {
695                     env->immu.sfsr |= SFSR_PR_BIT;
696                 }
697                 if (env->tl > 0) {
698                     env->immu.sfsr |= SFSR_CT_NUCLEUS;
699                 }
700 
701                 /* FIXME: ASI field in SFSR must be set */
702                 env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT;
703                 cs->exception_index = TT_TFAULT;
704 
705                 env->immu.tag_access = (address & ~0x1fffULL) | context;
706 
707                 trace_mmu_helper_tfault(address, context);
708 
709                 return 1;
710             }
711             *prot = PAGE_EXEC;
712             TTE_SET_USED(env->itlb[i].tte);
713             return 0;
714         }
715     }
716 
717     trace_mmu_helper_tmiss(address, context);
718 
719     /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
720     env->immu.tag_access = (address & ~0x1fffULL) | context;
721     cs->exception_index = TT_TMISS;
722     return 1;
723 }
724 
725 static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
726                                 int *prot, int *access_index, MemTxAttrs *attrs,
727                                 target_ulong address, int rw, int mmu_idx,
728                                 target_ulong *page_size)
729 {
730     /* ??? We treat everything as a small page, then explicitly flush
731        everything when an entry is evicted.  */
732     *page_size = TARGET_PAGE_SIZE;
733 
734     /* safety net to catch wrong softmmu index use from dynamic code */
735     if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
736         if (rw == 2) {
737             trace_mmu_helper_get_phys_addr_code(env->tl, mmu_idx,
738                                                 env->dmmu.mmu_primary_context,
739                                                 env->dmmu.mmu_secondary_context,
740                                                 address);
741         } else {
742             trace_mmu_helper_get_phys_addr_data(env->tl, mmu_idx,
743                                                 env->dmmu.mmu_primary_context,
744                                                 env->dmmu.mmu_secondary_context,
745                                                 address);
746         }
747     }
748 
749     if (mmu_idx == MMU_PHYS_IDX) {
750         *physical = ultrasparc_truncate_physical(address);
751         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
752         return 0;
753     }
754 
755     if (rw == 2) {
756         return get_physical_address_code(env, physical, prot, attrs, address,
757                                          mmu_idx);
758     } else {
759         return get_physical_address_data(env, physical, prot, attrs, address,
760                                          rw, mmu_idx);
761     }
762 }
763 
764 /* Perform address translation */
765 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
766                         MMUAccessType access_type, int mmu_idx,
767                         bool probe, uintptr_t retaddr)
768 {
769     SPARCCPU *cpu = SPARC_CPU(cs);
770     CPUSPARCState *env = &cpu->env;
771     target_ulong vaddr;
772     hwaddr paddr;
773     target_ulong page_size;
774     MemTxAttrs attrs = {};
775     int error_code = 0, prot, access_index;
776 
777     address &= TARGET_PAGE_MASK;
778     error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
779                                       address, access_type,
780                                       mmu_idx, &page_size);
781     if (likely(error_code == 0)) {
782         vaddr = address;
783 
784         trace_mmu_helper_mmu_fault(address, paddr, mmu_idx, env->tl,
785                                    env->dmmu.mmu_primary_context,
786                                    env->dmmu.mmu_secondary_context);
787 
788         tlb_set_page_with_attrs(cs, vaddr, paddr, attrs, prot, mmu_idx,
789                                 page_size);
790         return true;
791     }
792     if (probe) {
793         return false;
794     }
795     cpu_loop_exit_restore(cs, retaddr);
796 }
797 
798 void dump_mmu(CPUSPARCState *env)
799 {
800     unsigned int i;
801     const char *mask;
802 
803     qemu_printf("MMU contexts: Primary: %" PRId64 ", Secondary: %"
804                 PRId64 "\n",
805                 env->dmmu.mmu_primary_context,
806                 env->dmmu.mmu_secondary_context);
807     qemu_printf("DMMU Tag Access: %" PRIx64 ", TSB Tag Target: %" PRIx64
808                 "\n", env->dmmu.tag_access, env->dmmu.tsb_tag_target);
809     if ((env->lsu & DMMU_E) == 0) {
810         qemu_printf("DMMU disabled\n");
811     } else {
812         qemu_printf("DMMU dump\n");
813         for (i = 0; i < 64; i++) {
814             switch (TTE_PGSIZE(env->dtlb[i].tte)) {
815             default:
816             case 0x0:
817                 mask = "  8k";
818                 break;
819             case 0x1:
820                 mask = " 64k";
821                 break;
822             case 0x2:
823                 mask = "512k";
824                 break;
825             case 0x3:
826                 mask = "  4M";
827                 break;
828             }
829             if (TTE_IS_VALID(env->dtlb[i].tte)) {
830                 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
831                             ", %s, %s, %s, %s, ie %s, ctx %" PRId64 " %s\n",
832                             i,
833                             env->dtlb[i].tag & (uint64_t)~0x1fffULL,
834                             TTE_PA(env->dtlb[i].tte),
835                             mask,
836                             TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user",
837                             TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO",
838                             TTE_IS_LOCKED(env->dtlb[i].tte) ?
839                             "locked" : "unlocked",
840                             TTE_IS_IE(env->dtlb[i].tte) ?
841                             "yes" : "no",
842                             env->dtlb[i].tag & (uint64_t)0x1fffULL,
843                             TTE_IS_GLOBAL(env->dtlb[i].tte) ?
844                             "global" : "local");
845             }
846         }
847     }
848     if ((env->lsu & IMMU_E) == 0) {
849         qemu_printf("IMMU disabled\n");
850     } else {
851         qemu_printf("IMMU dump\n");
852         for (i = 0; i < 64; i++) {
853             switch (TTE_PGSIZE(env->itlb[i].tte)) {
854             default:
855             case 0x0:
856                 mask = "  8k";
857                 break;
858             case 0x1:
859                 mask = " 64k";
860                 break;
861             case 0x2:
862                 mask = "512k";
863                 break;
864             case 0x3:
865                 mask = "  4M";
866                 break;
867             }
868             if (TTE_IS_VALID(env->itlb[i].tte)) {
869                 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
870                             ", %s, %s, %s, ctx %" PRId64 " %s\n",
871                             i,
872                             env->itlb[i].tag & (uint64_t)~0x1fffULL,
873                             TTE_PA(env->itlb[i].tte),
874                             mask,
875                             TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user",
876                             TTE_IS_LOCKED(env->itlb[i].tte) ?
877                             "locked" : "unlocked",
878                             env->itlb[i].tag & (uint64_t)0x1fffULL,
879                             TTE_IS_GLOBAL(env->itlb[i].tte) ?
880                             "global" : "local");
881             }
882         }
883     }
884 }
885 
886 #endif /* TARGET_SPARC64 */
887 
888 static int cpu_sparc_get_phys_page(CPUSPARCState *env, hwaddr *phys,
889                                    target_ulong addr, int rw, int mmu_idx)
890 {
891     target_ulong page_size;
892     int prot, access_index;
893     MemTxAttrs attrs = {};
894 
895     return get_physical_address(env, phys, &prot, &access_index, &attrs, addr,
896                                 rw, mmu_idx, &page_size);
897 }
898 
899 #if defined(TARGET_SPARC64)
900 hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr,
901                                            int mmu_idx)
902 {
903     hwaddr phys_addr;
904 
905     if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) {
906         return -1;
907     }
908     return phys_addr;
909 }
910 #endif
911 
912 hwaddr sparc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
913 {
914     SPARCCPU *cpu = SPARC_CPU(cs);
915     CPUSPARCState *env = &cpu->env;
916     hwaddr phys_addr;
917     int mmu_idx = cpu_mmu_index(env, false);
918 
919     if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) {
920         if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) {
921             return -1;
922         }
923     }
924     return phys_addr;
925 }
926 
927 #ifndef CONFIG_USER_ONLY
928 G_NORETURN void sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
929                                               MMUAccessType access_type,
930                                               int mmu_idx,
931                                               uintptr_t retaddr)
932 {
933     SPARCCPU *cpu = SPARC_CPU(cs);
934     CPUSPARCState *env = &cpu->env;
935 
936 #ifdef TARGET_SPARC64
937     env->dmmu.sfsr = build_sfsr(env, mmu_idx, access_type);
938     env->dmmu.sfar = addr;
939 #else
940     env->mmuregs[4] = addr;
941 #endif
942 
943     cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
944 }
945 #endif /* !CONFIG_USER_ONLY */
946