xref: /qemu/target/xtensa/mmu_helper.c (revision 91e01270)
1 /*
2  * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/log.h"
30 #include "qemu/qemu-print.h"
31 #include "qemu/units.h"
32 #include "cpu.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/host-utils.h"
35 #include "exec/exec-all.h"
36 
37 #define XTENSA_MPU_SEGMENT_MASK 0x0000001f
38 #define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00
39 #define XTENSA_MPU_ACC_RIGHTS_SHIFT 8
40 #define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000
41 #define XTENSA_MPU_MEM_TYPE_SHIFT 12
42 #define XTENSA_MPU_ATTR_MASK 0x001fff00
43 
44 #define XTENSA_MPU_PROBE_B 0x40000000
45 #define XTENSA_MPU_PROBE_V 0x80000000
46 
47 #define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001
48 #define XTENSA_MPU_SYSTEM_TYPE_NC     0x0002
49 #define XTENSA_MPU_SYSTEM_TYPE_C      0x0003
50 #define XTENSA_MPU_SYSTEM_TYPE_MASK   0x0003
51 
52 #define XTENSA_MPU_TYPE_SYS_C     0x0010
53 #define XTENSA_MPU_TYPE_SYS_W     0x0020
54 #define XTENSA_MPU_TYPE_SYS_R     0x0040
55 #define XTENSA_MPU_TYPE_CPU_C     0x0100
56 #define XTENSA_MPU_TYPE_CPU_W     0x0200
57 #define XTENSA_MPU_TYPE_CPU_R     0x0400
58 #define XTENSA_MPU_TYPE_CPU_CACHE 0x0800
59 #define XTENSA_MPU_TYPE_B         0x1000
60 #define XTENSA_MPU_TYPE_INT       0x2000
61 
62 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
63 {
64     /*
65      * Probe the memory; we don't care about the result but
66      * only the side-effects (ie any MMU or other exception)
67      */
68     probe_access(env, vaddr, 1, MMU_INST_FETCH,
69                  cpu_mmu_index(env, true), GETPC());
70 }
71 
72 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
73 {
74     v = (v & 0xffffff00) | 0x1;
75     if (v != env->sregs[RASID]) {
76         env->sregs[RASID] = v;
77         tlb_flush(env_cpu(env));
78     }
79 }
80 
81 static uint32_t get_page_size(const CPUXtensaState *env,
82                               bool dtlb, uint32_t way)
83 {
84     uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
85 
86     switch (way) {
87     case 4:
88         return (tlbcfg >> 16) & 0x3;
89 
90     case 5:
91         return (tlbcfg >> 20) & 0x1;
92 
93     case 6:
94         return (tlbcfg >> 24) & 0x1;
95 
96     default:
97         return 0;
98     }
99 }
100 
101 /*!
102  * Get bit mask for the virtual address bits translated by the TLB way
103  */
104 static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env,
105                                          bool dtlb, uint32_t way)
106 {
107     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
108         bool varway56 = dtlb ?
109             env->config->dtlb.varway56 :
110             env->config->itlb.varway56;
111 
112         switch (way) {
113         case 4:
114             return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
115 
116         case 5:
117             if (varway56) {
118                 return 0xf8000000 << get_page_size(env, dtlb, way);
119             } else {
120                 return 0xf8000000;
121             }
122 
123         case 6:
124             if (varway56) {
125                 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
126             } else {
127                 return 0xf0000000;
128             }
129 
130         default:
131             return 0xfffff000;
132         }
133     } else {
134         return REGION_PAGE_MASK;
135     }
136 }
137 
138 /*!
139  * Get bit mask for the 'VPN without index' field.
140  * See ISA, 4.6.5.6, data format for RxTLB0
141  */
142 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
143 {
144     if (way < 4) {
145         bool is32 = (dtlb ?
146                 env->config->dtlb.nrefillentries :
147                 env->config->itlb.nrefillentries) == 32;
148         return is32 ? 0xffff8000 : 0xffffc000;
149     } else if (way == 4) {
150         return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
151     } else if (way <= 6) {
152         uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
153         bool varway56 = dtlb ?
154             env->config->dtlb.varway56 :
155             env->config->itlb.varway56;
156 
157         if (varway56) {
158             return mask << (way == 5 ? 2 : 3);
159         } else {
160             return mask << 1;
161         }
162     } else {
163         return 0xfffff000;
164     }
165 }
166 
167 /*!
168  * Split virtual address into VPN (with index) and entry index
169  * for the given TLB way
170  */
171 static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v,
172                                      bool dtlb, uint32_t *vpn,
173                                      uint32_t wi, uint32_t *ei)
174 {
175     bool varway56 = dtlb ?
176         env->config->dtlb.varway56 :
177         env->config->itlb.varway56;
178 
179     if (!dtlb) {
180         wi &= 7;
181     }
182 
183     if (wi < 4) {
184         bool is32 = (dtlb ?
185                 env->config->dtlb.nrefillentries :
186                 env->config->itlb.nrefillentries) == 32;
187         *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
188     } else {
189         switch (wi) {
190         case 4:
191             {
192                 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
193                 *ei = (v >> eibase) & 0x3;
194             }
195             break;
196 
197         case 5:
198             if (varway56) {
199                 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
200                 *ei = (v >> eibase) & 0x3;
201             } else {
202                 *ei = (v >> 27) & 0x1;
203             }
204             break;
205 
206         case 6:
207             if (varway56) {
208                 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
209                 *ei = (v >> eibase) & 0x7;
210             } else {
211                 *ei = (v >> 28) & 0x1;
212             }
213             break;
214 
215         default:
216             *ei = 0;
217             break;
218         }
219     }
220     *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
221 }
222 
223 /*!
224  * Split TLB address into TLB way, entry index and VPN (with index).
225  * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
226  */
227 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
228         uint32_t *vpn, uint32_t *wi, uint32_t *ei)
229 {
230     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
231         *wi = v & (dtlb ? 0xf : 0x7);
232         split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
233     } else {
234         *vpn = v & REGION_PAGE_MASK;
235         *wi = 0;
236         *ei = (v >> 29) & 0x7;
237     }
238 }
239 
240 static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb,
241                                               unsigned wi, unsigned ei)
242 {
243     return dtlb ?
244         env->dtlb[wi] + ei :
245         env->itlb[wi] + ei;
246 }
247 
248 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
249         uint32_t v, bool dtlb, uint32_t *pwi)
250 {
251     uint32_t vpn;
252     uint32_t wi;
253     uint32_t ei;
254 
255     split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
256     if (pwi) {
257         *pwi = wi;
258     }
259     return xtensa_tlb_get_entry(env, dtlb, wi, ei);
260 }
261 
262 static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
263                                      xtensa_tlb_entry *entry, bool dtlb,
264                                      unsigned wi, unsigned ei, uint32_t vpn,
265                                      uint32_t pte)
266 {
267     entry->vaddr = vpn;
268     entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
269     entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
270     entry->attr = pte & 0xf;
271 }
272 
273 static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
274                                  unsigned wi, unsigned ei,
275                                  uint32_t vpn, uint32_t pte)
276 {
277     CPUState *cs = env_cpu(env);
278     xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
279 
280     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
281         if (entry->variable) {
282             if (entry->asid) {
283                 tlb_flush_page(cs, entry->vaddr);
284             }
285             xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
286             tlb_flush_page(cs, entry->vaddr);
287         } else {
288             qemu_log_mask(LOG_GUEST_ERROR,
289                           "%s %d, %d, %d trying to set immutable entry\n",
290                           __func__, dtlb, wi, ei);
291         }
292     } else {
293         tlb_flush_page(cs, entry->vaddr);
294         if (xtensa_option_enabled(env->config,
295                     XTENSA_OPTION_REGION_TRANSLATION)) {
296             entry->paddr = pte & REGION_PAGE_MASK;
297         }
298         entry->attr = pte & 0xf;
299     }
300 }
301 
302 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
303 {
304     XtensaCPU *cpu = XTENSA_CPU(cs);
305     uint32_t paddr;
306     uint32_t page_size;
307     unsigned access;
308 
309     if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
310                 &paddr, &page_size, &access) == 0) {
311         return paddr;
312     }
313     if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
314                 &paddr, &page_size, &access) == 0) {
315         return paddr;
316     }
317     return ~0;
318 }
319 
320 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
321                                    const xtensa_tlb *tlb,
322                                    xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
323 {
324     unsigned wi, ei;
325 
326     for (wi = 0; wi < tlb->nways; ++wi) {
327         for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
328             entry[wi][ei].asid = 0;
329             entry[wi][ei].variable = true;
330         }
331     }
332 }
333 
334 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
335                                  const xtensa_tlb *tlb,
336                                  xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
337 {
338     if (!tlb->varway56) {
339         static const xtensa_tlb_entry way5[] = {
340             {
341                 .vaddr = 0xd0000000,
342                 .paddr = 0,
343                 .asid = 1,
344                 .attr = 7,
345                 .variable = false,
346             }, {
347                 .vaddr = 0xd8000000,
348                 .paddr = 0,
349                 .asid = 1,
350                 .attr = 3,
351                 .variable = false,
352             }
353         };
354         static const xtensa_tlb_entry way6[] = {
355             {
356                 .vaddr = 0xe0000000,
357                 .paddr = 0xf0000000,
358                 .asid = 1,
359                 .attr = 7,
360                 .variable = false,
361             }, {
362                 .vaddr = 0xf0000000,
363                 .paddr = 0xf0000000,
364                 .asid = 1,
365                 .attr = 3,
366                 .variable = false,
367             }
368         };
369         memcpy(entry[5], way5, sizeof(way5));
370         memcpy(entry[6], way6, sizeof(way6));
371     } else {
372         uint32_t ei;
373         for (ei = 0; ei < 8; ++ei) {
374             entry[6][ei].vaddr = ei << 29;
375             entry[6][ei].paddr = ei << 29;
376             entry[6][ei].asid = 1;
377             entry[6][ei].attr = 3;
378         }
379     }
380 }
381 
382 static void reset_tlb_region_way0(CPUXtensaState *env,
383                                   xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
384 {
385     unsigned ei;
386 
387     for (ei = 0; ei < 8; ++ei) {
388         entry[0][ei].vaddr = ei << 29;
389         entry[0][ei].paddr = ei << 29;
390         entry[0][ei].asid = 1;
391         entry[0][ei].attr = 2;
392         entry[0][ei].variable = true;
393     }
394 }
395 
396 void reset_mmu(CPUXtensaState *env)
397 {
398     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
399         env->sregs[RASID] = 0x04030201;
400         env->sregs[ITLBCFG] = 0;
401         env->sregs[DTLBCFG] = 0;
402         env->autorefill_idx = 0;
403         reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
404         reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
405         reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
406         reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
407     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
408         unsigned i;
409 
410         env->sregs[MPUENB] = 0;
411         env->sregs[MPUCFG] = env->config->n_mpu_fg_segments;
412         env->sregs[CACHEADRDIS] = 0;
413         assert(env->config->n_mpu_bg_segments > 0 &&
414                env->config->mpu_bg[0].vaddr == 0);
415         for (i = 1; i < env->config->n_mpu_bg_segments; ++i) {
416             assert(env->config->mpu_bg[i].vaddr >=
417                    env->config->mpu_bg[i - 1].vaddr);
418         }
419     } else {
420         env->sregs[CACHEATTR] = 0x22222222;
421         reset_tlb_region_way0(env, env->itlb);
422         reset_tlb_region_way0(env, env->dtlb);
423     }
424 }
425 
426 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
427 {
428     unsigned i;
429     for (i = 0; i < 4; ++i) {
430         if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
431             return i;
432         }
433     }
434     return 0xff;
435 }
436 
437 /*!
438  * Lookup xtensa TLB for the given virtual address.
439  * See ISA, 4.6.2.2
440  *
441  * \param pwi: [out] way index
442  * \param pei: [out] entry index
443  * \param pring: [out] access ring
444  * \return 0 if ok, exception cause code otherwise
445  */
446 static int xtensa_tlb_lookup(const CPUXtensaState *env,
447                              uint32_t addr, bool dtlb,
448                              uint32_t *pwi, uint32_t *pei, uint8_t *pring)
449 {
450     const xtensa_tlb *tlb = dtlb ?
451         &env->config->dtlb : &env->config->itlb;
452     const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
453         env->dtlb : env->itlb;
454 
455     int nhits = 0;
456     unsigned wi;
457 
458     for (wi = 0; wi < tlb->nways; ++wi) {
459         uint32_t vpn;
460         uint32_t ei;
461         split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
462         if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
463             unsigned ring = get_ring(env, entry[wi][ei].asid);
464             if (ring < 4) {
465                 if (++nhits > 1) {
466                     return dtlb ?
467                         LOAD_STORE_TLB_MULTI_HIT_CAUSE :
468                         INST_TLB_MULTI_HIT_CAUSE;
469                 }
470                 *pwi = wi;
471                 *pei = ei;
472                 *pring = ring;
473             }
474         }
475     }
476     return nhits ? 0 :
477         (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
478 }
479 
480 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
481 {
482     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
483         uint32_t wi;
484         const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
485         return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
486     } else {
487         return v & REGION_PAGE_MASK;
488     }
489 }
490 
491 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
492 {
493     const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
494     return entry->paddr | entry->attr;
495 }
496 
497 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
498 {
499     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
500         uint32_t wi;
501         xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
502         if (entry->variable && entry->asid) {
503             tlb_flush_page(env_cpu(env), entry->vaddr);
504             entry->asid = 0;
505         }
506     }
507 }
508 
509 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
510 {
511     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
512         uint32_t wi;
513         uint32_t ei;
514         uint8_t ring;
515         int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
516 
517         switch (res) {
518         case 0:
519             if (ring >= xtensa_get_ring(env)) {
520                 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
521             }
522             break;
523 
524         case INST_TLB_MULTI_HIT_CAUSE:
525         case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
526             HELPER(exception_cause_vaddr)(env, env->pc, res, v);
527             break;
528         }
529         return 0;
530     } else {
531         return (v & REGION_PAGE_MASK) | 0x1;
532     }
533 }
534 
535 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
536 {
537     uint32_t vpn;
538     uint32_t wi;
539     uint32_t ei;
540     split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
541     xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
542 }
543 
544 /*!
545  * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
546  * See ISA, 4.6.5.10
547  */
548 static unsigned mmu_attr_to_access(uint32_t attr)
549 {
550     unsigned access = 0;
551 
552     if (attr < 12) {
553         access |= PAGE_READ;
554         if (attr & 0x1) {
555             access |= PAGE_EXEC;
556         }
557         if (attr & 0x2) {
558             access |= PAGE_WRITE;
559         }
560 
561         switch (attr & 0xc) {
562         case 0:
563             access |= PAGE_CACHE_BYPASS;
564             break;
565 
566         case 4:
567             access |= PAGE_CACHE_WB;
568             break;
569 
570         case 8:
571             access |= PAGE_CACHE_WT;
572             break;
573         }
574     } else if (attr == 13) {
575         access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
576     }
577     return access;
578 }
579 
580 /*!
581  * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
582  * See ISA, 4.6.3.3
583  */
584 static unsigned region_attr_to_access(uint32_t attr)
585 {
586     static const unsigned access[16] = {
587          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
588          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
589          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
590          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
591          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
592          [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
593         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
594     };
595 
596     return access[attr & 0xf];
597 }
598 
599 /*!
600  * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
601  * See ISA, A.2.14 The Cache Attribute Register
602  */
603 static unsigned cacheattr_attr_to_access(uint32_t attr)
604 {
605     static const unsigned access[16] = {
606          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
607          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
608          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
609          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
610          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
611         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
612     };
613 
614     return access[attr & 0xf];
615 }
616 
617 struct attr_pattern {
618     uint32_t mask;
619     uint32_t value;
620 };
621 
622 static int attr_pattern_match(uint32_t attr,
623                               const struct attr_pattern *pattern,
624                               size_t n)
625 {
626     size_t i;
627 
628     for (i = 0; i < n; ++i) {
629         if ((attr & pattern[i].mask) == pattern[i].value) {
630             return 1;
631         }
632     }
633     return 0;
634 }
635 
636 static unsigned mpu_attr_to_cpu_cache(uint32_t attr)
637 {
638     static const struct attr_pattern cpu_c[] = {
639         { .mask = 0x18f, .value = 0x089 },
640         { .mask = 0x188, .value = 0x080 },
641         { .mask = 0x180, .value = 0x180 },
642     };
643 
644     unsigned type = 0;
645 
646     if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) {
647         type |= XTENSA_MPU_TYPE_CPU_CACHE;
648         if (attr & 0x10) {
649             type |= XTENSA_MPU_TYPE_CPU_C;
650         }
651         if (attr & 0x20) {
652             type |= XTENSA_MPU_TYPE_CPU_W;
653         }
654         if (attr & 0x40) {
655             type |= XTENSA_MPU_TYPE_CPU_R;
656         }
657     }
658     return type;
659 }
660 
661 static unsigned mpu_attr_to_type(uint32_t attr)
662 {
663     static const struct attr_pattern device_type[] = {
664         { .mask = 0x1f6, .value = 0x000 },
665         { .mask = 0x1f6, .value = 0x006 },
666     };
667     static const struct attr_pattern sys_nc_type[] = {
668         { .mask = 0x1fe, .value = 0x018 },
669         { .mask = 0x1fe, .value = 0x01e },
670         { .mask = 0x18f, .value = 0x089 },
671     };
672     static const struct attr_pattern sys_c_type[] = {
673         { .mask = 0x1f8, .value = 0x010 },
674         { .mask = 0x188, .value = 0x080 },
675         { .mask = 0x1f0, .value = 0x030 },
676         { .mask = 0x180, .value = 0x180 },
677     };
678     static const struct attr_pattern b[] = {
679         { .mask = 0x1f7, .value = 0x001 },
680         { .mask = 0x1f7, .value = 0x007 },
681         { .mask = 0x1ff, .value = 0x019 },
682         { .mask = 0x1ff, .value = 0x01f },
683     };
684 
685     unsigned type = 0;
686 
687     attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT;
688     if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) {
689         type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE;
690         if (attr & 0x80) {
691             type |= XTENSA_MPU_TYPE_INT;
692         }
693     }
694     if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) {
695         type |= XTENSA_MPU_SYSTEM_TYPE_NC;
696     }
697     if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) {
698         type |= XTENSA_MPU_SYSTEM_TYPE_C;
699         if (attr & 0x1) {
700             type |= XTENSA_MPU_TYPE_SYS_C;
701         }
702         if (attr & 0x2) {
703             type |= XTENSA_MPU_TYPE_SYS_W;
704         }
705         if (attr & 0x4) {
706             type |= XTENSA_MPU_TYPE_SYS_R;
707         }
708     }
709     if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) {
710         type |= XTENSA_MPU_TYPE_B;
711     }
712     type |= mpu_attr_to_cpu_cache(attr);
713 
714     return type;
715 }
716 
717 static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring)
718 {
719     static const unsigned access[2][16] = {
720         [0] = {
721              [4] = PAGE_READ,
722              [5] = PAGE_READ              | PAGE_EXEC,
723              [6] = PAGE_READ | PAGE_WRITE,
724              [7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
725              [8] =             PAGE_WRITE,
726              [9] = PAGE_READ | PAGE_WRITE,
727             [10] = PAGE_READ | PAGE_WRITE,
728             [11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
729             [12] = PAGE_READ,
730             [13] = PAGE_READ              | PAGE_EXEC,
731             [14] = PAGE_READ | PAGE_WRITE,
732             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
733         },
734         [1] = {
735              [8] =             PAGE_WRITE,
736              [9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
737             [10] = PAGE_READ,
738             [11] = PAGE_READ              | PAGE_EXEC,
739             [12] = PAGE_READ,
740             [13] = PAGE_READ              | PAGE_EXEC,
741             [14] = PAGE_READ | PAGE_WRITE,
742             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
743         },
744     };
745     unsigned rv;
746     unsigned type;
747 
748     type = mpu_attr_to_cpu_cache(attr);
749     rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >>
750         XTENSA_MPU_ACC_RIGHTS_SHIFT];
751 
752     if (type & XTENSA_MPU_TYPE_CPU_CACHE) {
753         rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT;
754     } else {
755         rv |= PAGE_CACHE_BYPASS;
756     }
757     return rv;
758 }
759 
760 static bool is_access_granted(unsigned access, int is_write)
761 {
762     switch (is_write) {
763     case 0:
764         return access & PAGE_READ;
765 
766     case 1:
767         return access & PAGE_WRITE;
768 
769     case 2:
770         return access & PAGE_EXEC;
771 
772     default:
773         return 0;
774     }
775 }
776 
777 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
778 
779 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
780                                  uint32_t vaddr, int is_write, int mmu_idx,
781                                  uint32_t *paddr, uint32_t *page_size,
782                                  unsigned *access, bool may_lookup_pt)
783 {
784     bool dtlb = is_write != 2;
785     uint32_t wi;
786     uint32_t ei;
787     uint8_t ring;
788     uint32_t vpn;
789     uint32_t pte;
790     const xtensa_tlb_entry *entry = NULL;
791     xtensa_tlb_entry tmp_entry;
792     int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
793 
794     if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
795         may_lookup_pt && get_pte(env, vaddr, &pte)) {
796         ring = (pte >> 4) & 0x3;
797         wi = 0;
798         split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
799 
800         if (update_tlb) {
801             wi = ++env->autorefill_idx & 0x3;
802             xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
803             env->sregs[EXCVADDR] = vaddr;
804             qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
805                           __func__, vaddr, vpn, pte);
806         } else {
807             xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
808             entry = &tmp_entry;
809         }
810         ret = 0;
811     }
812     if (ret != 0) {
813         return ret;
814     }
815 
816     if (entry == NULL) {
817         entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
818     }
819 
820     if (ring < mmu_idx) {
821         return dtlb ?
822             LOAD_STORE_PRIVILEGE_CAUSE :
823             INST_FETCH_PRIVILEGE_CAUSE;
824     }
825 
826     *access = mmu_attr_to_access(entry->attr) &
827         ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
828     if (!is_access_granted(*access, is_write)) {
829         return dtlb ?
830             (is_write ?
831              STORE_PROHIBITED_CAUSE :
832              LOAD_PROHIBITED_CAUSE) :
833             INST_FETCH_PROHIBITED_CAUSE;
834     }
835 
836     *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
837     *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
838 
839     return 0;
840 }
841 
842 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
843 {
844     CPUState *cs = env_cpu(env);
845     uint32_t paddr;
846     uint32_t page_size;
847     unsigned access;
848     uint32_t pt_vaddr =
849         (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
850     int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
851                                     &paddr, &page_size, &access, false);
852 
853     if (ret == 0) {
854         qemu_log_mask(CPU_LOG_MMU,
855                       "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
856                       __func__, vaddr, pt_vaddr, paddr);
857     } else {
858         qemu_log_mask(CPU_LOG_MMU,
859                       "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
860                       __func__, vaddr, pt_vaddr, ret);
861     }
862 
863     if (ret == 0) {
864         MemTxResult result;
865 
866         *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
867                                  &result);
868         if (result != MEMTX_OK) {
869             qemu_log_mask(CPU_LOG_MMU,
870                           "%s: couldn't load PTE: transaction failed (%u)\n",
871                           __func__, (unsigned)result);
872             ret = 1;
873         }
874     }
875     return ret == 0;
876 }
877 
878 static int get_physical_addr_region(CPUXtensaState *env,
879                                     uint32_t vaddr, int is_write, int mmu_idx,
880                                     uint32_t *paddr, uint32_t *page_size,
881                                     unsigned *access)
882 {
883     bool dtlb = is_write != 2;
884     uint32_t wi = 0;
885     uint32_t ei = (vaddr >> 29) & 0x7;
886     const xtensa_tlb_entry *entry =
887         xtensa_tlb_get_entry(env, dtlb, wi, ei);
888 
889     *access = region_attr_to_access(entry->attr);
890     if (!is_access_granted(*access, is_write)) {
891         return dtlb ?
892             (is_write ?
893              STORE_PROHIBITED_CAUSE :
894              LOAD_PROHIBITED_CAUSE) :
895             INST_FETCH_PROHIBITED_CAUSE;
896     }
897 
898     *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
899     *page_size = ~REGION_PAGE_MASK + 1;
900 
901     return 0;
902 }
903 
904 static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n,
905                              uint32_t vaddr, unsigned *segment)
906 {
907     unsigned nhits = 0;
908     unsigned i;
909 
910     for (i = 0; i < n; ++i) {
911         if (vaddr >= entry[i].vaddr &&
912             (i == n - 1 || vaddr < entry[i + 1].vaddr)) {
913             if (nhits++) {
914                 break;
915             }
916             *segment = i;
917         }
918     }
919     return nhits;
920 }
921 
922 void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v)
923 {
924     v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1;
925 
926     if (v != env->sregs[MPUENB]) {
927         env->sregs[MPUENB] = v;
928         tlb_flush(env_cpu(env));
929     }
930 }
931 
932 void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v)
933 {
934     unsigned segment = p & XTENSA_MPU_SEGMENT_MASK;
935 
936     if (segment < env->config->n_mpu_fg_segments) {
937         env->mpu_fg[segment].vaddr = v & -env->config->mpu_align;
938         env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK;
939         env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v);
940         tlb_flush(env_cpu(env));
941     }
942 }
943 
944 uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s)
945 {
946     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
947 
948     if (segment < env->config->n_mpu_fg_segments) {
949         return env->mpu_fg[segment].vaddr |
950             extract32(env->sregs[MPUENB], segment, 1);
951     } else {
952         return 0;
953     }
954 }
955 
956 uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s)
957 {
958     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
959 
960     if (segment < env->config->n_mpu_fg_segments) {
961         return env->mpu_fg[segment].attr;
962     } else {
963         return 0;
964     }
965 }
966 
967 uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v)
968 {
969     unsigned nhits;
970     unsigned segment = XTENSA_MPU_PROBE_B;
971     unsigned bg_segment;
972 
973     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
974                               v, &segment);
975     if (nhits > 1) {
976         HELPER(exception_cause_vaddr)(env, env->pc,
977                                       LOAD_STORE_TLB_MULTI_HIT_CAUSE, v);
978     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
979         return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V;
980     } else {
981         xtensa_mpu_lookup(env->config->mpu_bg,
982                           env->config->n_mpu_bg_segments,
983                           v, &bg_segment);
984         return env->config->mpu_bg[bg_segment].attr | segment;
985     }
986 }
987 
988 static int get_physical_addr_mpu(CPUXtensaState *env,
989                                  uint32_t vaddr, int is_write, int mmu_idx,
990                                  uint32_t *paddr, uint32_t *page_size,
991                                  unsigned *access)
992 {
993     unsigned nhits;
994     unsigned segment;
995     uint32_t attr;
996 
997     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
998                               vaddr, &segment);
999     if (nhits > 1) {
1000         return is_write < 2 ?
1001             LOAD_STORE_TLB_MULTI_HIT_CAUSE :
1002             INST_TLB_MULTI_HIT_CAUSE;
1003     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1004         attr = env->mpu_fg[segment].attr;
1005     } else {
1006         xtensa_mpu_lookup(env->config->mpu_bg,
1007                           env->config->n_mpu_bg_segments,
1008                           vaddr, &segment);
1009         attr = env->config->mpu_bg[segment].attr;
1010     }
1011 
1012     *access = mpu_attr_to_access(attr, mmu_idx);
1013     if (!is_access_granted(*access, is_write)) {
1014         return is_write < 2 ?
1015             (is_write ?
1016              STORE_PROHIBITED_CAUSE :
1017              LOAD_PROHIBITED_CAUSE) :
1018             INST_FETCH_PROHIBITED_CAUSE;
1019     }
1020     *paddr = vaddr;
1021     *page_size = env->config->mpu_align;
1022     return 0;
1023 }
1024 
1025 /*!
1026  * Convert virtual address to physical addr.
1027  * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
1028  *
1029  * \return 0 if ok, exception cause code otherwise
1030  */
1031 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
1032                              uint32_t vaddr, int is_write, int mmu_idx,
1033                              uint32_t *paddr, uint32_t *page_size,
1034                              unsigned *access)
1035 {
1036     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
1037         return get_physical_addr_mmu(env, update_tlb,
1038                                      vaddr, is_write, mmu_idx, paddr,
1039                                      page_size, access, true);
1040     } else if (xtensa_option_bits_enabled(env->config,
1041                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1042                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
1043         return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
1044                                         paddr, page_size, access);
1045     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1046         return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx,
1047                                      paddr, page_size, access);
1048     } else {
1049         *paddr = vaddr;
1050         *page_size = TARGET_PAGE_SIZE;
1051         *access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >>
1052                                            ((vaddr & 0xe0000000) >> 27));
1053         return 0;
1054     }
1055 }
1056 
1057 static void dump_tlb(CPUXtensaState *env, bool dtlb)
1058 {
1059     unsigned wi, ei;
1060     const xtensa_tlb *conf =
1061         dtlb ? &env->config->dtlb : &env->config->itlb;
1062     unsigned (*attr_to_access)(uint32_t) =
1063         xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
1064         mmu_attr_to_access : region_attr_to_access;
1065 
1066     for (wi = 0; wi < conf->nways; ++wi) {
1067         uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
1068         const char *sz_text;
1069         bool print_header = true;
1070 
1071         if (sz >= 0x100000) {
1072             sz /= MiB;
1073             sz_text = "MB";
1074         } else {
1075             sz /= KiB;
1076             sz_text = "KB";
1077         }
1078 
1079         for (ei = 0; ei < conf->way_size[wi]; ++ei) {
1080             const xtensa_tlb_entry *entry =
1081                 xtensa_tlb_get_entry(env, dtlb, wi, ei);
1082 
1083             if (entry->asid) {
1084                 static const char * const cache_text[8] = {
1085                     [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
1086                     [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
1087                     [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
1088                     [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
1089                 };
1090                 unsigned access = attr_to_access(entry->attr);
1091                 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
1092                     PAGE_CACHE_SHIFT;
1093 
1094                 if (print_header) {
1095                     print_header = false;
1096                     qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text);
1097                     qemu_printf("\tVaddr       Paddr       ASID  Attr RWX Cache\n"
1098                                 "\t----------  ----------  ----  ---- --- -------\n");
1099                 }
1100                 qemu_printf("\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %s\n",
1101                             entry->vaddr,
1102                             entry->paddr,
1103                             entry->asid,
1104                             entry->attr,
1105                             (access & PAGE_READ) ? 'R' : '-',
1106                             (access & PAGE_WRITE) ? 'W' : '-',
1107                             (access & PAGE_EXEC) ? 'X' : '-',
1108                             cache_text[cache_idx] ?
1109                             cache_text[cache_idx] : "Invalid");
1110             }
1111         }
1112     }
1113 }
1114 
1115 static void dump_mpu(CPUXtensaState *env,
1116                      const xtensa_mpu_entry *entry, unsigned n)
1117 {
1118     unsigned i;
1119 
1120     qemu_printf("\t%s  Vaddr       Attr        Ring0  Ring1  System Type    CPU cache\n"
1121                 "\t%s  ----------  ----------  -----  -----  -------------  ---------\n",
1122                 env ? "En" : "  ",
1123                 env ? "--" : "  ");
1124 
1125     for (i = 0; i < n; ++i) {
1126         uint32_t attr = entry[i].attr;
1127         unsigned access0 = mpu_attr_to_access(attr, 0);
1128         unsigned access1 = mpu_attr_to_access(attr, 1);
1129         unsigned type = mpu_attr_to_type(attr);
1130         char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' ';
1131 
1132         qemu_printf("\t %c  0x%08x  0x%08x   %c%c%c    %c%c%c   ",
1133                     env ?
1134                     ((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ',
1135                     entry[i].vaddr, attr,
1136                     (access0 & PAGE_READ) ? 'R' : '-',
1137                     (access0 & PAGE_WRITE) ? 'W' : '-',
1138                     (access0 & PAGE_EXEC) ? 'X' : '-',
1139                     (access1 & PAGE_READ) ? 'R' : '-',
1140                     (access1 & PAGE_WRITE) ? 'W' : '-',
1141                     (access1 & PAGE_EXEC) ? 'X' : '-');
1142 
1143         switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) {
1144         case XTENSA_MPU_SYSTEM_TYPE_DEVICE:
1145             qemu_printf("Device %cB %3s\n",
1146                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1147                         (type & XTENSA_MPU_TYPE_INT) ? "int" : "");
1148             break;
1149         case XTENSA_MPU_SYSTEM_TYPE_NC:
1150             qemu_printf("Sys NC %cB      %c%c%c\n",
1151                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1152                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1153                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1154                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1155             break;
1156         case XTENSA_MPU_SYSTEM_TYPE_C:
1157             qemu_printf("Sys  C %c%c%c     %c%c%c\n",
1158                         (type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-',
1159                         (type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-',
1160                         (type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-',
1161                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1162                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1163                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1164             break;
1165         default:
1166             qemu_printf("Unknown\n");
1167             break;
1168         }
1169     }
1170 }
1171 
1172 void dump_mmu(CPUXtensaState *env)
1173 {
1174     if (xtensa_option_bits_enabled(env->config,
1175                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1176                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
1177                 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
1178 
1179         qemu_printf("ITLB:\n");
1180         dump_tlb(env, false);
1181         qemu_printf("\nDTLB:\n");
1182         dump_tlb(env, true);
1183     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1184         qemu_printf("Foreground map:\n");
1185         dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments);
1186         qemu_printf("\nBackground map:\n");
1187         dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments);
1188     } else {
1189         qemu_printf("No TLB for this CPU core\n");
1190     }
1191 }
1192