xref: /qemu/target/xtensa/op_helper.c (revision 937470bb)
1 /*
2  * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "cpu.h"
30 #include "exec/helper-proto.h"
31 #include "qemu/host-utils.h"
32 #include "exec/exec-all.h"
33 #include "exec/cpu_ldst.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/timer.h"
36 
37 void xtensa_cpu_do_unaligned_access(CPUState *cs,
38         vaddr addr, MMUAccessType access_type,
39         int mmu_idx, uintptr_t retaddr)
40 {
41     XtensaCPU *cpu = XTENSA_CPU(cs);
42     CPUXtensaState *env = &cpu->env;
43 
44     if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
45             !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
46         cpu_restore_state(CPU(cpu), retaddr);
47         HELPER(exception_cause_vaddr)(env,
48                 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
49     }
50 }
51 
52 void tlb_fill(CPUState *cs, target_ulong vaddr, MMUAccessType access_type,
53               int mmu_idx, uintptr_t retaddr)
54 {
55     XtensaCPU *cpu = XTENSA_CPU(cs);
56     CPUXtensaState *env = &cpu->env;
57     uint32_t paddr;
58     uint32_t page_size;
59     unsigned access;
60     int ret = xtensa_get_physical_addr(env, true, vaddr, access_type, mmu_idx,
61             &paddr, &page_size, &access);
62 
63     qemu_log_mask(CPU_LOG_MMU, "%s(%08x, %d, %d) -> %08x, ret = %d\n",
64                   __func__, vaddr, access_type, mmu_idx, paddr, ret);
65 
66     if (ret == 0) {
67         tlb_set_page(cs,
68                      vaddr & TARGET_PAGE_MASK,
69                      paddr & TARGET_PAGE_MASK,
70                      access, mmu_idx, page_size);
71     } else {
72         cpu_restore_state(cs, retaddr);
73         HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
74     }
75 }
76 
77 void xtensa_cpu_do_unassigned_access(CPUState *cs, hwaddr addr,
78                                      bool is_write, bool is_exec, int opaque,
79                                      unsigned size)
80 {
81     XtensaCPU *cpu = XTENSA_CPU(cs);
82     CPUXtensaState *env = &cpu->env;
83 
84     HELPER(exception_cause_vaddr)(env, env->pc,
85                                   is_exec ?
86                                   INSTR_PIF_ADDR_ERROR_CAUSE :
87                                   LOAD_STORE_PIF_ADDR_ERROR_CAUSE,
88                                   is_exec ? addr : cs->mem_io_vaddr);
89 }
90 
91 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
92 {
93     uint32_t paddr;
94     uint32_t page_size;
95     unsigned access;
96     int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
97             &paddr, &page_size, &access);
98     if (ret == 0) {
99         tb_invalidate_phys_addr(&address_space_memory, paddr);
100     }
101 }
102 
103 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
104 {
105     CPUState *cs = CPU(xtensa_env_get_cpu(env));
106 
107     cs->exception_index = excp;
108     if (excp == EXCP_DEBUG) {
109         env->exception_taken = 0;
110     }
111     cpu_loop_exit(cs);
112 }
113 
114 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
115 {
116     uint32_t vector;
117 
118     env->pc = pc;
119     if (env->sregs[PS] & PS_EXCM) {
120         if (env->config->ndepc) {
121             env->sregs[DEPC] = pc;
122         } else {
123             env->sregs[EPC1] = pc;
124         }
125         vector = EXC_DOUBLE;
126     } else {
127         env->sregs[EPC1] = pc;
128         vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
129     }
130 
131     env->sregs[EXCCAUSE] = cause;
132     env->sregs[PS] |= PS_EXCM;
133 
134     HELPER(exception)(env, vector);
135 }
136 
137 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
138         uint32_t pc, uint32_t cause, uint32_t vaddr)
139 {
140     env->sregs[EXCVADDR] = vaddr;
141     HELPER(exception_cause)(env, pc, cause);
142 }
143 
144 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
145 {
146     if (xtensa_get_cintlevel(env) < env->config->debug_level) {
147         HELPER(debug_exception)(env, env->pc, cause);
148     }
149 }
150 
151 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
152 {
153     unsigned level = env->config->debug_level;
154 
155     env->pc = pc;
156     env->sregs[DEBUGCAUSE] = cause;
157     env->sregs[EPC1 + level - 1] = pc;
158     env->sregs[EPS2 + level - 2] = env->sregs[PS];
159     env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
160         (level << PS_INTLEVEL_SHIFT);
161     HELPER(exception)(env, EXC_DEBUG);
162 }
163 
164 static void copy_window_from_phys(CPUXtensaState *env,
165         uint32_t window, uint32_t phys, uint32_t n)
166 {
167     assert(phys < env->config->nareg);
168     if (phys + n <= env->config->nareg) {
169         memcpy(env->regs + window, env->phys_regs + phys,
170                 n * sizeof(uint32_t));
171     } else {
172         uint32_t n1 = env->config->nareg - phys;
173         memcpy(env->regs + window, env->phys_regs + phys,
174                 n1 * sizeof(uint32_t));
175         memcpy(env->regs + window + n1, env->phys_regs,
176                 (n - n1) * sizeof(uint32_t));
177     }
178 }
179 
180 static void copy_phys_from_window(CPUXtensaState *env,
181         uint32_t phys, uint32_t window, uint32_t n)
182 {
183     assert(phys < env->config->nareg);
184     if (phys + n <= env->config->nareg) {
185         memcpy(env->phys_regs + phys, env->regs + window,
186                 n * sizeof(uint32_t));
187     } else {
188         uint32_t n1 = env->config->nareg - phys;
189         memcpy(env->phys_regs + phys, env->regs + window,
190                 n1 * sizeof(uint32_t));
191         memcpy(env->phys_regs, env->regs + window + n1,
192                 (n - n1) * sizeof(uint32_t));
193     }
194 }
195 
196 
197 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
198 {
199     return a & (env->config->nareg / 4 - 1);
200 }
201 
202 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
203 {
204     return 1 << windowbase_bound(a, env);
205 }
206 
207 void xtensa_sync_window_from_phys(CPUXtensaState *env)
208 {
209     copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
210 }
211 
212 void xtensa_sync_phys_from_window(CPUXtensaState *env)
213 {
214     copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
215 }
216 
217 static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
218 {
219     xtensa_sync_phys_from_window(env);
220     env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
221     xtensa_sync_window_from_phys(env);
222 }
223 
224 static void rotate_window(CPUXtensaState *env, uint32_t delta)
225 {
226     rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
227 }
228 
229 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
230 {
231     rotate_window_abs(env, v);
232 }
233 
234 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
235 {
236     int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
237     if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
238         qemu_log_mask(LOG_GUEST_ERROR, "Illegal entry instruction(pc = %08x), PS = %08x\n",
239                       pc, env->sregs[PS]);
240         HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
241     } else {
242         uint32_t windowstart = xtensa_replicate_windowstart(env) >>
243             (env->sregs[WINDOW_BASE] + 1);
244 
245         if (windowstart & ((1 << callinc) - 1)) {
246             HELPER(window_check)(env, pc, callinc);
247         }
248         env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
249         rotate_window(env, callinc);
250         env->sregs[WINDOW_START] |=
251             windowstart_bit(env->sregs[WINDOW_BASE], env);
252     }
253 }
254 
255 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
256 {
257     uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
258     uint32_t windowstart = xtensa_replicate_windowstart(env) >>
259         (env->sregs[WINDOW_BASE] + 1);
260     uint32_t n = ctz32(windowstart) + 1;
261 
262     assert(n <= w);
263 
264     rotate_window(env, n);
265     env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
266         (windowbase << PS_OWB_SHIFT) | PS_EXCM;
267     env->sregs[EPC1] = env->pc = pc;
268 
269     switch (ctz32(windowstart >> n)) {
270     case 0:
271         HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
272         break;
273     case 1:
274         HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
275         break;
276     default:
277         HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
278         break;
279     }
280 }
281 
282 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
283 {
284     int n = (env->regs[0] >> 30) & 0x3;
285     int m = 0;
286     uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
287     uint32_t windowstart = env->sregs[WINDOW_START];
288     uint32_t ret_pc = 0;
289 
290     if (windowstart & windowstart_bit(windowbase - 1, env)) {
291         m = 1;
292     } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
293         m = 2;
294     } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
295         m = 3;
296     }
297 
298     if (n == 0 || (m != 0 && m != n) ||
299             ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
300         qemu_log_mask(LOG_GUEST_ERROR, "Illegal retw instruction(pc = %08x), "
301                       "PS = %08x, m = %d, n = %d\n",
302                       pc, env->sregs[PS], m, n);
303         HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
304     } else {
305         int owb = windowbase;
306 
307         ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
308 
309         rotate_window(env, -n);
310         if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
311             env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
312         } else {
313             /* window underflow */
314             env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
315                 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
316             env->sregs[EPC1] = env->pc = pc;
317 
318             if (n == 1) {
319                 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
320             } else if (n == 2) {
321                 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
322             } else if (n == 3) {
323                 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
324             }
325         }
326     }
327     return ret_pc;
328 }
329 
330 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
331 {
332     rotate_window(env, imm4);
333 }
334 
335 void HELPER(restore_owb)(CPUXtensaState *env)
336 {
337     rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
338 }
339 
340 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
341 {
342     if ((env->sregs[WINDOW_START] &
343             (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
344              windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
345              windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
346         HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
347     }
348 }
349 
350 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
351 {
352     if (env->sregs[LBEG] != v) {
353         tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
354         env->sregs[LBEG] = v;
355     }
356 }
357 
358 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
359 {
360     if (env->sregs[LEND] != v) {
361         tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
362         env->sregs[LEND] = v;
363         tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
364     }
365 }
366 
367 void HELPER(dump_state)(CPUXtensaState *env)
368 {
369     XtensaCPU *cpu = xtensa_env_get_cpu(env);
370 
371     cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
372 }
373 
374 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
375 {
376     CPUState *cpu;
377 
378     env->pc = pc;
379     env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
380         (intlevel << PS_INTLEVEL_SHIFT);
381     check_interrupts(env);
382     if (env->pending_irq_level) {
383         cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
384         return;
385     }
386 
387     cpu = CPU(xtensa_env_get_cpu(env));
388     env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
389     cpu->halted = 1;
390     if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
391         xtensa_rearm_ccompare_timer(env);
392     }
393     HELPER(exception)(env, EXCP_HLT);
394 }
395 
396 void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
397 {
398     xtensa_timer_irq(env, id, active);
399 }
400 
401 void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
402 {
403     xtensa_advance_ccount(env, d);
404 }
405 
406 void HELPER(check_interrupts)(CPUXtensaState *env)
407 {
408     check_interrupts(env);
409 }
410 
411 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
412 {
413     get_page_addr_code(env, vaddr);
414 }
415 
416 /*!
417  * Check vaddr accessibility/cache attributes and raise an exception if
418  * specified by the ATOMCTL SR.
419  *
420  * Note: local memory exclusion is not implemented
421  */
422 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
423 {
424     uint32_t paddr, page_size, access;
425     uint32_t atomctl = env->sregs[ATOMCTL];
426     int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
427             xtensa_get_cring(env), &paddr, &page_size, &access);
428 
429     /*
430      * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
431      * see opcode description in the ISA
432      */
433     if (rc == 0 &&
434             (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
435         rc = STORE_PROHIBITED_CAUSE;
436     }
437 
438     if (rc) {
439         HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
440     }
441 
442     /*
443      * When data cache is not configured use ATOMCTL bypass field.
444      * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
445      * under the Conditional Store Option.
446      */
447     if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
448         access = PAGE_CACHE_BYPASS;
449     }
450 
451     switch (access & PAGE_CACHE_MASK) {
452     case PAGE_CACHE_WB:
453         atomctl >>= 2;
454         /* fall through */
455     case PAGE_CACHE_WT:
456         atomctl >>= 2;
457         /* fall through */
458     case PAGE_CACHE_BYPASS:
459         if ((atomctl & 0x3) == 0) {
460             HELPER(exception_cause_vaddr)(env, pc,
461                     LOAD_STORE_ERROR_CAUSE, vaddr);
462         }
463         break;
464 
465     case PAGE_CACHE_ISOLATE:
466         HELPER(exception_cause_vaddr)(env, pc,
467                 LOAD_STORE_ERROR_CAUSE, vaddr);
468         break;
469 
470     default:
471         break;
472     }
473 }
474 
475 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
476 {
477     XtensaCPU *cpu = xtensa_env_get_cpu(env);
478 
479     v = (v & 0xffffff00) | 0x1;
480     if (v != env->sregs[RASID]) {
481         env->sregs[RASID] = v;
482         tlb_flush(CPU(cpu));
483     }
484 }
485 
486 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
487 {
488     uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
489 
490     switch (way) {
491     case 4:
492         return (tlbcfg >> 16) & 0x3;
493 
494     case 5:
495         return (tlbcfg >> 20) & 0x1;
496 
497     case 6:
498         return (tlbcfg >> 24) & 0x1;
499 
500     default:
501         return 0;
502     }
503 }
504 
505 /*!
506  * Get bit mask for the virtual address bits translated by the TLB way
507  */
508 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
509 {
510     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
511         bool varway56 = dtlb ?
512             env->config->dtlb.varway56 :
513             env->config->itlb.varway56;
514 
515         switch (way) {
516         case 4:
517             return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
518 
519         case 5:
520             if (varway56) {
521                 return 0xf8000000 << get_page_size(env, dtlb, way);
522             } else {
523                 return 0xf8000000;
524             }
525 
526         case 6:
527             if (varway56) {
528                 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
529             } else {
530                 return 0xf0000000;
531             }
532 
533         default:
534             return 0xfffff000;
535         }
536     } else {
537         return REGION_PAGE_MASK;
538     }
539 }
540 
541 /*!
542  * Get bit mask for the 'VPN without index' field.
543  * See ISA, 4.6.5.6, data format for RxTLB0
544  */
545 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
546 {
547     if (way < 4) {
548         bool is32 = (dtlb ?
549                 env->config->dtlb.nrefillentries :
550                 env->config->itlb.nrefillentries) == 32;
551         return is32 ? 0xffff8000 : 0xffffc000;
552     } else if (way == 4) {
553         return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
554     } else if (way <= 6) {
555         uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
556         bool varway56 = dtlb ?
557             env->config->dtlb.varway56 :
558             env->config->itlb.varway56;
559 
560         if (varway56) {
561             return mask << (way == 5 ? 2 : 3);
562         } else {
563             return mask << 1;
564         }
565     } else {
566         return 0xfffff000;
567     }
568 }
569 
570 /*!
571  * Split virtual address into VPN (with index) and entry index
572  * for the given TLB way
573  */
574 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
575         uint32_t *vpn, uint32_t wi, uint32_t *ei)
576 {
577     bool varway56 = dtlb ?
578         env->config->dtlb.varway56 :
579         env->config->itlb.varway56;
580 
581     if (!dtlb) {
582         wi &= 7;
583     }
584 
585     if (wi < 4) {
586         bool is32 = (dtlb ?
587                 env->config->dtlb.nrefillentries :
588                 env->config->itlb.nrefillentries) == 32;
589         *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
590     } else {
591         switch (wi) {
592         case 4:
593             {
594                 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
595                 *ei = (v >> eibase) & 0x3;
596             }
597             break;
598 
599         case 5:
600             if (varway56) {
601                 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
602                 *ei = (v >> eibase) & 0x3;
603             } else {
604                 *ei = (v >> 27) & 0x1;
605             }
606             break;
607 
608         case 6:
609             if (varway56) {
610                 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
611                 *ei = (v >> eibase) & 0x7;
612             } else {
613                 *ei = (v >> 28) & 0x1;
614             }
615             break;
616 
617         default:
618             *ei = 0;
619             break;
620         }
621     }
622     *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
623 }
624 
625 /*!
626  * Split TLB address into TLB way, entry index and VPN (with index).
627  * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
628  */
629 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
630         uint32_t *vpn, uint32_t *wi, uint32_t *ei)
631 {
632     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
633         *wi = v & (dtlb ? 0xf : 0x7);
634         split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
635     } else {
636         *vpn = v & REGION_PAGE_MASK;
637         *wi = 0;
638         *ei = (v >> 29) & 0x7;
639     }
640 }
641 
642 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
643         uint32_t v, bool dtlb, uint32_t *pwi)
644 {
645     uint32_t vpn;
646     uint32_t wi;
647     uint32_t ei;
648 
649     split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
650     if (pwi) {
651         *pwi = wi;
652     }
653     return xtensa_tlb_get_entry(env, dtlb, wi, ei);
654 }
655 
656 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
657 {
658     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
659         uint32_t wi;
660         const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
661         return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
662     } else {
663         return v & REGION_PAGE_MASK;
664     }
665 }
666 
667 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
668 {
669     const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
670     return entry->paddr | entry->attr;
671 }
672 
673 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
674 {
675     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
676         uint32_t wi;
677         xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
678         if (entry->variable && entry->asid) {
679             tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
680             entry->asid = 0;
681         }
682     }
683 }
684 
685 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
686 {
687     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
688         uint32_t wi;
689         uint32_t ei;
690         uint8_t ring;
691         int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
692 
693         switch (res) {
694         case 0:
695             if (ring >= xtensa_get_ring(env)) {
696                 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
697             }
698             break;
699 
700         case INST_TLB_MULTI_HIT_CAUSE:
701         case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
702             HELPER(exception_cause_vaddr)(env, env->pc, res, v);
703             break;
704         }
705         return 0;
706     } else {
707         return (v & REGION_PAGE_MASK) | 0x1;
708     }
709 }
710 
711 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
712         xtensa_tlb_entry *entry, bool dtlb,
713         unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
714 {
715     entry->vaddr = vpn;
716     entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
717     entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
718     entry->attr = pte & 0xf;
719 }
720 
721 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
722         unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
723 {
724     XtensaCPU *cpu = xtensa_env_get_cpu(env);
725     CPUState *cs = CPU(cpu);
726     xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
727 
728     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
729         if (entry->variable) {
730             if (entry->asid) {
731                 tlb_flush_page(cs, entry->vaddr);
732             }
733             xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
734             tlb_flush_page(cs, entry->vaddr);
735         } else {
736             qemu_log_mask(LOG_GUEST_ERROR, "%s %d, %d, %d trying to set immutable entry\n",
737                           __func__, dtlb, wi, ei);
738         }
739     } else {
740         tlb_flush_page(cs, entry->vaddr);
741         if (xtensa_option_enabled(env->config,
742                     XTENSA_OPTION_REGION_TRANSLATION)) {
743             entry->paddr = pte & REGION_PAGE_MASK;
744         }
745         entry->attr = pte & 0xf;
746     }
747 }
748 
749 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
750 {
751     uint32_t vpn;
752     uint32_t wi;
753     uint32_t ei;
754     split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
755     xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
756 }
757 
758 
759 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
760 {
761     uint32_t change = v ^ env->sregs[IBREAKENABLE];
762     unsigned i;
763 
764     for (i = 0; i < env->config->nibreak; ++i) {
765         if (change & (1 << i)) {
766             tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
767         }
768     }
769     env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
770 }
771 
772 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
773 {
774     if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
775         tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
776         tb_invalidate_virtual_addr(env, v);
777     }
778     env->sregs[IBREAKA + i] = v;
779 }
780 
781 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
782         uint32_t dbreakc)
783 {
784     CPUState *cs = CPU(xtensa_env_get_cpu(env));
785     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
786     uint32_t mask = dbreakc | ~DBREAKC_MASK;
787 
788     if (env->cpu_watchpoint[i]) {
789         cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
790     }
791     if (dbreakc & DBREAKC_SB) {
792         flags |= BP_MEM_WRITE;
793     }
794     if (dbreakc & DBREAKC_LB) {
795         flags |= BP_MEM_READ;
796     }
797     /* contiguous mask after inversion is one less than some power of 2 */
798     if ((~mask + 1) & ~mask) {
799         qemu_log_mask(LOG_GUEST_ERROR, "DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
800         /* cut mask after the first zero bit */
801         mask = 0xffffffff << (32 - clo32(mask));
802     }
803     if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
804             flags, &env->cpu_watchpoint[i])) {
805         env->cpu_watchpoint[i] = NULL;
806         qemu_log_mask(LOG_GUEST_ERROR, "Failed to set data breakpoint at 0x%08x/%d\n",
807                       dbreaka & mask, ~mask + 1);
808     }
809 }
810 
811 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
812 {
813     uint32_t dbreakc = env->sregs[DBREAKC + i];
814 
815     if ((dbreakc & DBREAKC_SB_LB) &&
816             env->sregs[DBREAKA + i] != v) {
817         set_dbreak(env, i, v, dbreakc);
818     }
819     env->sregs[DBREAKA + i] = v;
820 }
821 
822 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
823 {
824     if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
825         if (v & DBREAKC_SB_LB) {
826             set_dbreak(env, i, env->sregs[DBREAKA + i], v);
827         } else {
828             if (env->cpu_watchpoint[i]) {
829                 CPUState *cs = CPU(xtensa_env_get_cpu(env));
830 
831                 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
832                 env->cpu_watchpoint[i] = NULL;
833             }
834         }
835     }
836     env->sregs[DBREAKC + i] = v;
837 }
838 
839 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
840 {
841     static const int rounding_mode[] = {
842         float_round_nearest_even,
843         float_round_to_zero,
844         float_round_up,
845         float_round_down,
846     };
847 
848     env->uregs[FCR] = v & 0xfffff07f;
849     set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
850 }
851 
852 float32 HELPER(abs_s)(float32 v)
853 {
854     return float32_abs(v);
855 }
856 
857 float32 HELPER(neg_s)(float32 v)
858 {
859     return float32_chs(v);
860 }
861 
862 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
863 {
864     return float32_add(a, b, &env->fp_status);
865 }
866 
867 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
868 {
869     return float32_sub(a, b, &env->fp_status);
870 }
871 
872 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
873 {
874     return float32_mul(a, b, &env->fp_status);
875 }
876 
877 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
878 {
879     return float32_muladd(b, c, a, 0,
880             &env->fp_status);
881 }
882 
883 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
884 {
885     return float32_muladd(b, c, a, float_muladd_negate_product,
886             &env->fp_status);
887 }
888 
889 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
890 {
891     float_status fp_status = {0};
892 
893     set_float_rounding_mode(rounding_mode, &fp_status);
894     return float32_to_int32(
895             float32_scalbn(v, scale, &fp_status), &fp_status);
896 }
897 
898 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
899 {
900     float_status fp_status = {0};
901     float32 res;
902 
903     set_float_rounding_mode(rounding_mode, &fp_status);
904 
905     res = float32_scalbn(v, scale, &fp_status);
906 
907     if (float32_is_neg(v) && !float32_is_any_nan(v)) {
908         return float32_to_int32(res, &fp_status);
909     } else {
910         return float32_to_uint32(res, &fp_status);
911     }
912 }
913 
914 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
915 {
916     return float32_scalbn(int32_to_float32(v, &env->fp_status),
917             (int32_t)scale, &env->fp_status);
918 }
919 
920 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
921 {
922     return float32_scalbn(uint32_to_float32(v, &env->fp_status),
923             (int32_t)scale, &env->fp_status);
924 }
925 
926 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
927 {
928     if (v) {
929         env->sregs[BR] |= br;
930     } else {
931         env->sregs[BR] &= ~br;
932     }
933 }
934 
935 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
936 {
937     set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
938 }
939 
940 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
941 {
942     set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
943 }
944 
945 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
946 {
947     int v = float32_compare_quiet(a, b, &env->fp_status);
948     set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
949 }
950 
951 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
952 {
953     set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
954 }
955 
956 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
957 {
958     int v = float32_compare_quiet(a, b, &env->fp_status);
959     set_br(env, v == float_relation_less || v == float_relation_unordered, br);
960 }
961 
962 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
963 {
964     set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
965 }
966 
967 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
968 {
969     int v = float32_compare_quiet(a, b, &env->fp_status);
970     set_br(env, v != float_relation_greater, br);
971 }
972