xref: /qemu/tcg/i386/tcg-target.c.inc (revision 16f5396c)
1/*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include "../tcg-ldst.c.inc"
26#include "../tcg-pool.c.inc"
27
28#ifdef CONFIG_DEBUG_TCG
29static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
30#if TCG_TARGET_REG_BITS == 64
31    "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi",
32#else
33    "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi",
34#endif
35    "%r8",  "%r9",  "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
36    "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7",
37#if TCG_TARGET_REG_BITS == 64
38    "%xmm8", "%xmm9", "%xmm10", "%xmm11",
39    "%xmm12", "%xmm13", "%xmm14", "%xmm15",
40#endif
41};
42#endif
43
44static const int tcg_target_reg_alloc_order[] = {
45#if TCG_TARGET_REG_BITS == 64
46    TCG_REG_RBP,
47    TCG_REG_RBX,
48    TCG_REG_R12,
49    TCG_REG_R13,
50    TCG_REG_R14,
51    TCG_REG_R15,
52    TCG_REG_R10,
53    TCG_REG_R11,
54    TCG_REG_R9,
55    TCG_REG_R8,
56    TCG_REG_RCX,
57    TCG_REG_RDX,
58    TCG_REG_RSI,
59    TCG_REG_RDI,
60    TCG_REG_RAX,
61#else
62    TCG_REG_EBX,
63    TCG_REG_ESI,
64    TCG_REG_EDI,
65    TCG_REG_EBP,
66    TCG_REG_ECX,
67    TCG_REG_EDX,
68    TCG_REG_EAX,
69#endif
70    TCG_REG_XMM0,
71    TCG_REG_XMM1,
72    TCG_REG_XMM2,
73    TCG_REG_XMM3,
74    TCG_REG_XMM4,
75    TCG_REG_XMM5,
76#ifndef _WIN64
77    /* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save
78       any of them.  Therefore only allow xmm0-xmm5 to be allocated.  */
79    TCG_REG_XMM6,
80    TCG_REG_XMM7,
81#if TCG_TARGET_REG_BITS == 64
82    TCG_REG_XMM8,
83    TCG_REG_XMM9,
84    TCG_REG_XMM10,
85    TCG_REG_XMM11,
86    TCG_REG_XMM12,
87    TCG_REG_XMM13,
88    TCG_REG_XMM14,
89    TCG_REG_XMM15,
90#endif
91#endif
92};
93
94static const int tcg_target_call_iarg_regs[] = {
95#if TCG_TARGET_REG_BITS == 64
96#if defined(_WIN64)
97    TCG_REG_RCX,
98    TCG_REG_RDX,
99#else
100    TCG_REG_RDI,
101    TCG_REG_RSI,
102    TCG_REG_RDX,
103    TCG_REG_RCX,
104#endif
105    TCG_REG_R8,
106    TCG_REG_R9,
107#else
108    /* 32 bit mode uses stack based calling convention (GCC default). */
109#endif
110};
111
112static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot)
113{
114    switch (kind) {
115    case TCG_CALL_RET_NORMAL:
116        tcg_debug_assert(slot >= 0 && slot <= 1);
117        return slot ? TCG_REG_EDX : TCG_REG_EAX;
118#ifdef _WIN64
119    case TCG_CALL_RET_BY_VEC:
120        tcg_debug_assert(slot == 0);
121        return TCG_REG_XMM0;
122#endif
123    default:
124        g_assert_not_reached();
125    }
126}
127
128/* Constants we accept.  */
129#define TCG_CT_CONST_S32 0x100
130#define TCG_CT_CONST_U32 0x200
131#define TCG_CT_CONST_I32 0x400
132#define TCG_CT_CONST_WSZ 0x800
133
134/* Registers used with L constraint, which are the first argument
135   registers on x86_64, and two random call clobbered registers on
136   i386. */
137#if TCG_TARGET_REG_BITS == 64
138# define TCG_REG_L0 tcg_target_call_iarg_regs[0]
139# define TCG_REG_L1 tcg_target_call_iarg_regs[1]
140#else
141# define TCG_REG_L0 TCG_REG_EAX
142# define TCG_REG_L1 TCG_REG_EDX
143#endif
144
145#define ALL_BYTEH_REGS         0x0000000fu
146#if TCG_TARGET_REG_BITS == 64
147# define ALL_GENERAL_REGS      0x0000ffffu
148# define ALL_VECTOR_REGS       0xffff0000u
149# define ALL_BYTEL_REGS        ALL_GENERAL_REGS
150#else
151# define ALL_GENERAL_REGS      0x000000ffu
152# define ALL_VECTOR_REGS       0x00ff0000u
153# define ALL_BYTEL_REGS        ALL_BYTEH_REGS
154#endif
155#ifdef CONFIG_SOFTMMU
156# define SOFTMMU_RESERVE_REGS  ((1 << TCG_REG_L0) | (1 << TCG_REG_L1))
157#else
158# define SOFTMMU_RESERVE_REGS  0
159#endif
160
161/* The host compiler should supply <cpuid.h> to enable runtime features
162   detection, as we're not going to go so far as our own inline assembly.
163   If not available, default values will be assumed.  */
164#if defined(CONFIG_CPUID_H)
165#include "qemu/cpuid.h"
166#endif
167
168/* For 64-bit, we always know that CMOV is available.  */
169#if TCG_TARGET_REG_BITS == 64
170# define have_cmov 1
171#elif defined(CONFIG_CPUID_H)
172static bool have_cmov;
173#else
174# define have_cmov 0
175#endif
176
177/* We need these symbols in tcg-target.h, and we can't properly conditionalize
178   it there.  Therefore we always define the variable.  */
179bool have_bmi1;
180bool have_popcnt;
181bool have_avx1;
182bool have_avx2;
183bool have_avx512bw;
184bool have_avx512dq;
185bool have_avx512vbmi2;
186bool have_avx512vl;
187bool have_movbe;
188
189#ifdef CONFIG_CPUID_H
190static bool have_bmi2;
191static bool have_lzcnt;
192#else
193# define have_bmi2 0
194# define have_lzcnt 0
195#endif
196
197static const tcg_insn_unit *tb_ret_addr;
198
199static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
200                        intptr_t value, intptr_t addend)
201{
202    value += addend;
203    switch(type) {
204    case R_386_PC32:
205        value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
206        if (value != (int32_t)value) {
207            return false;
208        }
209        /* FALLTHRU */
210    case R_386_32:
211        tcg_patch32(code_ptr, value);
212        break;
213    case R_386_PC8:
214        value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
215        if (value != (int8_t)value) {
216            return false;
217        }
218        tcg_patch8(code_ptr, value);
219        break;
220    default:
221        g_assert_not_reached();
222    }
223    return true;
224}
225
226/* test if a constant matches the constraint */
227static bool tcg_target_const_match(int64_t val, TCGType type, int ct)
228{
229    if (ct & TCG_CT_CONST) {
230        return 1;
231    }
232    if (type == TCG_TYPE_I32) {
233        if (ct & (TCG_CT_CONST_S32 | TCG_CT_CONST_U32 | TCG_CT_CONST_I32)) {
234            return 1;
235        }
236    } else {
237        if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
238            return 1;
239        }
240        if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
241            return 1;
242        }
243        if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) {
244            return 1;
245        }
246    }
247    if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
248        return 1;
249    }
250    return 0;
251}
252
253# define LOWREGMASK(x)	((x) & 7)
254
255#define P_EXT		0x100		/* 0x0f opcode prefix */
256#define P_EXT38         0x200           /* 0x0f 0x38 opcode prefix */
257#define P_DATA16        0x400           /* 0x66 opcode prefix */
258#define P_VEXW          0x1000          /* Set VEX.W = 1 */
259#if TCG_TARGET_REG_BITS == 64
260# define P_REXW         P_VEXW          /* Set REX.W = 1; match VEXW */
261# define P_REXB_R       0x2000          /* REG field as byte register */
262# define P_REXB_RM      0x4000          /* R/M field as byte register */
263# define P_GS           0x8000          /* gs segment override */
264#else
265# define P_REXW		0
266# define P_REXB_R	0
267# define P_REXB_RM	0
268# define P_GS           0
269#endif
270#define P_EXT3A         0x10000         /* 0x0f 0x3a opcode prefix */
271#define P_SIMDF3        0x20000         /* 0xf3 opcode prefix */
272#define P_SIMDF2        0x40000         /* 0xf2 opcode prefix */
273#define P_VEXL          0x80000         /* Set VEX.L = 1 */
274#define P_EVEX          0x100000        /* Requires EVEX encoding */
275
276#define OPC_ARITH_EvIz	(0x81)
277#define OPC_ARITH_EvIb	(0x83)
278#define OPC_ARITH_GvEv	(0x03)		/* ... plus (ARITH_FOO << 3) */
279#define OPC_ANDN        (0xf2 | P_EXT38)
280#define OPC_ADD_GvEv	(OPC_ARITH_GvEv | (ARITH_ADD << 3))
281#define OPC_AND_GvEv    (OPC_ARITH_GvEv | (ARITH_AND << 3))
282#define OPC_BLENDPS     (0x0c | P_EXT3A | P_DATA16)
283#define OPC_BSF         (0xbc | P_EXT)
284#define OPC_BSR         (0xbd | P_EXT)
285#define OPC_BSWAP	(0xc8 | P_EXT)
286#define OPC_CALL_Jz	(0xe8)
287#define OPC_CMOVCC      (0x40 | P_EXT)  /* ... plus condition code */
288#define OPC_CMP_GvEv	(OPC_ARITH_GvEv | (ARITH_CMP << 3))
289#define OPC_DEC_r32	(0x48)
290#define OPC_IMUL_GvEv	(0xaf | P_EXT)
291#define OPC_IMUL_GvEvIb	(0x6b)
292#define OPC_IMUL_GvEvIz	(0x69)
293#define OPC_INC_r32	(0x40)
294#define OPC_JCC_long	(0x80 | P_EXT)	/* ... plus condition code */
295#define OPC_JCC_short	(0x70)		/* ... plus condition code */
296#define OPC_JMP_long	(0xe9)
297#define OPC_JMP_short	(0xeb)
298#define OPC_LEA         (0x8d)
299#define OPC_LZCNT       (0xbd | P_EXT | P_SIMDF3)
300#define OPC_MOVB_EvGv	(0x88)		/* stores, more or less */
301#define OPC_MOVL_EvGv	(0x89)		/* stores, more or less */
302#define OPC_MOVL_GvEv	(0x8b)		/* loads, more or less */
303#define OPC_MOVB_EvIz   (0xc6)
304#define OPC_MOVL_EvIz	(0xc7)
305#define OPC_MOVL_Iv     (0xb8)
306#define OPC_MOVBE_GyMy  (0xf0 | P_EXT38)
307#define OPC_MOVBE_MyGy  (0xf1 | P_EXT38)
308#define OPC_MOVD_VyEy   (0x6e | P_EXT | P_DATA16)
309#define OPC_MOVD_EyVy   (0x7e | P_EXT | P_DATA16)
310#define OPC_MOVDDUP     (0x12 | P_EXT | P_SIMDF2)
311#define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16)
312#define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16)
313#define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3)
314#define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3)
315#define OPC_MOVQ_VqWq   (0x7e | P_EXT | P_SIMDF3)
316#define OPC_MOVQ_WqVq   (0xd6 | P_EXT | P_DATA16)
317#define OPC_MOVSBL	(0xbe | P_EXT)
318#define OPC_MOVSWL	(0xbf | P_EXT)
319#define OPC_MOVSLQ	(0x63 | P_REXW)
320#define OPC_MOVZBL	(0xb6 | P_EXT)
321#define OPC_MOVZWL	(0xb7 | P_EXT)
322#define OPC_PABSB       (0x1c | P_EXT38 | P_DATA16)
323#define OPC_PABSW       (0x1d | P_EXT38 | P_DATA16)
324#define OPC_PABSD       (0x1e | P_EXT38 | P_DATA16)
325#define OPC_VPABSQ      (0x1f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
326#define OPC_PACKSSDW    (0x6b | P_EXT | P_DATA16)
327#define OPC_PACKSSWB    (0x63 | P_EXT | P_DATA16)
328#define OPC_PACKUSDW    (0x2b | P_EXT38 | P_DATA16)
329#define OPC_PACKUSWB    (0x67 | P_EXT | P_DATA16)
330#define OPC_PADDB       (0xfc | P_EXT | P_DATA16)
331#define OPC_PADDW       (0xfd | P_EXT | P_DATA16)
332#define OPC_PADDD       (0xfe | P_EXT | P_DATA16)
333#define OPC_PADDQ       (0xd4 | P_EXT | P_DATA16)
334#define OPC_PADDSB      (0xec | P_EXT | P_DATA16)
335#define OPC_PADDSW      (0xed | P_EXT | P_DATA16)
336#define OPC_PADDUB      (0xdc | P_EXT | P_DATA16)
337#define OPC_PADDUW      (0xdd | P_EXT | P_DATA16)
338#define OPC_PAND        (0xdb | P_EXT | P_DATA16)
339#define OPC_PANDN       (0xdf | P_EXT | P_DATA16)
340#define OPC_PBLENDW     (0x0e | P_EXT3A | P_DATA16)
341#define OPC_PCMPEQB     (0x74 | P_EXT | P_DATA16)
342#define OPC_PCMPEQW     (0x75 | P_EXT | P_DATA16)
343#define OPC_PCMPEQD     (0x76 | P_EXT | P_DATA16)
344#define OPC_PCMPEQQ     (0x29 | P_EXT38 | P_DATA16)
345#define OPC_PCMPGTB     (0x64 | P_EXT | P_DATA16)
346#define OPC_PCMPGTW     (0x65 | P_EXT | P_DATA16)
347#define OPC_PCMPGTD     (0x66 | P_EXT | P_DATA16)
348#define OPC_PCMPGTQ     (0x37 | P_EXT38 | P_DATA16)
349#define OPC_PMAXSB      (0x3c | P_EXT38 | P_DATA16)
350#define OPC_PMAXSW      (0xee | P_EXT | P_DATA16)
351#define OPC_PMAXSD      (0x3d | P_EXT38 | P_DATA16)
352#define OPC_VPMAXSQ     (0x3d | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
353#define OPC_PMAXUB      (0xde | P_EXT | P_DATA16)
354#define OPC_PMAXUW      (0x3e | P_EXT38 | P_DATA16)
355#define OPC_PMAXUD      (0x3f | P_EXT38 | P_DATA16)
356#define OPC_VPMAXUQ     (0x3f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
357#define OPC_PMINSB      (0x38 | P_EXT38 | P_DATA16)
358#define OPC_PMINSW      (0xea | P_EXT | P_DATA16)
359#define OPC_PMINSD      (0x39 | P_EXT38 | P_DATA16)
360#define OPC_VPMINSQ     (0x39 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
361#define OPC_PMINUB      (0xda | P_EXT | P_DATA16)
362#define OPC_PMINUW      (0x3a | P_EXT38 | P_DATA16)
363#define OPC_PMINUD      (0x3b | P_EXT38 | P_DATA16)
364#define OPC_VPMINUQ     (0x3b | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
365#define OPC_PMOVSXBW    (0x20 | P_EXT38 | P_DATA16)
366#define OPC_PMOVSXWD    (0x23 | P_EXT38 | P_DATA16)
367#define OPC_PMOVSXDQ    (0x25 | P_EXT38 | P_DATA16)
368#define OPC_PMOVZXBW    (0x30 | P_EXT38 | P_DATA16)
369#define OPC_PMOVZXWD    (0x33 | P_EXT38 | P_DATA16)
370#define OPC_PMOVZXDQ    (0x35 | P_EXT38 | P_DATA16)
371#define OPC_PMULLW      (0xd5 | P_EXT | P_DATA16)
372#define OPC_PMULLD      (0x40 | P_EXT38 | P_DATA16)
373#define OPC_VPMULLQ     (0x40 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
374#define OPC_POR         (0xeb | P_EXT | P_DATA16)
375#define OPC_PSHUFB      (0x00 | P_EXT38 | P_DATA16)
376#define OPC_PSHUFD      (0x70 | P_EXT | P_DATA16)
377#define OPC_PSHUFLW     (0x70 | P_EXT | P_SIMDF2)
378#define OPC_PSHUFHW     (0x70 | P_EXT | P_SIMDF3)
379#define OPC_PSHIFTW_Ib  (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */
380#define OPC_PSHIFTD_Ib  (0x72 | P_EXT | P_DATA16) /* /1 /2 /6 /4 */
381#define OPC_PSHIFTQ_Ib  (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */
382#define OPC_PSLLW       (0xf1 | P_EXT | P_DATA16)
383#define OPC_PSLLD       (0xf2 | P_EXT | P_DATA16)
384#define OPC_PSLLQ       (0xf3 | P_EXT | P_DATA16)
385#define OPC_PSRAW       (0xe1 | P_EXT | P_DATA16)
386#define OPC_PSRAD       (0xe2 | P_EXT | P_DATA16)
387#define OPC_VPSRAQ      (0xe2 | P_EXT | P_DATA16 | P_VEXW | P_EVEX)
388#define OPC_PSRLW       (0xd1 | P_EXT | P_DATA16)
389#define OPC_PSRLD       (0xd2 | P_EXT | P_DATA16)
390#define OPC_PSRLQ       (0xd3 | P_EXT | P_DATA16)
391#define OPC_PSUBB       (0xf8 | P_EXT | P_DATA16)
392#define OPC_PSUBW       (0xf9 | P_EXT | P_DATA16)
393#define OPC_PSUBD       (0xfa | P_EXT | P_DATA16)
394#define OPC_PSUBQ       (0xfb | P_EXT | P_DATA16)
395#define OPC_PSUBSB      (0xe8 | P_EXT | P_DATA16)
396#define OPC_PSUBSW      (0xe9 | P_EXT | P_DATA16)
397#define OPC_PSUBUB      (0xd8 | P_EXT | P_DATA16)
398#define OPC_PSUBUW      (0xd9 | P_EXT | P_DATA16)
399#define OPC_PUNPCKLBW   (0x60 | P_EXT | P_DATA16)
400#define OPC_PUNPCKLWD   (0x61 | P_EXT | P_DATA16)
401#define OPC_PUNPCKLDQ   (0x62 | P_EXT | P_DATA16)
402#define OPC_PUNPCKLQDQ  (0x6c | P_EXT | P_DATA16)
403#define OPC_PUNPCKHBW   (0x68 | P_EXT | P_DATA16)
404#define OPC_PUNPCKHWD   (0x69 | P_EXT | P_DATA16)
405#define OPC_PUNPCKHDQ   (0x6a | P_EXT | P_DATA16)
406#define OPC_PUNPCKHQDQ  (0x6d | P_EXT | P_DATA16)
407#define OPC_PXOR        (0xef | P_EXT | P_DATA16)
408#define OPC_POP_r32	(0x58)
409#define OPC_POPCNT      (0xb8 | P_EXT | P_SIMDF3)
410#define OPC_PUSH_r32	(0x50)
411#define OPC_PUSH_Iv	(0x68)
412#define OPC_PUSH_Ib	(0x6a)
413#define OPC_RET		(0xc3)
414#define OPC_SETCC	(0x90 | P_EXT | P_REXB_RM) /* ... plus cc */
415#define OPC_SHIFT_1	(0xd1)
416#define OPC_SHIFT_Ib	(0xc1)
417#define OPC_SHIFT_cl	(0xd3)
418#define OPC_SARX        (0xf7 | P_EXT38 | P_SIMDF3)
419#define OPC_SHUFPS      (0xc6 | P_EXT)
420#define OPC_SHLX        (0xf7 | P_EXT38 | P_DATA16)
421#define OPC_SHRX        (0xf7 | P_EXT38 | P_SIMDF2)
422#define OPC_SHRD_Ib     (0xac | P_EXT)
423#define OPC_TESTL	(0x85)
424#define OPC_TZCNT       (0xbc | P_EXT | P_SIMDF3)
425#define OPC_UD2         (0x0b | P_EXT)
426#define OPC_VPBLENDD    (0x02 | P_EXT3A | P_DATA16)
427#define OPC_VPBLENDVB   (0x4c | P_EXT3A | P_DATA16)
428#define OPC_VPINSRB     (0x20 | P_EXT3A | P_DATA16)
429#define OPC_VPINSRW     (0xc4 | P_EXT | P_DATA16)
430#define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16)
431#define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16)
432#define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16)
433#define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16)
434#define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16)
435#define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16)
436#define OPC_VPERMQ      (0x00 | P_EXT3A | P_DATA16 | P_VEXW)
437#define OPC_VPERM2I128  (0x46 | P_EXT3A | P_DATA16 | P_VEXL)
438#define OPC_VPROLVD     (0x15 | P_EXT38 | P_DATA16 | P_EVEX)
439#define OPC_VPROLVQ     (0x15 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
440#define OPC_VPRORVD     (0x14 | P_EXT38 | P_DATA16 | P_EVEX)
441#define OPC_VPRORVQ     (0x14 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
442#define OPC_VPSHLDW     (0x70 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
443#define OPC_VPSHLDD     (0x71 | P_EXT3A | P_DATA16 | P_EVEX)
444#define OPC_VPSHLDQ     (0x71 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
445#define OPC_VPSHLDVW    (0x70 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
446#define OPC_VPSHLDVD    (0x71 | P_EXT38 | P_DATA16 | P_EVEX)
447#define OPC_VPSHLDVQ    (0x71 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
448#define OPC_VPSHRDVW    (0x72 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
449#define OPC_VPSHRDVD    (0x73 | P_EXT38 | P_DATA16 | P_EVEX)
450#define OPC_VPSHRDVQ    (0x73 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
451#define OPC_VPSLLVW     (0x12 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
452#define OPC_VPSLLVD     (0x47 | P_EXT38 | P_DATA16)
453#define OPC_VPSLLVQ     (0x47 | P_EXT38 | P_DATA16 | P_VEXW)
454#define OPC_VPSRAVW     (0x11 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
455#define OPC_VPSRAVD     (0x46 | P_EXT38 | P_DATA16)
456#define OPC_VPSRAVQ     (0x46 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
457#define OPC_VPSRLVW     (0x10 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
458#define OPC_VPSRLVD     (0x45 | P_EXT38 | P_DATA16)
459#define OPC_VPSRLVQ     (0x45 | P_EXT38 | P_DATA16 | P_VEXW)
460#define OPC_VPTERNLOGQ  (0x25 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
461#define OPC_VZEROUPPER  (0x77 | P_EXT)
462#define OPC_XCHG_ax_r32	(0x90)
463#define OPC_XCHG_EvGv   (0x87)
464
465#define OPC_GRP3_Eb     (0xf6)
466#define OPC_GRP3_Ev     (0xf7)
467#define OPC_GRP5        (0xff)
468#define OPC_GRP14       (0x73 | P_EXT | P_DATA16)
469
470/* Group 1 opcode extensions for 0x80-0x83.
471   These are also used as modifiers for OPC_ARITH.  */
472#define ARITH_ADD 0
473#define ARITH_OR  1
474#define ARITH_ADC 2
475#define ARITH_SBB 3
476#define ARITH_AND 4
477#define ARITH_SUB 5
478#define ARITH_XOR 6
479#define ARITH_CMP 7
480
481/* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3.  */
482#define SHIFT_ROL 0
483#define SHIFT_ROR 1
484#define SHIFT_SHL 4
485#define SHIFT_SHR 5
486#define SHIFT_SAR 7
487
488/* Group 3 opcode extensions for 0xf6, 0xf7.  To be used with OPC_GRP3.  */
489#define EXT3_TESTi 0
490#define EXT3_NOT   2
491#define EXT3_NEG   3
492#define EXT3_MUL   4
493#define EXT3_IMUL  5
494#define EXT3_DIV   6
495#define EXT3_IDIV  7
496
497/* Group 5 opcode extensions for 0xff.  To be used with OPC_GRP5.  */
498#define EXT5_INC_Ev	0
499#define EXT5_DEC_Ev	1
500#define EXT5_CALLN_Ev	2
501#define EXT5_JMPN_Ev	4
502
503/* Condition codes to be added to OPC_JCC_{long,short}.  */
504#define JCC_JMP (-1)
505#define JCC_JO  0x0
506#define JCC_JNO 0x1
507#define JCC_JB  0x2
508#define JCC_JAE 0x3
509#define JCC_JE  0x4
510#define JCC_JNE 0x5
511#define JCC_JBE 0x6
512#define JCC_JA  0x7
513#define JCC_JS  0x8
514#define JCC_JNS 0x9
515#define JCC_JP  0xa
516#define JCC_JNP 0xb
517#define JCC_JL  0xc
518#define JCC_JGE 0xd
519#define JCC_JLE 0xe
520#define JCC_JG  0xf
521
522static const uint8_t tcg_cond_to_jcc[] = {
523    [TCG_COND_EQ] = JCC_JE,
524    [TCG_COND_NE] = JCC_JNE,
525    [TCG_COND_LT] = JCC_JL,
526    [TCG_COND_GE] = JCC_JGE,
527    [TCG_COND_LE] = JCC_JLE,
528    [TCG_COND_GT] = JCC_JG,
529    [TCG_COND_LTU] = JCC_JB,
530    [TCG_COND_GEU] = JCC_JAE,
531    [TCG_COND_LEU] = JCC_JBE,
532    [TCG_COND_GTU] = JCC_JA,
533};
534
535#if TCG_TARGET_REG_BITS == 64
536static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x)
537{
538    int rex;
539
540    if (opc & P_GS) {
541        tcg_out8(s, 0x65);
542    }
543    if (opc & P_DATA16) {
544        /* We should never be asking for both 16 and 64-bit operation.  */
545        tcg_debug_assert((opc & P_REXW) == 0);
546        tcg_out8(s, 0x66);
547    }
548    if (opc & P_SIMDF3) {
549        tcg_out8(s, 0xf3);
550    } else if (opc & P_SIMDF2) {
551        tcg_out8(s, 0xf2);
552    }
553
554    rex = 0;
555    rex |= (opc & P_REXW) ? 0x8 : 0x0;  /* REX.W */
556    rex |= (r & 8) >> 1;                /* REX.R */
557    rex |= (x & 8) >> 2;                /* REX.X */
558    rex |= (rm & 8) >> 3;               /* REX.B */
559
560    /* P_REXB_{R,RM} indicates that the given register is the low byte.
561       For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do,
562       as otherwise the encoding indicates %[abcd]h.  Note that the values
563       that are ORed in merely indicate that the REX byte must be present;
564       those bits get discarded in output.  */
565    rex |= opc & (r >= 4 ? P_REXB_R : 0);
566    rex |= opc & (rm >= 4 ? P_REXB_RM : 0);
567
568    if (rex) {
569        tcg_out8(s, (uint8_t)(rex | 0x40));
570    }
571
572    if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
573        tcg_out8(s, 0x0f);
574        if (opc & P_EXT38) {
575            tcg_out8(s, 0x38);
576        } else if (opc & P_EXT3A) {
577            tcg_out8(s, 0x3a);
578        }
579    }
580
581    tcg_out8(s, opc);
582}
583#else
584static void tcg_out_opc(TCGContext *s, int opc)
585{
586    if (opc & P_DATA16) {
587        tcg_out8(s, 0x66);
588    }
589    if (opc & P_SIMDF3) {
590        tcg_out8(s, 0xf3);
591    } else if (opc & P_SIMDF2) {
592        tcg_out8(s, 0xf2);
593    }
594    if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
595        tcg_out8(s, 0x0f);
596        if (opc & P_EXT38) {
597            tcg_out8(s, 0x38);
598        } else if (opc & P_EXT3A) {
599            tcg_out8(s, 0x3a);
600        }
601    }
602    tcg_out8(s, opc);
603}
604/* Discard the register arguments to tcg_out_opc early, so as not to penalize
605   the 32-bit compilation paths.  This method works with all versions of gcc,
606   whereas relying on optimization may not be able to exclude them.  */
607#define tcg_out_opc(s, opc, r, rm, x)  (tcg_out_opc)(s, opc)
608#endif
609
610static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm)
611{
612    tcg_out_opc(s, opc, r, rm, 0);
613    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
614}
615
616static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v,
617                            int rm, int index)
618{
619    int tmp;
620
621    /* Use the two byte form if possible, which cannot encode
622       VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT.  */
623    if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_VEXW)) == P_EXT
624        && ((rm | index) & 8) == 0) {
625        /* Two byte VEX prefix.  */
626        tcg_out8(s, 0xc5);
627
628        tmp = (r & 8 ? 0 : 0x80);              /* VEX.R */
629    } else {
630        /* Three byte VEX prefix.  */
631        tcg_out8(s, 0xc4);
632
633        /* VEX.m-mmmm */
634        if (opc & P_EXT3A) {
635            tmp = 3;
636        } else if (opc & P_EXT38) {
637            tmp = 2;
638        } else if (opc & P_EXT) {
639            tmp = 1;
640        } else {
641            g_assert_not_reached();
642        }
643        tmp |= (r & 8 ? 0 : 0x80);             /* VEX.R */
644        tmp |= (index & 8 ? 0 : 0x40);         /* VEX.X */
645        tmp |= (rm & 8 ? 0 : 0x20);            /* VEX.B */
646        tcg_out8(s, tmp);
647
648        tmp = (opc & P_VEXW ? 0x80 : 0);       /* VEX.W */
649    }
650
651    tmp |= (opc & P_VEXL ? 0x04 : 0);      /* VEX.L */
652    /* VEX.pp */
653    if (opc & P_DATA16) {
654        tmp |= 1;                          /* 0x66 */
655    } else if (opc & P_SIMDF3) {
656        tmp |= 2;                          /* 0xf3 */
657    } else if (opc & P_SIMDF2) {
658        tmp |= 3;                          /* 0xf2 */
659    }
660    tmp |= (~v & 15) << 3;                 /* VEX.vvvv */
661    tcg_out8(s, tmp);
662    tcg_out8(s, opc);
663}
664
665static void tcg_out_evex_opc(TCGContext *s, int opc, int r, int v,
666                             int rm, int index)
667{
668    /* The entire 4-byte evex prefix; with R' and V' set. */
669    uint32_t p = 0x08041062;
670    int mm, pp;
671
672    tcg_debug_assert(have_avx512vl);
673
674    /* EVEX.mm */
675    if (opc & P_EXT3A) {
676        mm = 3;
677    } else if (opc & P_EXT38) {
678        mm = 2;
679    } else if (opc & P_EXT) {
680        mm = 1;
681    } else {
682        g_assert_not_reached();
683    }
684
685    /* EVEX.pp */
686    if (opc & P_DATA16) {
687        pp = 1;                          /* 0x66 */
688    } else if (opc & P_SIMDF3) {
689        pp = 2;                          /* 0xf3 */
690    } else if (opc & P_SIMDF2) {
691        pp = 3;                          /* 0xf2 */
692    } else {
693        pp = 0;
694    }
695
696    p = deposit32(p, 8, 2, mm);
697    p = deposit32(p, 13, 1, (rm & 8) == 0);             /* EVEX.RXB.B */
698    p = deposit32(p, 14, 1, (index & 8) == 0);          /* EVEX.RXB.X */
699    p = deposit32(p, 15, 1, (r & 8) == 0);              /* EVEX.RXB.R */
700    p = deposit32(p, 16, 2, pp);
701    p = deposit32(p, 19, 4, ~v);
702    p = deposit32(p, 23, 1, (opc & P_VEXW) != 0);
703    p = deposit32(p, 29, 2, (opc & P_VEXL) != 0);
704
705    tcg_out32(s, p);
706    tcg_out8(s, opc);
707}
708
709static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm)
710{
711    if (opc & P_EVEX) {
712        tcg_out_evex_opc(s, opc, r, v, rm, 0);
713    } else {
714        tcg_out_vex_opc(s, opc, r, v, rm, 0);
715    }
716    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
717}
718
719/* Output an opcode with a full "rm + (index<<shift) + offset" address mode.
720   We handle either RM and INDEX missing with a negative value.  In 64-bit
721   mode for absolute addresses, ~RM is the size of the immediate operand
722   that will follow the instruction.  */
723
724static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index,
725                               int shift, intptr_t offset)
726{
727    int mod, len;
728
729    if (index < 0 && rm < 0) {
730        if (TCG_TARGET_REG_BITS == 64) {
731            /* Try for a rip-relative addressing mode.  This has replaced
732               the 32-bit-mode absolute addressing encoding.  */
733            intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm;
734            intptr_t disp = offset - pc;
735            if (disp == (int32_t)disp) {
736                tcg_out8(s, (LOWREGMASK(r) << 3) | 5);
737                tcg_out32(s, disp);
738                return;
739            }
740
741            /* Try for an absolute address encoding.  This requires the
742               use of the MODRM+SIB encoding and is therefore larger than
743               rip-relative addressing.  */
744            if (offset == (int32_t)offset) {
745                tcg_out8(s, (LOWREGMASK(r) << 3) | 4);
746                tcg_out8(s, (4 << 3) | 5);
747                tcg_out32(s, offset);
748                return;
749            }
750
751            /* ??? The memory isn't directly addressable.  */
752            g_assert_not_reached();
753        } else {
754            /* Absolute address.  */
755            tcg_out8(s, (r << 3) | 5);
756            tcg_out32(s, offset);
757            return;
758        }
759    }
760
761    /* Find the length of the immediate addend.  Note that the encoding
762       that would be used for (%ebp) indicates absolute addressing.  */
763    if (rm < 0) {
764        mod = 0, len = 4, rm = 5;
765    } else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) {
766        mod = 0, len = 0;
767    } else if (offset == (int8_t)offset) {
768        mod = 0x40, len = 1;
769    } else {
770        mod = 0x80, len = 4;
771    }
772
773    /* Use a single byte MODRM format if possible.  Note that the encoding
774       that would be used for %esp is the escape to the two byte form.  */
775    if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) {
776        /* Single byte MODRM format.  */
777        tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
778    } else {
779        /* Two byte MODRM+SIB format.  */
780
781        /* Note that the encoding that would place %esp into the index
782           field indicates no index register.  In 64-bit mode, the REX.X
783           bit counts, so %r12 can be used as the index.  */
784        if (index < 0) {
785            index = 4;
786        } else {
787            tcg_debug_assert(index != TCG_REG_ESP);
788        }
789
790        tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4);
791        tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm));
792    }
793
794    if (len == 1) {
795        tcg_out8(s, offset);
796    } else if (len == 4) {
797        tcg_out32(s, offset);
798    }
799}
800
801static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm,
802                                     int index, int shift, intptr_t offset)
803{
804    tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
805    tcg_out_sib_offset(s, r, rm, index, shift, offset);
806}
807
808static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v,
809                                         int rm, int index, int shift,
810                                         intptr_t offset)
811{
812    tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
813    tcg_out_sib_offset(s, r, rm, index, shift, offset);
814}
815
816/* A simplification of the above with no index or shift.  */
817static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r,
818                                        int rm, intptr_t offset)
819{
820    tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset);
821}
822
823static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r,
824                                            int v, int rm, intptr_t offset)
825{
826    tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset);
827}
828
829/* Output an opcode with an expected reference to the constant pool.  */
830static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r)
831{
832    tcg_out_opc(s, opc, r, 0, 0);
833    /* Absolute for 32-bit, pc-relative for 64-bit.  */
834    tcg_out8(s, LOWREGMASK(r) << 3 | 5);
835    tcg_out32(s, 0);
836}
837
838/* Output an opcode with an expected reference to the constant pool.  */
839static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r)
840{
841    tcg_out_vex_opc(s, opc, r, 0, 0, 0);
842    /* Absolute for 32-bit, pc-relative for 64-bit.  */
843    tcg_out8(s, LOWREGMASK(r) << 3 | 5);
844    tcg_out32(s, 0);
845}
846
847/* Generate dest op= src.  Uses the same ARITH_* codes as tgen_arithi.  */
848static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src)
849{
850    /* Propagate an opcode prefix, such as P_REXW.  */
851    int ext = subop & ~0x7;
852    subop &= 0x7;
853
854    tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src);
855}
856
857static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
858{
859    int rexw = 0;
860
861    if (arg == ret) {
862        return true;
863    }
864    switch (type) {
865    case TCG_TYPE_I64:
866        rexw = P_REXW;
867        /* fallthru */
868    case TCG_TYPE_I32:
869        if (ret < 16) {
870            if (arg < 16) {
871                tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg);
872            } else {
873                tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret);
874            }
875        } else {
876            if (arg < 16) {
877                tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg);
878            } else {
879                tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
880            }
881        }
882        break;
883
884    case TCG_TYPE_V64:
885        tcg_debug_assert(ret >= 16 && arg >= 16);
886        tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
887        break;
888    case TCG_TYPE_V128:
889        tcg_debug_assert(ret >= 16 && arg >= 16);
890        tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg);
891        break;
892    case TCG_TYPE_V256:
893        tcg_debug_assert(ret >= 16 && arg >= 16);
894        tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg);
895        break;
896
897    default:
898        g_assert_not_reached();
899    }
900    return true;
901}
902
903static const int avx2_dup_insn[4] = {
904    OPC_VPBROADCASTB, OPC_VPBROADCASTW,
905    OPC_VPBROADCASTD, OPC_VPBROADCASTQ,
906};
907
908static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
909                            TCGReg r, TCGReg a)
910{
911    if (have_avx2) {
912        int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
913        tcg_out_vex_modrm(s, avx2_dup_insn[vece] + vex_l, r, 0, a);
914    } else {
915        switch (vece) {
916        case MO_8:
917            /* ??? With zero in a register, use PSHUFB.  */
918            tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a);
919            a = r;
920            /* FALLTHRU */
921        case MO_16:
922            tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a);
923            a = r;
924            /* FALLTHRU */
925        case MO_32:
926            tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a);
927            /* imm8 operand: all output lanes selected from input lane 0.  */
928            tcg_out8(s, 0);
929            break;
930        case MO_64:
931            tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a);
932            break;
933        default:
934            g_assert_not_reached();
935        }
936    }
937    return true;
938}
939
940static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
941                             TCGReg r, TCGReg base, intptr_t offset)
942{
943    if (have_avx2) {
944        int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
945        tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l,
946                                 r, 0, base, offset);
947    } else {
948        switch (vece) {
949        case MO_64:
950            tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset);
951            break;
952        case MO_32:
953            tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset);
954            break;
955        case MO_16:
956            tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset);
957            tcg_out8(s, 0); /* imm8 */
958            tcg_out_dup_vec(s, type, vece, r, r);
959            break;
960        case MO_8:
961            tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset);
962            tcg_out8(s, 0); /* imm8 */
963            tcg_out_dup_vec(s, type, vece, r, r);
964            break;
965        default:
966            g_assert_not_reached();
967        }
968    }
969    return true;
970}
971
972static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
973                             TCGReg ret, int64_t arg)
974{
975    int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
976
977    if (arg == 0) {
978        tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
979        return;
980    }
981    if (arg == -1) {
982        tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret);
983        return;
984    }
985
986    if (TCG_TARGET_REG_BITS == 32 && vece < MO_64) {
987        if (have_avx2) {
988            tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTD + vex_l, ret);
989        } else {
990            tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret);
991        }
992        new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
993    } else {
994        if (type == TCG_TYPE_V64) {
995            tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret);
996        } else if (have_avx2) {
997            tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret);
998        } else {
999            tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret);
1000        }
1001        if (TCG_TARGET_REG_BITS == 64) {
1002            new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
1003        } else {
1004            new_pool_l2(s, R_386_32, s->code_ptr - 4, 0, arg, arg >> 32);
1005        }
1006    }
1007}
1008
1009static void tcg_out_movi_vec(TCGContext *s, TCGType type,
1010                             TCGReg ret, tcg_target_long arg)
1011{
1012    if (arg == 0) {
1013        tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
1014        return;
1015    }
1016    if (arg == -1) {
1017        tcg_out_vex_modrm(s, OPC_PCMPEQB, ret, ret, ret);
1018        return;
1019    }
1020
1021    int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
1022    tcg_out_vex_modrm_pool(s, OPC_MOVD_VyEy + rexw, ret);
1023    if (TCG_TARGET_REG_BITS == 64) {
1024        new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
1025    } else {
1026        new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
1027    }
1028}
1029
1030static void tcg_out_movi_int(TCGContext *s, TCGType type,
1031                             TCGReg ret, tcg_target_long arg)
1032{
1033    tcg_target_long diff;
1034
1035    if (arg == 0) {
1036        tgen_arithr(s, ARITH_XOR, ret, ret);
1037        return;
1038    }
1039    if (arg == (uint32_t)arg || type == TCG_TYPE_I32) {
1040        tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0);
1041        tcg_out32(s, arg);
1042        return;
1043    }
1044    if (arg == (int32_t)arg) {
1045        tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret);
1046        tcg_out32(s, arg);
1047        return;
1048    }
1049
1050    /* Try a 7 byte pc-relative lea before the 10 byte movq.  */
1051    diff = tcg_pcrel_diff(s, (const void *)arg) - 7;
1052    if (diff == (int32_t)diff) {
1053        tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0);
1054        tcg_out8(s, (LOWREGMASK(ret) << 3) | 5);
1055        tcg_out32(s, diff);
1056        return;
1057    }
1058
1059    tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0);
1060    tcg_out64(s, arg);
1061}
1062
1063static void tcg_out_movi(TCGContext *s, TCGType type,
1064                         TCGReg ret, tcg_target_long arg)
1065{
1066    switch (type) {
1067    case TCG_TYPE_I32:
1068#if TCG_TARGET_REG_BITS == 64
1069    case TCG_TYPE_I64:
1070#endif
1071        if (ret < 16) {
1072            tcg_out_movi_int(s, type, ret, arg);
1073        } else {
1074            tcg_out_movi_vec(s, type, ret, arg);
1075        }
1076        break;
1077    default:
1078        g_assert_not_reached();
1079    }
1080}
1081
1082static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2)
1083{
1084    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1085    tcg_out_modrm(s, OPC_XCHG_EvGv + rexw, r1, r2);
1086    return true;
1087}
1088
1089static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs,
1090                             tcg_target_long imm)
1091{
1092    /* This function is only used for passing structs by reference. */
1093    tcg_debug_assert(imm == (int32_t)imm);
1094    tcg_out_modrm_offset(s, OPC_LEA, rd, rs, imm);
1095}
1096
1097static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val)
1098{
1099    if (val == (int8_t)val) {
1100        tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0);
1101        tcg_out8(s, val);
1102    } else if (val == (int32_t)val) {
1103        tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0);
1104        tcg_out32(s, val);
1105    } else {
1106        g_assert_not_reached();
1107    }
1108}
1109
1110static inline void tcg_out_mb(TCGContext *s, TCGArg a0)
1111{
1112    /* Given the strength of x86 memory ordering, we only need care for
1113       store-load ordering.  Experimentally, "lock orl $0,0(%esp)" is
1114       faster than "mfence", so don't bother with the sse insn.  */
1115    if (a0 & TCG_MO_ST_LD) {
1116        tcg_out8(s, 0xf0);
1117        tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0);
1118        tcg_out8(s, 0);
1119    }
1120}
1121
1122static inline void tcg_out_push(TCGContext *s, int reg)
1123{
1124    tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0);
1125}
1126
1127static inline void tcg_out_pop(TCGContext *s, int reg)
1128{
1129    tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0);
1130}
1131
1132static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
1133                       TCGReg arg1, intptr_t arg2)
1134{
1135    switch (type) {
1136    case TCG_TYPE_I32:
1137        if (ret < 16) {
1138            tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2);
1139        } else {
1140            tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2);
1141        }
1142        break;
1143    case TCG_TYPE_I64:
1144        if (ret < 16) {
1145            tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2);
1146            break;
1147        }
1148        /* FALLTHRU */
1149    case TCG_TYPE_V64:
1150        /* There is no instruction that can validate 8-byte alignment.  */
1151        tcg_debug_assert(ret >= 16);
1152        tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2);
1153        break;
1154    case TCG_TYPE_V128:
1155        /*
1156         * The gvec infrastructure is asserts that v128 vector loads
1157         * and stores use a 16-byte aligned offset.  Validate that the
1158         * final pointer is aligned by using an insn that will SIGSEGV.
1159         */
1160        tcg_debug_assert(ret >= 16);
1161        tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2);
1162        break;
1163    case TCG_TYPE_V256:
1164        /*
1165         * The gvec infrastructure only requires 16-byte alignment,
1166         * so here we must use an unaligned load.
1167         */
1168        tcg_debug_assert(ret >= 16);
1169        tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL,
1170                                 ret, 0, arg1, arg2);
1171        break;
1172    default:
1173        g_assert_not_reached();
1174    }
1175}
1176
1177static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
1178                       TCGReg arg1, intptr_t arg2)
1179{
1180    switch (type) {
1181    case TCG_TYPE_I32:
1182        if (arg < 16) {
1183            tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2);
1184        } else {
1185            tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2);
1186        }
1187        break;
1188    case TCG_TYPE_I64:
1189        if (arg < 16) {
1190            tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2);
1191            break;
1192        }
1193        /* FALLTHRU */
1194    case TCG_TYPE_V64:
1195        /* There is no instruction that can validate 8-byte alignment.  */
1196        tcg_debug_assert(arg >= 16);
1197        tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2);
1198        break;
1199    case TCG_TYPE_V128:
1200        /*
1201         * The gvec infrastructure is asserts that v128 vector loads
1202         * and stores use a 16-byte aligned offset.  Validate that the
1203         * final pointer is aligned by using an insn that will SIGSEGV.
1204         *
1205         * This specific instance is also used by TCG_CALL_RET_BY_VEC,
1206         * for _WIN64, which must have SSE2 but may not have AVX.
1207         */
1208        tcg_debug_assert(arg >= 16);
1209        if (have_avx1) {
1210            tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2);
1211        } else {
1212            tcg_out_modrm_offset(s, OPC_MOVDQA_WxVx, arg, arg1, arg2);
1213        }
1214        break;
1215    case TCG_TYPE_V256:
1216        /*
1217         * The gvec infrastructure only requires 16-byte alignment,
1218         * so here we must use an unaligned store.
1219         */
1220        tcg_debug_assert(arg >= 16);
1221        tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL,
1222                                 arg, 0, arg1, arg2);
1223        break;
1224    default:
1225        g_assert_not_reached();
1226    }
1227}
1228
1229static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
1230                        TCGReg base, intptr_t ofs)
1231{
1232    int rexw = 0;
1233    if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) {
1234        if (val != (int32_t)val) {
1235            return false;
1236        }
1237        rexw = P_REXW;
1238    } else if (type != TCG_TYPE_I32) {
1239        return false;
1240    }
1241    tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs);
1242    tcg_out32(s, val);
1243    return true;
1244}
1245
1246static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count)
1247{
1248    /* Propagate an opcode prefix, such as P_DATA16.  */
1249    int ext = subopc & ~0x7;
1250    subopc &= 0x7;
1251
1252    if (count == 1) {
1253        tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg);
1254    } else {
1255        tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg);
1256        tcg_out8(s, count);
1257    }
1258}
1259
1260static inline void tcg_out_bswap32(TCGContext *s, int reg)
1261{
1262    tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0);
1263}
1264
1265static inline void tcg_out_rolw_8(TCGContext *s, int reg)
1266{
1267    tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8);
1268}
1269
1270static void tcg_out_ext8u(TCGContext *s, TCGReg dest, TCGReg src)
1271{
1272    /* movzbl */
1273    tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64);
1274    tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src);
1275}
1276
1277static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
1278{
1279    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1280    /* movsbl */
1281    tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64);
1282    tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src);
1283}
1284
1285static void tcg_out_ext16u(TCGContext *s, TCGReg dest, TCGReg src)
1286{
1287    /* movzwl */
1288    tcg_out_modrm(s, OPC_MOVZWL, dest, src);
1289}
1290
1291static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
1292{
1293    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1294    /* movsw[lq] */
1295    tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src);
1296}
1297
1298static void tcg_out_ext32u(TCGContext *s, TCGReg dest, TCGReg src)
1299{
1300    /* 32-bit mov zero extends.  */
1301    tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src);
1302}
1303
1304static void tcg_out_ext32s(TCGContext *s, TCGReg dest, TCGReg src)
1305{
1306    tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1307    tcg_out_modrm(s, OPC_MOVSLQ, dest, src);
1308}
1309
1310static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
1311{
1312    tcg_out_ext32s(s, dest, src);
1313}
1314
1315static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
1316{
1317    tcg_out_ext32u(s, dest, src);
1318}
1319
1320static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg dest, TCGReg src)
1321{
1322    tcg_out_ext32u(s, dest, src);
1323}
1324
1325static inline void tcg_out_bswap64(TCGContext *s, int reg)
1326{
1327    tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0);
1328}
1329
1330static void tgen_arithi(TCGContext *s, int c, int r0,
1331                        tcg_target_long val, int cf)
1332{
1333    int rexw = 0;
1334
1335    if (TCG_TARGET_REG_BITS == 64) {
1336        rexw = c & -8;
1337        c &= 7;
1338    }
1339
1340    /* ??? While INC is 2 bytes shorter than ADDL $1, they also induce
1341       partial flags update stalls on Pentium4 and are not recommended
1342       by current Intel optimization manuals.  */
1343    if (!cf && (c == ARITH_ADD || c == ARITH_SUB) && (val == 1 || val == -1)) {
1344        int is_inc = (c == ARITH_ADD) ^ (val < 0);
1345        if (TCG_TARGET_REG_BITS == 64) {
1346            /* The single-byte increment encodings are re-tasked as the
1347               REX prefixes.  Use the MODRM encoding.  */
1348            tcg_out_modrm(s, OPC_GRP5 + rexw,
1349                          (is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0);
1350        } else {
1351            tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0);
1352        }
1353        return;
1354    }
1355
1356    if (c == ARITH_AND) {
1357        if (TCG_TARGET_REG_BITS == 64) {
1358            if (val == 0xffffffffu) {
1359                tcg_out_ext32u(s, r0, r0);
1360                return;
1361            }
1362            if (val == (uint32_t)val) {
1363                /* AND with no high bits set can use a 32-bit operation.  */
1364                rexw = 0;
1365            }
1366        }
1367        if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
1368            tcg_out_ext8u(s, r0, r0);
1369            return;
1370        }
1371        if (val == 0xffffu) {
1372            tcg_out_ext16u(s, r0, r0);
1373            return;
1374        }
1375    }
1376
1377    if (val == (int8_t)val) {
1378        tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0);
1379        tcg_out8(s, val);
1380        return;
1381    }
1382    if (rexw == 0 || val == (int32_t)val) {
1383        tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0);
1384        tcg_out32(s, val);
1385        return;
1386    }
1387
1388    g_assert_not_reached();
1389}
1390
1391static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val)
1392{
1393    if (val != 0) {
1394        tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0);
1395    }
1396}
1397
1398/* Set SMALL to force a short forward branch.  */
1399static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, bool small)
1400{
1401    int32_t val, val1;
1402
1403    if (l->has_value) {
1404        val = tcg_pcrel_diff(s, l->u.value_ptr);
1405        val1 = val - 2;
1406        if ((int8_t)val1 == val1) {
1407            if (opc == -1) {
1408                tcg_out8(s, OPC_JMP_short);
1409            } else {
1410                tcg_out8(s, OPC_JCC_short + opc);
1411            }
1412            tcg_out8(s, val1);
1413        } else {
1414            tcg_debug_assert(!small);
1415            if (opc == -1) {
1416                tcg_out8(s, OPC_JMP_long);
1417                tcg_out32(s, val - 5);
1418            } else {
1419                tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1420                tcg_out32(s, val - 6);
1421            }
1422        }
1423    } else if (small) {
1424        if (opc == -1) {
1425            tcg_out8(s, OPC_JMP_short);
1426        } else {
1427            tcg_out8(s, OPC_JCC_short + opc);
1428        }
1429        tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1);
1430        s->code_ptr += 1;
1431    } else {
1432        if (opc == -1) {
1433            tcg_out8(s, OPC_JMP_long);
1434        } else {
1435            tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1436        }
1437        tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4);
1438        s->code_ptr += 4;
1439    }
1440}
1441
1442static void tcg_out_cmp(TCGContext *s, TCGArg arg1, TCGArg arg2,
1443                        int const_arg2, int rexw)
1444{
1445    if (const_arg2) {
1446        if (arg2 == 0) {
1447            /* test r, r */
1448            tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1);
1449        } else {
1450            tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0);
1451        }
1452    } else {
1453        tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2);
1454    }
1455}
1456
1457static void tcg_out_brcond32(TCGContext *s, TCGCond cond,
1458                             TCGArg arg1, TCGArg arg2, int const_arg2,
1459                             TCGLabel *label, int small)
1460{
1461    tcg_out_cmp(s, arg1, arg2, const_arg2, 0);
1462    tcg_out_jxx(s, tcg_cond_to_jcc[cond], label, small);
1463}
1464
1465#if TCG_TARGET_REG_BITS == 64
1466static void tcg_out_brcond64(TCGContext *s, TCGCond cond,
1467                             TCGArg arg1, TCGArg arg2, int const_arg2,
1468                             TCGLabel *label, int small)
1469{
1470    tcg_out_cmp(s, arg1, arg2, const_arg2, P_REXW);
1471    tcg_out_jxx(s, tcg_cond_to_jcc[cond], label, small);
1472}
1473#else
1474/* XXX: we implement it at the target level to avoid having to
1475   handle cross basic blocks temporaries */
1476static void tcg_out_brcond2(TCGContext *s, const TCGArg *args,
1477                            const int *const_args, int small)
1478{
1479    TCGLabel *label_next = gen_new_label();
1480    TCGLabel *label_this = arg_label(args[5]);
1481
1482    switch(args[4]) {
1483    case TCG_COND_EQ:
1484        tcg_out_brcond32(s, TCG_COND_NE, args[0], args[2], const_args[2],
1485                         label_next, 1);
1486        tcg_out_brcond32(s, TCG_COND_EQ, args[1], args[3], const_args[3],
1487                         label_this, small);
1488        break;
1489    case TCG_COND_NE:
1490        tcg_out_brcond32(s, TCG_COND_NE, args[0], args[2], const_args[2],
1491                         label_this, small);
1492        tcg_out_brcond32(s, TCG_COND_NE, args[1], args[3], const_args[3],
1493                         label_this, small);
1494        break;
1495    case TCG_COND_LT:
1496        tcg_out_brcond32(s, TCG_COND_LT, args[1], args[3], const_args[3],
1497                         label_this, small);
1498        tcg_out_jxx(s, JCC_JNE, label_next, 1);
1499        tcg_out_brcond32(s, TCG_COND_LTU, args[0], args[2], const_args[2],
1500                         label_this, small);
1501        break;
1502    case TCG_COND_LE:
1503        tcg_out_brcond32(s, TCG_COND_LT, args[1], args[3], const_args[3],
1504                         label_this, small);
1505        tcg_out_jxx(s, JCC_JNE, label_next, 1);
1506        tcg_out_brcond32(s, TCG_COND_LEU, args[0], args[2], const_args[2],
1507                         label_this, small);
1508        break;
1509    case TCG_COND_GT:
1510        tcg_out_brcond32(s, TCG_COND_GT, args[1], args[3], const_args[3],
1511                         label_this, small);
1512        tcg_out_jxx(s, JCC_JNE, label_next, 1);
1513        tcg_out_brcond32(s, TCG_COND_GTU, args[0], args[2], const_args[2],
1514                         label_this, small);
1515        break;
1516    case TCG_COND_GE:
1517        tcg_out_brcond32(s, TCG_COND_GT, args[1], args[3], const_args[3],
1518                         label_this, small);
1519        tcg_out_jxx(s, JCC_JNE, label_next, 1);
1520        tcg_out_brcond32(s, TCG_COND_GEU, args[0], args[2], const_args[2],
1521                         label_this, small);
1522        break;
1523    case TCG_COND_LTU:
1524        tcg_out_brcond32(s, TCG_COND_LTU, args[1], args[3], const_args[3],
1525                         label_this, small);
1526        tcg_out_jxx(s, JCC_JNE, label_next, 1);
1527        tcg_out_brcond32(s, TCG_COND_LTU, args[0], args[2], const_args[2],
1528                         label_this, small);
1529        break;
1530    case TCG_COND_LEU:
1531        tcg_out_brcond32(s, TCG_COND_LTU, args[1], args[3], const_args[3],
1532                         label_this, small);
1533        tcg_out_jxx(s, JCC_JNE, label_next, 1);
1534        tcg_out_brcond32(s, TCG_COND_LEU, args[0], args[2], const_args[2],
1535                         label_this, small);
1536        break;
1537    case TCG_COND_GTU:
1538        tcg_out_brcond32(s, TCG_COND_GTU, args[1], args[3], const_args[3],
1539                         label_this, small);
1540        tcg_out_jxx(s, JCC_JNE, label_next, 1);
1541        tcg_out_brcond32(s, TCG_COND_GTU, args[0], args[2], const_args[2],
1542                         label_this, small);
1543        break;
1544    case TCG_COND_GEU:
1545        tcg_out_brcond32(s, TCG_COND_GTU, args[1], args[3], const_args[3],
1546                         label_this, small);
1547        tcg_out_jxx(s, JCC_JNE, label_next, 1);
1548        tcg_out_brcond32(s, TCG_COND_GEU, args[0], args[2], const_args[2],
1549                         label_this, small);
1550        break;
1551    default:
1552        g_assert_not_reached();
1553    }
1554    tcg_out_label(s, label_next);
1555}
1556#endif
1557
1558static void tcg_out_setcond32(TCGContext *s, TCGCond cond, TCGArg dest,
1559                              TCGArg arg1, TCGArg arg2, int const_arg2)
1560{
1561    tcg_out_cmp(s, arg1, arg2, const_arg2, 0);
1562    tcg_out_modrm(s, OPC_SETCC | tcg_cond_to_jcc[cond], 0, dest);
1563    tcg_out_ext8u(s, dest, dest);
1564}
1565
1566#if TCG_TARGET_REG_BITS == 64
1567static void tcg_out_setcond64(TCGContext *s, TCGCond cond, TCGArg dest,
1568                              TCGArg arg1, TCGArg arg2, int const_arg2)
1569{
1570    tcg_out_cmp(s, arg1, arg2, const_arg2, P_REXW);
1571    tcg_out_modrm(s, OPC_SETCC | tcg_cond_to_jcc[cond], 0, dest);
1572    tcg_out_ext8u(s, dest, dest);
1573}
1574#else
1575static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
1576                             const int *const_args)
1577{
1578    TCGArg new_args[6];
1579    TCGLabel *label_true, *label_over;
1580
1581    memcpy(new_args, args+1, 5*sizeof(TCGArg));
1582
1583    if (args[0] == args[1] || args[0] == args[2]
1584        || (!const_args[3] && args[0] == args[3])
1585        || (!const_args[4] && args[0] == args[4])) {
1586        /* When the destination overlaps with one of the argument
1587           registers, don't do anything tricky.  */
1588        label_true = gen_new_label();
1589        label_over = gen_new_label();
1590
1591        new_args[5] = label_arg(label_true);
1592        tcg_out_brcond2(s, new_args, const_args+1, 1);
1593
1594        tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1595        tcg_out_jxx(s, JCC_JMP, label_over, 1);
1596        tcg_out_label(s, label_true);
1597
1598        tcg_out_movi(s, TCG_TYPE_I32, args[0], 1);
1599        tcg_out_label(s, label_over);
1600    } else {
1601        /* When the destination does not overlap one of the arguments,
1602           clear the destination first, jump if cond false, and emit an
1603           increment in the true case.  This results in smaller code.  */
1604
1605        tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1606
1607        label_over = gen_new_label();
1608        new_args[4] = tcg_invert_cond(new_args[4]);
1609        new_args[5] = label_arg(label_over);
1610        tcg_out_brcond2(s, new_args, const_args+1, 1);
1611
1612        tgen_arithi(s, ARITH_ADD, args[0], 1, 0);
1613        tcg_out_label(s, label_over);
1614    }
1615}
1616#endif
1617
1618static void tcg_out_cmov(TCGContext *s, TCGCond cond, int rexw,
1619                         TCGReg dest, TCGReg v1)
1620{
1621    if (have_cmov) {
1622        tcg_out_modrm(s, OPC_CMOVCC | tcg_cond_to_jcc[cond] | rexw, dest, v1);
1623    } else {
1624        TCGLabel *over = gen_new_label();
1625        tcg_out_jxx(s, tcg_cond_to_jcc[tcg_invert_cond(cond)], over, 1);
1626        tcg_out_mov(s, TCG_TYPE_I32, dest, v1);
1627        tcg_out_label(s, over);
1628    }
1629}
1630
1631static void tcg_out_movcond32(TCGContext *s, TCGCond cond, TCGReg dest,
1632                              TCGReg c1, TCGArg c2, int const_c2,
1633                              TCGReg v1)
1634{
1635    tcg_out_cmp(s, c1, c2, const_c2, 0);
1636    tcg_out_cmov(s, cond, 0, dest, v1);
1637}
1638
1639#if TCG_TARGET_REG_BITS == 64
1640static void tcg_out_movcond64(TCGContext *s, TCGCond cond, TCGReg dest,
1641                              TCGReg c1, TCGArg c2, int const_c2,
1642                              TCGReg v1)
1643{
1644    tcg_out_cmp(s, c1, c2, const_c2, P_REXW);
1645    tcg_out_cmov(s, cond, P_REXW, dest, v1);
1646}
1647#endif
1648
1649static void tcg_out_ctz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
1650                        TCGArg arg2, bool const_a2)
1651{
1652    if (have_bmi1) {
1653        tcg_out_modrm(s, OPC_TZCNT + rexw, dest, arg1);
1654        if (const_a2) {
1655            tcg_debug_assert(arg2 == (rexw ? 64 : 32));
1656        } else {
1657            tcg_debug_assert(dest != arg2);
1658            tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2);
1659        }
1660    } else {
1661        tcg_debug_assert(dest != arg2);
1662        tcg_out_modrm(s, OPC_BSF + rexw, dest, arg1);
1663        tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2);
1664    }
1665}
1666
1667static void tcg_out_clz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
1668                        TCGArg arg2, bool const_a2)
1669{
1670    if (have_lzcnt) {
1671        tcg_out_modrm(s, OPC_LZCNT + rexw, dest, arg1);
1672        if (const_a2) {
1673            tcg_debug_assert(arg2 == (rexw ? 64 : 32));
1674        } else {
1675            tcg_debug_assert(dest != arg2);
1676            tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2);
1677        }
1678    } else {
1679        tcg_debug_assert(!const_a2);
1680        tcg_debug_assert(dest != arg1);
1681        tcg_debug_assert(dest != arg2);
1682
1683        /* Recall that the output of BSR is the index not the count.  */
1684        tcg_out_modrm(s, OPC_BSR + rexw, dest, arg1);
1685        tgen_arithi(s, ARITH_XOR + rexw, dest, rexw ? 63 : 31, 0);
1686
1687        /* Since we have destroyed the flags from BSR, we have to re-test.  */
1688        tcg_out_cmp(s, arg1, 0, 1, rexw);
1689        tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2);
1690    }
1691}
1692
1693static void tcg_out_branch(TCGContext *s, int call, const tcg_insn_unit *dest)
1694{
1695    intptr_t disp = tcg_pcrel_diff(s, dest) - 5;
1696
1697    if (disp == (int32_t)disp) {
1698        tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0);
1699        tcg_out32(s, disp);
1700    } else {
1701        /* rip-relative addressing into the constant pool.
1702           This is 6 + 8 = 14 bytes, as compared to using an
1703           immediate load 10 + 6 = 16 bytes, plus we may
1704           be able to re-use the pool constant for more calls.  */
1705        tcg_out_opc(s, OPC_GRP5, 0, 0, 0);
1706        tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5);
1707        new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4);
1708        tcg_out32(s, 0);
1709    }
1710}
1711
1712static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest,
1713                         const TCGHelperInfo *info)
1714{
1715    tcg_out_branch(s, 1, dest);
1716
1717#ifndef _WIN32
1718    if (TCG_TARGET_REG_BITS == 32 && info->out_kind == TCG_CALL_RET_BY_REF) {
1719        /*
1720         * The sysv i386 abi for struct return places a reference as the
1721         * first argument of the stack, and pops that argument with the
1722         * return statement.  Since we want to retain the aligned stack
1723         * pointer for the callee, we do not want to actually push that
1724         * argument before the call but rely on the normal store to the
1725         * stack slot.  But we do need to compensate for the pop in order
1726         * to reset our correct stack pointer value.
1727         * Pushing a garbage value back onto the stack is quickest.
1728         */
1729        tcg_out_push(s, TCG_REG_EAX);
1730    }
1731#endif
1732}
1733
1734static void tcg_out_jmp(TCGContext *s, const tcg_insn_unit *dest)
1735{
1736    tcg_out_branch(s, 0, dest);
1737}
1738
1739static void tcg_out_nopn(TCGContext *s, int n)
1740{
1741    int i;
1742    /* Emit 1 or 2 operand size prefixes for the standard one byte nop,
1743     * "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the
1744     * duplicate prefix, and all of the interesting recent cores can
1745     * decode and discard the duplicates in a single cycle.
1746     */
1747    tcg_debug_assert(n >= 1);
1748    for (i = 1; i < n; ++i) {
1749        tcg_out8(s, 0x66);
1750    }
1751    tcg_out8(s, 0x90);
1752}
1753
1754#if defined(CONFIG_SOFTMMU)
1755/* helper signature: helper_ret_ld_mmu(CPUState *env, target_ulong addr,
1756 *                                     int mmu_idx, uintptr_t ra)
1757 */
1758static void * const qemu_ld_helpers[(MO_SIZE | MO_BSWAP) + 1] = {
1759    [MO_UB]   = helper_ret_ldub_mmu,
1760    [MO_LEUW] = helper_le_lduw_mmu,
1761    [MO_LEUL] = helper_le_ldul_mmu,
1762    [MO_LEUQ] = helper_le_ldq_mmu,
1763    [MO_BEUW] = helper_be_lduw_mmu,
1764    [MO_BEUL] = helper_be_ldul_mmu,
1765    [MO_BEUQ] = helper_be_ldq_mmu,
1766};
1767
1768/* helper signature: helper_ret_st_mmu(CPUState *env, target_ulong addr,
1769 *                                     uintxx_t val, int mmu_idx, uintptr_t ra)
1770 */
1771static void * const qemu_st_helpers[(MO_SIZE | MO_BSWAP) + 1] = {
1772    [MO_UB]   = helper_ret_stb_mmu,
1773    [MO_LEUW] = helper_le_stw_mmu,
1774    [MO_LEUL] = helper_le_stl_mmu,
1775    [MO_LEUQ] = helper_le_stq_mmu,
1776    [MO_BEUW] = helper_be_stw_mmu,
1777    [MO_BEUL] = helper_be_stl_mmu,
1778    [MO_BEUQ] = helper_be_stq_mmu,
1779};
1780
1781/* Perform the TLB load and compare.
1782
1783   Inputs:
1784   ADDRLO and ADDRHI contain the low and high part of the address.
1785
1786   MEM_INDEX and S_BITS are the memory context and log2 size of the load.
1787
1788   WHICH is the offset into the CPUTLBEntry structure of the slot to read.
1789   This should be offsetof addr_read or addr_write.
1790
1791   Outputs:
1792   LABEL_PTRS is filled with 1 (32-bit addresses) or 2 (64-bit addresses)
1793   positions of the displacements of forward jumps to the TLB miss case.
1794
1795   Second argument register is loaded with the low part of the address.
1796   In the TLB hit case, it has been adjusted as indicated by the TLB
1797   and so is a host address.  In the TLB miss case, it continues to
1798   hold a guest address.
1799
1800   First argument register is clobbered.  */
1801
1802static inline void tcg_out_tlb_load(TCGContext *s, TCGReg addrlo, TCGReg addrhi,
1803                                    int mem_index, MemOp opc,
1804                                    tcg_insn_unit **label_ptr, int which)
1805{
1806    const TCGReg r0 = TCG_REG_L0;
1807    const TCGReg r1 = TCG_REG_L1;
1808    TCGType ttype = TCG_TYPE_I32;
1809    TCGType tlbtype = TCG_TYPE_I32;
1810    int trexw = 0, hrexw = 0, tlbrexw = 0;
1811    unsigned a_bits = get_alignment_bits(opc);
1812    unsigned s_bits = opc & MO_SIZE;
1813    unsigned a_mask = (1 << a_bits) - 1;
1814    unsigned s_mask = (1 << s_bits) - 1;
1815    target_ulong tlb_mask;
1816
1817    if (TCG_TARGET_REG_BITS == 64) {
1818        if (TARGET_LONG_BITS == 64) {
1819            ttype = TCG_TYPE_I64;
1820            trexw = P_REXW;
1821        }
1822        if (TCG_TYPE_PTR == TCG_TYPE_I64) {
1823            hrexw = P_REXW;
1824            if (TARGET_PAGE_BITS + CPU_TLB_DYN_MAX_BITS > 32) {
1825                tlbtype = TCG_TYPE_I64;
1826                tlbrexw = P_REXW;
1827            }
1828        }
1829    }
1830
1831    tcg_out_mov(s, tlbtype, r0, addrlo);
1832    tcg_out_shifti(s, SHIFT_SHR + tlbrexw, r0,
1833                   TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
1834
1835    tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, r0, TCG_AREG0,
1836                         TLB_MASK_TABLE_OFS(mem_index) +
1837                         offsetof(CPUTLBDescFast, mask));
1838
1839    tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, r0, TCG_AREG0,
1840                         TLB_MASK_TABLE_OFS(mem_index) +
1841                         offsetof(CPUTLBDescFast, table));
1842
1843    /* If the required alignment is at least as large as the access, simply
1844       copy the address and mask.  For lesser alignments, check that we don't
1845       cross pages for the complete access.  */
1846    if (a_bits >= s_bits) {
1847        tcg_out_mov(s, ttype, r1, addrlo);
1848    } else {
1849        tcg_out_modrm_offset(s, OPC_LEA + trexw, r1, addrlo, s_mask - a_mask);
1850    }
1851    tlb_mask = (target_ulong)TARGET_PAGE_MASK | a_mask;
1852    tgen_arithi(s, ARITH_AND + trexw, r1, tlb_mask, 0);
1853
1854    /* cmp 0(r0), r1 */
1855    tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw, r1, r0, which);
1856
1857    /* Prepare for both the fast path add of the tlb addend, and the slow
1858       path function argument setup.  */
1859    tcg_out_mov(s, ttype, r1, addrlo);
1860
1861    /* jne slow_path */
1862    tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
1863    label_ptr[0] = s->code_ptr;
1864    s->code_ptr += 4;
1865
1866    if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1867        /* cmp 4(r0), addrhi */
1868        tcg_out_modrm_offset(s, OPC_CMP_GvEv, addrhi, r0, which + 4);
1869
1870        /* jne slow_path */
1871        tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
1872        label_ptr[1] = s->code_ptr;
1873        s->code_ptr += 4;
1874    }
1875
1876    /* TLB Hit.  */
1877
1878    /* add addend(r0), r1 */
1879    tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, r1, r0,
1880                         offsetof(CPUTLBEntry, addend));
1881}
1882
1883/*
1884 * Record the context of a call to the out of line helper code for the slow path
1885 * for a load or store, so that we can later generate the correct helper code
1886 */
1887static void add_qemu_ldst_label(TCGContext *s, bool is_ld, bool is_64,
1888                                MemOpIdx oi,
1889                                TCGReg datalo, TCGReg datahi,
1890                                TCGReg addrlo, TCGReg addrhi,
1891                                tcg_insn_unit *raddr,
1892                                tcg_insn_unit **label_ptr)
1893{
1894    TCGLabelQemuLdst *label = new_ldst_label(s);
1895
1896    label->is_ld = is_ld;
1897    label->oi = oi;
1898    label->type = is_64 ? TCG_TYPE_I64 : TCG_TYPE_I32;
1899    label->datalo_reg = datalo;
1900    label->datahi_reg = datahi;
1901    label->addrlo_reg = addrlo;
1902    label->addrhi_reg = addrhi;
1903    label->raddr = tcg_splitwx_to_rx(raddr);
1904    label->label_ptr[0] = label_ptr[0];
1905    if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1906        label->label_ptr[1] = label_ptr[1];
1907    }
1908}
1909
1910/*
1911 * Generate code for the slow path for a load at the end of block
1912 */
1913static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
1914{
1915    MemOpIdx oi = l->oi;
1916    MemOp opc = get_memop(oi);
1917    tcg_insn_unit **label_ptr = &l->label_ptr[0];
1918
1919    /* resolve label address */
1920    tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
1921    if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1922        tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
1923    }
1924
1925    if (TCG_TARGET_REG_BITS == 32) {
1926        int ofs = 0;
1927
1928        tcg_out_st(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, ofs);
1929        ofs += 4;
1930
1931        tcg_out_st(s, TCG_TYPE_I32, l->addrlo_reg, TCG_REG_ESP, ofs);
1932        ofs += 4;
1933
1934        if (TARGET_LONG_BITS == 64) {
1935            tcg_out_st(s, TCG_TYPE_I32, l->addrhi_reg, TCG_REG_ESP, ofs);
1936            ofs += 4;
1937        }
1938
1939        tcg_out_sti(s, TCG_TYPE_I32, oi, TCG_REG_ESP, ofs);
1940        ofs += 4;
1941
1942        tcg_out_sti(s, TCG_TYPE_PTR, (uintptr_t)l->raddr, TCG_REG_ESP, ofs);
1943    } else {
1944        tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0);
1945        /* The second argument is already loaded with addrlo.  */
1946        tcg_out_movi(s, TCG_TYPE_I32, tcg_target_call_iarg_regs[2], oi);
1947        tcg_out_movi(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[3],
1948                     (uintptr_t)l->raddr);
1949    }
1950
1951    tcg_out_branch(s, 1, qemu_ld_helpers[opc & (MO_BSWAP | MO_SIZE)]);
1952
1953    if (TCG_TARGET_REG_BITS == 32 && (opc & MO_SIZE) == MO_64) {
1954        TCGMovExtend ext[2] = {
1955            { .dst = l->datalo_reg, .dst_type = TCG_TYPE_I32,
1956              .src = TCG_REG_EAX, .src_type = TCG_TYPE_I32, .src_ext = MO_UL },
1957            { .dst = l->datahi_reg, .dst_type = TCG_TYPE_I32,
1958              .src = TCG_REG_EDX, .src_type = TCG_TYPE_I32, .src_ext = MO_UL },
1959        };
1960        tcg_out_movext2(s, &ext[0], &ext[1], -1);
1961    } else {
1962        tcg_out_movext(s, l->type, l->datalo_reg,
1963                       TCG_TYPE_REG, opc & MO_SSIZE, TCG_REG_EAX);
1964    }
1965
1966    /* Jump to the code corresponding to next IR of qemu_st */
1967    tcg_out_jmp(s, l->raddr);
1968    return true;
1969}
1970
1971/*
1972 * Generate code for the slow path for a store at the end of block
1973 */
1974static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
1975{
1976    MemOpIdx oi = l->oi;
1977    MemOp opc = get_memop(oi);
1978    MemOp s_bits = opc & MO_SIZE;
1979    tcg_insn_unit **label_ptr = &l->label_ptr[0];
1980    TCGReg retaddr;
1981
1982    /* resolve label address */
1983    tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
1984    if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1985        tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
1986    }
1987
1988    if (TCG_TARGET_REG_BITS == 32) {
1989        int ofs = 0;
1990
1991        tcg_out_st(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, ofs);
1992        ofs += 4;
1993
1994        tcg_out_st(s, TCG_TYPE_I32, l->addrlo_reg, TCG_REG_ESP, ofs);
1995        ofs += 4;
1996
1997        if (TARGET_LONG_BITS == 64) {
1998            tcg_out_st(s, TCG_TYPE_I32, l->addrhi_reg, TCG_REG_ESP, ofs);
1999            ofs += 4;
2000        }
2001
2002        tcg_out_st(s, TCG_TYPE_I32, l->datalo_reg, TCG_REG_ESP, ofs);
2003        ofs += 4;
2004
2005        if (s_bits == MO_64) {
2006            tcg_out_st(s, TCG_TYPE_I32, l->datahi_reg, TCG_REG_ESP, ofs);
2007            ofs += 4;
2008        }
2009
2010        tcg_out_sti(s, TCG_TYPE_I32, oi, TCG_REG_ESP, ofs);
2011        ofs += 4;
2012
2013        retaddr = TCG_REG_EAX;
2014        tcg_out_movi(s, TCG_TYPE_PTR, retaddr, (uintptr_t)l->raddr);
2015        tcg_out_st(s, TCG_TYPE_PTR, retaddr, TCG_REG_ESP, ofs);
2016    } else {
2017        tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0);
2018        /* The second argument is already loaded with addrlo.  */
2019        tcg_out_mov(s, (s_bits == MO_64 ? TCG_TYPE_I64 : TCG_TYPE_I32),
2020                    tcg_target_call_iarg_regs[2], l->datalo_reg);
2021        tcg_out_movi(s, TCG_TYPE_I32, tcg_target_call_iarg_regs[3], oi);
2022
2023        if (ARRAY_SIZE(tcg_target_call_iarg_regs) > 4) {
2024            retaddr = tcg_target_call_iarg_regs[4];
2025            tcg_out_movi(s, TCG_TYPE_PTR, retaddr, (uintptr_t)l->raddr);
2026        } else {
2027            retaddr = TCG_REG_RAX;
2028            tcg_out_movi(s, TCG_TYPE_PTR, retaddr, (uintptr_t)l->raddr);
2029            tcg_out_st(s, TCG_TYPE_PTR, retaddr, TCG_REG_ESP,
2030                       TCG_TARGET_CALL_STACK_OFFSET);
2031        }
2032    }
2033
2034    /* "Tail call" to the helper, with the return address back inline.  */
2035    tcg_out_push(s, retaddr);
2036    tcg_out_jmp(s, qemu_st_helpers[opc & (MO_BSWAP | MO_SIZE)]);
2037    return true;
2038}
2039#else
2040
2041static void tcg_out_test_alignment(TCGContext *s, bool is_ld, TCGReg addrlo,
2042                                   TCGReg addrhi, unsigned a_bits)
2043{
2044    unsigned a_mask = (1 << a_bits) - 1;
2045    TCGLabelQemuLdst *label;
2046
2047    /*
2048     * We are expecting a_bits to max out at 7, so we can usually use testb.
2049     * For i686, we have to use testl for %esi/%edi.
2050     */
2051    if (a_mask <= 0xff && (TCG_TARGET_REG_BITS == 64 || addrlo < 4)) {
2052        tcg_out_modrm(s, OPC_GRP3_Eb | P_REXB_RM, EXT3_TESTi, addrlo);
2053        tcg_out8(s, a_mask);
2054    } else {
2055        tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_TESTi, addrlo);
2056        tcg_out32(s, a_mask);
2057    }
2058
2059    /* jne slow_path */
2060    tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
2061
2062    label = new_ldst_label(s);
2063    label->is_ld = is_ld;
2064    label->addrlo_reg = addrlo;
2065    label->addrhi_reg = addrhi;
2066    label->raddr = tcg_splitwx_to_rx(s->code_ptr + 4);
2067    label->label_ptr[0] = s->code_ptr;
2068
2069    s->code_ptr += 4;
2070}
2071
2072static bool tcg_out_fail_alignment(TCGContext *s, TCGLabelQemuLdst *l)
2073{
2074    /* resolve label address */
2075    tcg_patch32(l->label_ptr[0], s->code_ptr - l->label_ptr[0] - 4);
2076
2077    if (TCG_TARGET_REG_BITS == 32) {
2078        int ofs = 0;
2079
2080        tcg_out_st(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, ofs);
2081        ofs += 4;
2082
2083        tcg_out_st(s, TCG_TYPE_I32, l->addrlo_reg, TCG_REG_ESP, ofs);
2084        ofs += 4;
2085        if (TARGET_LONG_BITS == 64) {
2086            tcg_out_st(s, TCG_TYPE_I32, l->addrhi_reg, TCG_REG_ESP, ofs);
2087            ofs += 4;
2088        }
2089
2090        tcg_out_pushi(s, (uintptr_t)l->raddr);
2091    } else {
2092        tcg_out_mov(s, TCG_TYPE_TL, tcg_target_call_iarg_regs[1],
2093                    l->addrlo_reg);
2094        tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0);
2095
2096        tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_RAX, (uintptr_t)l->raddr);
2097        tcg_out_push(s, TCG_REG_RAX);
2098    }
2099
2100    /* "Tail call" to the helper, with the return address back inline. */
2101    tcg_out_jmp(s, (const void *)(l->is_ld ? helper_unaligned_ld
2102                                  : helper_unaligned_st));
2103    return true;
2104}
2105
2106static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
2107{
2108    return tcg_out_fail_alignment(s, l);
2109}
2110
2111static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
2112{
2113    return tcg_out_fail_alignment(s, l);
2114}
2115
2116#if TCG_TARGET_REG_BITS == 32
2117# define x86_guest_base_seg     0
2118# define x86_guest_base_index   -1
2119# define x86_guest_base_offset  guest_base
2120#else
2121static int x86_guest_base_seg;
2122static int x86_guest_base_index = -1;
2123static int32_t x86_guest_base_offset;
2124# if defined(__x86_64__) && defined(__linux__)
2125#  include <asm/prctl.h>
2126#  include <sys/prctl.h>
2127int arch_prctl(int code, unsigned long addr);
2128static inline int setup_guest_base_seg(void)
2129{
2130    if (arch_prctl(ARCH_SET_GS, guest_base) == 0) {
2131        return P_GS;
2132    }
2133    return 0;
2134}
2135# elif defined (__FreeBSD__) || defined (__FreeBSD_kernel__)
2136#  include <machine/sysarch.h>
2137static inline int setup_guest_base_seg(void)
2138{
2139    if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) {
2140        return P_GS;
2141    }
2142    return 0;
2143}
2144# else
2145static inline int setup_guest_base_seg(void)
2146{
2147    return 0;
2148}
2149# endif
2150#endif
2151#endif /* SOFTMMU */
2152
2153static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2154                                   TCGReg base, int index, intptr_t ofs,
2155                                   int seg, bool is64, MemOp memop)
2156{
2157    TCGType type = is64 ? TCG_TYPE_I64 : TCG_TYPE_I32;
2158    bool use_movbe = false;
2159    int rexw = is64 * P_REXW;
2160    int movop = OPC_MOVL_GvEv;
2161
2162    /* Do big-endian loads with movbe.  */
2163    if (memop & MO_BSWAP) {
2164        tcg_debug_assert(have_movbe);
2165        use_movbe = true;
2166        movop = OPC_MOVBE_GyMy;
2167    }
2168
2169    switch (memop & MO_SSIZE) {
2170    case MO_UB:
2171        tcg_out_modrm_sib_offset(s, OPC_MOVZBL + seg, datalo,
2172                                 base, index, 0, ofs);
2173        break;
2174    case MO_SB:
2175        tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + seg, datalo,
2176                                 base, index, 0, ofs);
2177        break;
2178    case MO_UW:
2179        if (use_movbe) {
2180            /* There is no extending movbe; only low 16-bits are modified.  */
2181            if (datalo != base && datalo != index) {
2182                /* XOR breaks dependency chains.  */
2183                tgen_arithr(s, ARITH_XOR, datalo, datalo);
2184                tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + seg,
2185                                         datalo, base, index, 0, ofs);
2186            } else {
2187                tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + seg,
2188                                         datalo, base, index, 0, ofs);
2189                tcg_out_ext16u(s, datalo, datalo);
2190            }
2191        } else {
2192            tcg_out_modrm_sib_offset(s, OPC_MOVZWL + seg, datalo,
2193                                     base, index, 0, ofs);
2194        }
2195        break;
2196    case MO_SW:
2197        if (use_movbe) {
2198            tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + seg,
2199                                     datalo, base, index, 0, ofs);
2200            tcg_out_ext16s(s, type, datalo, datalo);
2201        } else {
2202            tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + seg,
2203                                     datalo, base, index, 0, ofs);
2204        }
2205        break;
2206    case MO_UL:
2207        tcg_out_modrm_sib_offset(s, movop + seg, datalo, base, index, 0, ofs);
2208        break;
2209#if TCG_TARGET_REG_BITS == 64
2210    case MO_SL:
2211        if (use_movbe) {
2212            tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + seg, datalo,
2213                                     base, index, 0, ofs);
2214            tcg_out_ext32s(s, datalo, datalo);
2215        } else {
2216            tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + seg, datalo,
2217                                     base, index, 0, ofs);
2218        }
2219        break;
2220#endif
2221    case MO_UQ:
2222        if (TCG_TARGET_REG_BITS == 64) {
2223            tcg_out_modrm_sib_offset(s, movop + P_REXW + seg, datalo,
2224                                     base, index, 0, ofs);
2225        } else {
2226            if (use_movbe) {
2227                TCGReg t = datalo;
2228                datalo = datahi;
2229                datahi = t;
2230            }
2231            if (base != datalo) {
2232                tcg_out_modrm_sib_offset(s, movop + seg, datalo,
2233                                         base, index, 0, ofs);
2234                tcg_out_modrm_sib_offset(s, movop + seg, datahi,
2235                                         base, index, 0, ofs + 4);
2236            } else {
2237                tcg_out_modrm_sib_offset(s, movop + seg, datahi,
2238                                         base, index, 0, ofs + 4);
2239                tcg_out_modrm_sib_offset(s, movop + seg, datalo,
2240                                         base, index, 0, ofs);
2241            }
2242        }
2243        break;
2244    default:
2245        g_assert_not_reached();
2246    }
2247}
2248
2249/* XXX: qemu_ld and qemu_st could be modified to clobber only EDX and
2250   EAX. It will be useful once fixed registers globals are less
2251   common. */
2252static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, bool is64)
2253{
2254    TCGReg datalo, datahi, addrlo;
2255    TCGReg addrhi __attribute__((unused));
2256    MemOpIdx oi;
2257    MemOp opc;
2258#if defined(CONFIG_SOFTMMU)
2259    int mem_index;
2260    tcg_insn_unit *label_ptr[2];
2261#else
2262    unsigned a_bits;
2263#endif
2264
2265    datalo = *args++;
2266    datahi = (TCG_TARGET_REG_BITS == 32 && is64 ? *args++ : 0);
2267    addrlo = *args++;
2268    addrhi = (TARGET_LONG_BITS > TCG_TARGET_REG_BITS ? *args++ : 0);
2269    oi = *args++;
2270    opc = get_memop(oi);
2271
2272#if defined(CONFIG_SOFTMMU)
2273    mem_index = get_mmuidx(oi);
2274
2275    tcg_out_tlb_load(s, addrlo, addrhi, mem_index, opc,
2276                     label_ptr, offsetof(CPUTLBEntry, addr_read));
2277
2278    /* TLB Hit.  */
2279    tcg_out_qemu_ld_direct(s, datalo, datahi, TCG_REG_L1, -1, 0, 0, is64, opc);
2280
2281    /* Record the current context of a load into ldst label */
2282    add_qemu_ldst_label(s, true, is64, oi, datalo, datahi, addrlo, addrhi,
2283                        s->code_ptr, label_ptr);
2284#else
2285    a_bits = get_alignment_bits(opc);
2286    if (a_bits) {
2287        tcg_out_test_alignment(s, true, addrlo, addrhi, a_bits);
2288    }
2289
2290    tcg_out_qemu_ld_direct(s, datalo, datahi, addrlo, x86_guest_base_index,
2291                           x86_guest_base_offset, x86_guest_base_seg,
2292                           is64, opc);
2293#endif
2294}
2295
2296static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2297                                   TCGReg base, int index, intptr_t ofs,
2298                                   int seg, MemOp memop)
2299{
2300    bool use_movbe = false;
2301    int movop = OPC_MOVL_EvGv;
2302
2303    /*
2304     * Do big-endian stores with movbe or softmmu.
2305     * User-only without movbe will have its swapping done generically.
2306     */
2307    if (memop & MO_BSWAP) {
2308        tcg_debug_assert(have_movbe);
2309        use_movbe = true;
2310        movop = OPC_MOVBE_MyGy;
2311    }
2312
2313    switch (memop & MO_SIZE) {
2314    case MO_8:
2315        /* This is handled with constraints on INDEX_op_qemu_st8_i32. */
2316        tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || datalo < 4);
2317        tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + seg,
2318                                 datalo, base, index, 0, ofs);
2319        break;
2320    case MO_16:
2321        tcg_out_modrm_sib_offset(s, movop + P_DATA16 + seg, datalo,
2322                                 base, index, 0, ofs);
2323        break;
2324    case MO_32:
2325        tcg_out_modrm_sib_offset(s, movop + seg, datalo, base, index, 0, ofs);
2326        break;
2327    case MO_64:
2328        if (TCG_TARGET_REG_BITS == 64) {
2329            tcg_out_modrm_sib_offset(s, movop + P_REXW + seg, datalo,
2330                                     base, index, 0, ofs);
2331        } else {
2332            if (use_movbe) {
2333                TCGReg t = datalo;
2334                datalo = datahi;
2335                datahi = t;
2336            }
2337            tcg_out_modrm_sib_offset(s, movop + seg, datalo,
2338                                     base, index, 0, ofs);
2339            tcg_out_modrm_sib_offset(s, movop + seg, datahi,
2340                                     base, index, 0, ofs + 4);
2341        }
2342        break;
2343    default:
2344        g_assert_not_reached();
2345    }
2346}
2347
2348static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, bool is64)
2349{
2350    TCGReg datalo, datahi, addrlo;
2351    TCGReg addrhi __attribute__((unused));
2352    MemOpIdx oi;
2353    MemOp opc;
2354#if defined(CONFIG_SOFTMMU)
2355    int mem_index;
2356    tcg_insn_unit *label_ptr[2];
2357#else
2358    unsigned a_bits;
2359#endif
2360
2361    datalo = *args++;
2362    datahi = (TCG_TARGET_REG_BITS == 32 && is64 ? *args++ : 0);
2363    addrlo = *args++;
2364    addrhi = (TARGET_LONG_BITS > TCG_TARGET_REG_BITS ? *args++ : 0);
2365    oi = *args++;
2366    opc = get_memop(oi);
2367
2368#if defined(CONFIG_SOFTMMU)
2369    mem_index = get_mmuidx(oi);
2370
2371    tcg_out_tlb_load(s, addrlo, addrhi, mem_index, opc,
2372                     label_ptr, offsetof(CPUTLBEntry, addr_write));
2373
2374    /* TLB Hit.  */
2375    tcg_out_qemu_st_direct(s, datalo, datahi, TCG_REG_L1, -1, 0, 0, opc);
2376
2377    /* Record the current context of a store into ldst label */
2378    add_qemu_ldst_label(s, false, is64, oi, datalo, datahi, addrlo, addrhi,
2379                        s->code_ptr, label_ptr);
2380#else
2381    a_bits = get_alignment_bits(opc);
2382    if (a_bits) {
2383        tcg_out_test_alignment(s, false, addrlo, addrhi, a_bits);
2384    }
2385
2386    tcg_out_qemu_st_direct(s, datalo, datahi, addrlo, x86_guest_base_index,
2387                           x86_guest_base_offset, x86_guest_base_seg, opc);
2388#endif
2389}
2390
2391static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0)
2392{
2393    /* Reuse the zeroing that exists for goto_ptr.  */
2394    if (a0 == 0) {
2395        tcg_out_jmp(s, tcg_code_gen_epilogue);
2396    } else {
2397        tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0);
2398        tcg_out_jmp(s, tb_ret_addr);
2399    }
2400}
2401
2402static void tcg_out_goto_tb(TCGContext *s, int which)
2403{
2404    /*
2405     * Jump displacement must be aligned for atomic patching;
2406     * see if we need to add extra nops before jump
2407     */
2408    int gap = QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4) - s->code_ptr;
2409    if (gap != 1) {
2410        tcg_out_nopn(s, gap - 1);
2411    }
2412    tcg_out8(s, OPC_JMP_long); /* jmp im */
2413    set_jmp_insn_offset(s, which);
2414    tcg_out32(s, 0);
2415    set_jmp_reset_offset(s, which);
2416}
2417
2418void tb_target_set_jmp_target(const TranslationBlock *tb, int n,
2419                              uintptr_t jmp_rx, uintptr_t jmp_rw)
2420{
2421    /* patch the branch destination */
2422    uintptr_t addr = tb->jmp_target_addr[n];
2423    qatomic_set((int32_t *)jmp_rw, addr - (jmp_rx + 4));
2424    /* no need to flush icache explicitly */
2425}
2426
2427static inline void tcg_out_op(TCGContext *s, TCGOpcode opc,
2428                              const TCGArg args[TCG_MAX_OP_ARGS],
2429                              const int const_args[TCG_MAX_OP_ARGS])
2430{
2431    TCGArg a0, a1, a2;
2432    int c, const_a2, vexop, rexw = 0;
2433
2434#if TCG_TARGET_REG_BITS == 64
2435# define OP_32_64(x) \
2436        case glue(glue(INDEX_op_, x), _i64): \
2437            rexw = P_REXW; /* FALLTHRU */    \
2438        case glue(glue(INDEX_op_, x), _i32)
2439#else
2440# define OP_32_64(x) \
2441        case glue(glue(INDEX_op_, x), _i32)
2442#endif
2443
2444    /* Hoist the loads of the most common arguments.  */
2445    a0 = args[0];
2446    a1 = args[1];
2447    a2 = args[2];
2448    const_a2 = const_args[2];
2449
2450    switch (opc) {
2451    case INDEX_op_goto_ptr:
2452        /* jmp to the given host address (could be epilogue) */
2453        tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0);
2454        break;
2455    case INDEX_op_br:
2456        tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0);
2457        break;
2458    OP_32_64(ld8u):
2459        /* Note that we can ignore REXW for the zero-extend to 64-bit.  */
2460        tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2);
2461        break;
2462    OP_32_64(ld8s):
2463        tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2);
2464        break;
2465    OP_32_64(ld16u):
2466        /* Note that we can ignore REXW for the zero-extend to 64-bit.  */
2467        tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2);
2468        break;
2469    OP_32_64(ld16s):
2470        tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2);
2471        break;
2472#if TCG_TARGET_REG_BITS == 64
2473    case INDEX_op_ld32u_i64:
2474#endif
2475    case INDEX_op_ld_i32:
2476        tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2);
2477        break;
2478
2479    OP_32_64(st8):
2480        if (const_args[0]) {
2481            tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2);
2482            tcg_out8(s, a0);
2483        } else {
2484            tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2);
2485        }
2486        break;
2487    OP_32_64(st16):
2488        if (const_args[0]) {
2489            tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2);
2490            tcg_out16(s, a0);
2491        } else {
2492            tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2);
2493        }
2494        break;
2495#if TCG_TARGET_REG_BITS == 64
2496    case INDEX_op_st32_i64:
2497#endif
2498    case INDEX_op_st_i32:
2499        if (const_args[0]) {
2500            tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2);
2501            tcg_out32(s, a0);
2502        } else {
2503            tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2);
2504        }
2505        break;
2506
2507    OP_32_64(add):
2508        /* For 3-operand addition, use LEA.  */
2509        if (a0 != a1) {
2510            TCGArg c3 = 0;
2511            if (const_a2) {
2512                c3 = a2, a2 = -1;
2513            } else if (a0 == a2) {
2514                /* Watch out for dest = src + dest, since we've removed
2515                   the matching constraint on the add.  */
2516                tgen_arithr(s, ARITH_ADD + rexw, a0, a1);
2517                break;
2518            }
2519
2520            tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, c3);
2521            break;
2522        }
2523        c = ARITH_ADD;
2524        goto gen_arith;
2525    OP_32_64(sub):
2526        c = ARITH_SUB;
2527        goto gen_arith;
2528    OP_32_64(and):
2529        c = ARITH_AND;
2530        goto gen_arith;
2531    OP_32_64(or):
2532        c = ARITH_OR;
2533        goto gen_arith;
2534    OP_32_64(xor):
2535        c = ARITH_XOR;
2536        goto gen_arith;
2537    gen_arith:
2538        if (const_a2) {
2539            tgen_arithi(s, c + rexw, a0, a2, 0);
2540        } else {
2541            tgen_arithr(s, c + rexw, a0, a2);
2542        }
2543        break;
2544
2545    OP_32_64(andc):
2546        if (const_a2) {
2547            tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
2548            tgen_arithi(s, ARITH_AND + rexw, a0, ~a2, 0);
2549        } else {
2550            tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1);
2551        }
2552        break;
2553
2554    OP_32_64(mul):
2555        if (const_a2) {
2556            int32_t val;
2557            val = a2;
2558            if (val == (int8_t)val) {
2559                tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0);
2560                tcg_out8(s, val);
2561            } else {
2562                tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0);
2563                tcg_out32(s, val);
2564            }
2565        } else {
2566            tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2);
2567        }
2568        break;
2569
2570    OP_32_64(div2):
2571        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, args[4]);
2572        break;
2573    OP_32_64(divu2):
2574        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, args[4]);
2575        break;
2576
2577    OP_32_64(shl):
2578        /* For small constant 3-operand shift, use LEA.  */
2579        if (const_a2 && a0 != a1 && (a2 - 1) < 3) {
2580            if (a2 - 1 == 0) {
2581                /* shl $1,a1,a0 -> lea (a1,a1),a0 */
2582                tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0);
2583            } else {
2584                /* shl $n,a1,a0 -> lea 0(,a1,n),a0 */
2585                tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0);
2586            }
2587            break;
2588        }
2589        c = SHIFT_SHL;
2590        vexop = OPC_SHLX;
2591        goto gen_shift_maybe_vex;
2592    OP_32_64(shr):
2593        c = SHIFT_SHR;
2594        vexop = OPC_SHRX;
2595        goto gen_shift_maybe_vex;
2596    OP_32_64(sar):
2597        c = SHIFT_SAR;
2598        vexop = OPC_SARX;
2599        goto gen_shift_maybe_vex;
2600    OP_32_64(rotl):
2601        c = SHIFT_ROL;
2602        goto gen_shift;
2603    OP_32_64(rotr):
2604        c = SHIFT_ROR;
2605        goto gen_shift;
2606    gen_shift_maybe_vex:
2607        if (have_bmi2) {
2608            if (!const_a2) {
2609                tcg_out_vex_modrm(s, vexop + rexw, a0, a2, a1);
2610                break;
2611            }
2612            tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
2613        }
2614        /* FALLTHRU */
2615    gen_shift:
2616        if (const_a2) {
2617            tcg_out_shifti(s, c + rexw, a0, a2);
2618        } else {
2619            tcg_out_modrm(s, OPC_SHIFT_cl + rexw, c, a0);
2620        }
2621        break;
2622
2623    OP_32_64(ctz):
2624        tcg_out_ctz(s, rexw, args[0], args[1], args[2], const_args[2]);
2625        break;
2626    OP_32_64(clz):
2627        tcg_out_clz(s, rexw, args[0], args[1], args[2], const_args[2]);
2628        break;
2629    OP_32_64(ctpop):
2630        tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1);
2631        break;
2632
2633    case INDEX_op_brcond_i32:
2634        tcg_out_brcond32(s, a2, a0, a1, const_args[1], arg_label(args[3]), 0);
2635        break;
2636    case INDEX_op_setcond_i32:
2637        tcg_out_setcond32(s, args[3], a0, a1, a2, const_a2);
2638        break;
2639    case INDEX_op_movcond_i32:
2640        tcg_out_movcond32(s, args[5], a0, a1, a2, const_a2, args[3]);
2641        break;
2642
2643    OP_32_64(bswap16):
2644        if (a2 & TCG_BSWAP_OS) {
2645            /* Output must be sign-extended. */
2646            if (rexw) {
2647                tcg_out_bswap64(s, a0);
2648                tcg_out_shifti(s, SHIFT_SAR + rexw, a0, 48);
2649            } else {
2650                tcg_out_bswap32(s, a0);
2651                tcg_out_shifti(s, SHIFT_SAR, a0, 16);
2652            }
2653        } else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
2654            /* Output must be zero-extended, but input isn't. */
2655            tcg_out_bswap32(s, a0);
2656            tcg_out_shifti(s, SHIFT_SHR, a0, 16);
2657        } else {
2658            tcg_out_rolw_8(s, a0);
2659        }
2660        break;
2661    OP_32_64(bswap32):
2662        tcg_out_bswap32(s, a0);
2663        if (rexw && (a2 & TCG_BSWAP_OS)) {
2664            tcg_out_ext32s(s, a0, a0);
2665        }
2666        break;
2667
2668    OP_32_64(neg):
2669        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0);
2670        break;
2671    OP_32_64(not):
2672        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0);
2673        break;
2674
2675    case INDEX_op_qemu_ld_i32:
2676        tcg_out_qemu_ld(s, args, 0);
2677        break;
2678    case INDEX_op_qemu_ld_i64:
2679        tcg_out_qemu_ld(s, args, 1);
2680        break;
2681    case INDEX_op_qemu_st_i32:
2682    case INDEX_op_qemu_st8_i32:
2683        tcg_out_qemu_st(s, args, 0);
2684        break;
2685    case INDEX_op_qemu_st_i64:
2686        tcg_out_qemu_st(s, args, 1);
2687        break;
2688
2689    OP_32_64(mulu2):
2690        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, args[3]);
2691        break;
2692    OP_32_64(muls2):
2693        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, args[3]);
2694        break;
2695    OP_32_64(add2):
2696        if (const_args[4]) {
2697            tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1);
2698        } else {
2699            tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]);
2700        }
2701        if (const_args[5]) {
2702            tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1);
2703        } else {
2704            tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]);
2705        }
2706        break;
2707    OP_32_64(sub2):
2708        if (const_args[4]) {
2709            tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1);
2710        } else {
2711            tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]);
2712        }
2713        if (const_args[5]) {
2714            tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1);
2715        } else {
2716            tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]);
2717        }
2718        break;
2719
2720#if TCG_TARGET_REG_BITS == 32
2721    case INDEX_op_brcond2_i32:
2722        tcg_out_brcond2(s, args, const_args, 0);
2723        break;
2724    case INDEX_op_setcond2_i32:
2725        tcg_out_setcond2(s, args, const_args);
2726        break;
2727#else /* TCG_TARGET_REG_BITS == 64 */
2728    case INDEX_op_ld32s_i64:
2729        tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2);
2730        break;
2731    case INDEX_op_ld_i64:
2732        tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2);
2733        break;
2734    case INDEX_op_st_i64:
2735        if (const_args[0]) {
2736            tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2);
2737            tcg_out32(s, a0);
2738        } else {
2739            tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2);
2740        }
2741        break;
2742
2743    case INDEX_op_brcond_i64:
2744        tcg_out_brcond64(s, a2, a0, a1, const_args[1], arg_label(args[3]), 0);
2745        break;
2746    case INDEX_op_setcond_i64:
2747        tcg_out_setcond64(s, args[3], a0, a1, a2, const_a2);
2748        break;
2749    case INDEX_op_movcond_i64:
2750        tcg_out_movcond64(s, args[5], a0, a1, a2, const_a2, args[3]);
2751        break;
2752
2753    case INDEX_op_bswap64_i64:
2754        tcg_out_bswap64(s, a0);
2755        break;
2756    case INDEX_op_extrh_i64_i32:
2757        tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32);
2758        break;
2759#endif
2760
2761    OP_32_64(deposit):
2762        if (args[3] == 0 && args[4] == 8) {
2763            /* load bits 0..7 */
2764            tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0);
2765        } else if (args[3] == 8 && args[4] == 8) {
2766            /* load bits 8..15 */
2767            tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4);
2768        } else if (args[3] == 0 && args[4] == 16) {
2769            /* load bits 0..15 */
2770            tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0);
2771        } else {
2772            g_assert_not_reached();
2773        }
2774        break;
2775
2776    case INDEX_op_extract_i64:
2777        if (a2 + args[3] == 32) {
2778            /* This is a 32-bit zero-extending right shift.  */
2779            tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
2780            tcg_out_shifti(s, SHIFT_SHR, a0, a2);
2781            break;
2782        }
2783        /* FALLTHRU */
2784    case INDEX_op_extract_i32:
2785        /* On the off-chance that we can use the high-byte registers.
2786           Otherwise we emit the same ext16 + shift pattern that we
2787           would have gotten from the normal tcg-op.c expansion.  */
2788        tcg_debug_assert(a2 == 8 && args[3] == 8);
2789        if (a1 < 4 && a0 < 8) {
2790            tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4);
2791        } else {
2792            tcg_out_ext16u(s, a0, a1);
2793            tcg_out_shifti(s, SHIFT_SHR, a0, 8);
2794        }
2795        break;
2796
2797    case INDEX_op_sextract_i32:
2798        /* We don't implement sextract_i64, as we cannot sign-extend to
2799           64-bits without using the REX prefix that explicitly excludes
2800           access to the high-byte registers.  */
2801        tcg_debug_assert(a2 == 8 && args[3] == 8);
2802        if (a1 < 4 && a0 < 8) {
2803            tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4);
2804        } else {
2805            tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1);
2806            tcg_out_shifti(s, SHIFT_SAR, a0, 8);
2807        }
2808        break;
2809
2810    OP_32_64(extract2):
2811        /* Note that SHRD outputs to the r/m operand.  */
2812        tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0);
2813        tcg_out8(s, args[3]);
2814        break;
2815
2816    case INDEX_op_mb:
2817        tcg_out_mb(s, a0);
2818        break;
2819    case INDEX_op_mov_i32:  /* Always emitted via tcg_out_mov.  */
2820    case INDEX_op_mov_i64:
2821    case INDEX_op_call:     /* Always emitted via tcg_out_call.  */
2822    case INDEX_op_exit_tb:  /* Always emitted via tcg_out_exit_tb.  */
2823    case INDEX_op_goto_tb:  /* Always emitted via tcg_out_goto_tb.  */
2824    case INDEX_op_ext8s_i32:  /* Always emitted via tcg_reg_alloc_op.  */
2825    case INDEX_op_ext8s_i64:
2826    case INDEX_op_ext8u_i32:
2827    case INDEX_op_ext8u_i64:
2828    case INDEX_op_ext16s_i32:
2829    case INDEX_op_ext16s_i64:
2830    case INDEX_op_ext16u_i32:
2831    case INDEX_op_ext16u_i64:
2832    case INDEX_op_ext32s_i64:
2833    case INDEX_op_ext32u_i64:
2834    case INDEX_op_ext_i32_i64:
2835    case INDEX_op_extu_i32_i64:
2836    case INDEX_op_extrl_i64_i32:
2837    default:
2838        g_assert_not_reached();
2839    }
2840
2841#undef OP_32_64
2842}
2843
2844static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
2845                           unsigned vecl, unsigned vece,
2846                           const TCGArg args[TCG_MAX_OP_ARGS],
2847                           const int const_args[TCG_MAX_OP_ARGS])
2848{
2849    static int const add_insn[4] = {
2850        OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ
2851    };
2852    static int const ssadd_insn[4] = {
2853        OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2
2854    };
2855    static int const usadd_insn[4] = {
2856        OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2
2857    };
2858    static int const sub_insn[4] = {
2859        OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ
2860    };
2861    static int const sssub_insn[4] = {
2862        OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2
2863    };
2864    static int const ussub_insn[4] = {
2865        OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2
2866    };
2867    static int const mul_insn[4] = {
2868        OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_VPMULLQ
2869    };
2870    static int const shift_imm_insn[4] = {
2871        OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib
2872    };
2873    static int const cmpeq_insn[4] = {
2874        OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ
2875    };
2876    static int const cmpgt_insn[4] = {
2877        OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ
2878    };
2879    static int const punpckl_insn[4] = {
2880        OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ
2881    };
2882    static int const punpckh_insn[4] = {
2883        OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ
2884    };
2885    static int const packss_insn[4] = {
2886        OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2
2887    };
2888    static int const packus_insn[4] = {
2889        OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2
2890    };
2891    static int const smin_insn[4] = {
2892        OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_VPMINSQ
2893    };
2894    static int const smax_insn[4] = {
2895        OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_VPMAXSQ
2896    };
2897    static int const umin_insn[4] = {
2898        OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_VPMINUQ
2899    };
2900    static int const umax_insn[4] = {
2901        OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_VPMAXUQ
2902    };
2903    static int const rotlv_insn[4] = {
2904        OPC_UD2, OPC_UD2, OPC_VPROLVD, OPC_VPROLVQ
2905    };
2906    static int const rotrv_insn[4] = {
2907        OPC_UD2, OPC_UD2, OPC_VPRORVD, OPC_VPRORVQ
2908    };
2909    static int const shlv_insn[4] = {
2910        OPC_UD2, OPC_VPSLLVW, OPC_VPSLLVD, OPC_VPSLLVQ
2911    };
2912    static int const shrv_insn[4] = {
2913        OPC_UD2, OPC_VPSRLVW, OPC_VPSRLVD, OPC_VPSRLVQ
2914    };
2915    static int const sarv_insn[4] = {
2916        OPC_UD2, OPC_VPSRAVW, OPC_VPSRAVD, OPC_VPSRAVQ
2917    };
2918    static int const shls_insn[4] = {
2919        OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ
2920    };
2921    static int const shrs_insn[4] = {
2922        OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ
2923    };
2924    static int const sars_insn[4] = {
2925        OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_VPSRAQ
2926    };
2927    static int const vpshldi_insn[4] = {
2928        OPC_UD2, OPC_VPSHLDW, OPC_VPSHLDD, OPC_VPSHLDQ
2929    };
2930    static int const vpshldv_insn[4] = {
2931        OPC_UD2, OPC_VPSHLDVW, OPC_VPSHLDVD, OPC_VPSHLDVQ
2932    };
2933    static int const vpshrdv_insn[4] = {
2934        OPC_UD2, OPC_VPSHRDVW, OPC_VPSHRDVD, OPC_VPSHRDVQ
2935    };
2936    static int const abs_insn[4] = {
2937        OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_VPABSQ
2938    };
2939
2940    TCGType type = vecl + TCG_TYPE_V64;
2941    int insn, sub;
2942    TCGArg a0, a1, a2, a3;
2943
2944    a0 = args[0];
2945    a1 = args[1];
2946    a2 = args[2];
2947
2948    switch (opc) {
2949    case INDEX_op_add_vec:
2950        insn = add_insn[vece];
2951        goto gen_simd;
2952    case INDEX_op_ssadd_vec:
2953        insn = ssadd_insn[vece];
2954        goto gen_simd;
2955    case INDEX_op_usadd_vec:
2956        insn = usadd_insn[vece];
2957        goto gen_simd;
2958    case INDEX_op_sub_vec:
2959        insn = sub_insn[vece];
2960        goto gen_simd;
2961    case INDEX_op_sssub_vec:
2962        insn = sssub_insn[vece];
2963        goto gen_simd;
2964    case INDEX_op_ussub_vec:
2965        insn = ussub_insn[vece];
2966        goto gen_simd;
2967    case INDEX_op_mul_vec:
2968        insn = mul_insn[vece];
2969        goto gen_simd;
2970    case INDEX_op_and_vec:
2971        insn = OPC_PAND;
2972        goto gen_simd;
2973    case INDEX_op_or_vec:
2974        insn = OPC_POR;
2975        goto gen_simd;
2976    case INDEX_op_xor_vec:
2977        insn = OPC_PXOR;
2978        goto gen_simd;
2979    case INDEX_op_smin_vec:
2980        insn = smin_insn[vece];
2981        goto gen_simd;
2982    case INDEX_op_umin_vec:
2983        insn = umin_insn[vece];
2984        goto gen_simd;
2985    case INDEX_op_smax_vec:
2986        insn = smax_insn[vece];
2987        goto gen_simd;
2988    case INDEX_op_umax_vec:
2989        insn = umax_insn[vece];
2990        goto gen_simd;
2991    case INDEX_op_shlv_vec:
2992        insn = shlv_insn[vece];
2993        goto gen_simd;
2994    case INDEX_op_shrv_vec:
2995        insn = shrv_insn[vece];
2996        goto gen_simd;
2997    case INDEX_op_sarv_vec:
2998        insn = sarv_insn[vece];
2999        goto gen_simd;
3000    case INDEX_op_rotlv_vec:
3001        insn = rotlv_insn[vece];
3002        goto gen_simd;
3003    case INDEX_op_rotrv_vec:
3004        insn = rotrv_insn[vece];
3005        goto gen_simd;
3006    case INDEX_op_shls_vec:
3007        insn = shls_insn[vece];
3008        goto gen_simd;
3009    case INDEX_op_shrs_vec:
3010        insn = shrs_insn[vece];
3011        goto gen_simd;
3012    case INDEX_op_sars_vec:
3013        insn = sars_insn[vece];
3014        goto gen_simd;
3015    case INDEX_op_x86_punpckl_vec:
3016        insn = punpckl_insn[vece];
3017        goto gen_simd;
3018    case INDEX_op_x86_punpckh_vec:
3019        insn = punpckh_insn[vece];
3020        goto gen_simd;
3021    case INDEX_op_x86_packss_vec:
3022        insn = packss_insn[vece];
3023        goto gen_simd;
3024    case INDEX_op_x86_packus_vec:
3025        insn = packus_insn[vece];
3026        goto gen_simd;
3027    case INDEX_op_x86_vpshldv_vec:
3028        insn = vpshldv_insn[vece];
3029        a1 = a2;
3030        a2 = args[3];
3031        goto gen_simd;
3032    case INDEX_op_x86_vpshrdv_vec:
3033        insn = vpshrdv_insn[vece];
3034        a1 = a2;
3035        a2 = args[3];
3036        goto gen_simd;
3037#if TCG_TARGET_REG_BITS == 32
3038    case INDEX_op_dup2_vec:
3039        /* First merge the two 32-bit inputs to a single 64-bit element. */
3040        tcg_out_vex_modrm(s, OPC_PUNPCKLDQ, a0, a1, a2);
3041        /* Then replicate the 64-bit elements across the rest of the vector. */
3042        if (type != TCG_TYPE_V64) {
3043            tcg_out_dup_vec(s, type, MO_64, a0, a0);
3044        }
3045        break;
3046#endif
3047    case INDEX_op_abs_vec:
3048        insn = abs_insn[vece];
3049        a2 = a1;
3050        a1 = 0;
3051        goto gen_simd;
3052    gen_simd:
3053        tcg_debug_assert(insn != OPC_UD2);
3054        if (type == TCG_TYPE_V256) {
3055            insn |= P_VEXL;
3056        }
3057        tcg_out_vex_modrm(s, insn, a0, a1, a2);
3058        break;
3059
3060    case INDEX_op_cmp_vec:
3061        sub = args[3];
3062        if (sub == TCG_COND_EQ) {
3063            insn = cmpeq_insn[vece];
3064        } else if (sub == TCG_COND_GT) {
3065            insn = cmpgt_insn[vece];
3066        } else {
3067            g_assert_not_reached();
3068        }
3069        goto gen_simd;
3070
3071    case INDEX_op_andc_vec:
3072        insn = OPC_PANDN;
3073        if (type == TCG_TYPE_V256) {
3074            insn |= P_VEXL;
3075        }
3076        tcg_out_vex_modrm(s, insn, a0, a2, a1);
3077        break;
3078
3079    case INDEX_op_shli_vec:
3080        insn = shift_imm_insn[vece];
3081        sub = 6;
3082        goto gen_shift;
3083    case INDEX_op_shri_vec:
3084        insn = shift_imm_insn[vece];
3085        sub = 2;
3086        goto gen_shift;
3087    case INDEX_op_sari_vec:
3088        if (vece == MO_64) {
3089            insn = OPC_PSHIFTD_Ib | P_VEXW | P_EVEX;
3090        } else {
3091            insn = shift_imm_insn[vece];
3092        }
3093        sub = 4;
3094        goto gen_shift;
3095    case INDEX_op_rotli_vec:
3096        insn = OPC_PSHIFTD_Ib | P_EVEX;  /* VPROL[DQ] */
3097        if (vece == MO_64) {
3098            insn |= P_VEXW;
3099        }
3100        sub = 1;
3101        goto gen_shift;
3102    gen_shift:
3103        tcg_debug_assert(vece != MO_8);
3104        if (type == TCG_TYPE_V256) {
3105            insn |= P_VEXL;
3106        }
3107        tcg_out_vex_modrm(s, insn, sub, a0, a1);
3108        tcg_out8(s, a2);
3109        break;
3110
3111    case INDEX_op_ld_vec:
3112        tcg_out_ld(s, type, a0, a1, a2);
3113        break;
3114    case INDEX_op_st_vec:
3115        tcg_out_st(s, type, a0, a1, a2);
3116        break;
3117    case INDEX_op_dupm_vec:
3118        tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
3119        break;
3120
3121    case INDEX_op_x86_shufps_vec:
3122        insn = OPC_SHUFPS;
3123        sub = args[3];
3124        goto gen_simd_imm8;
3125    case INDEX_op_x86_blend_vec:
3126        if (vece == MO_16) {
3127            insn = OPC_PBLENDW;
3128        } else if (vece == MO_32) {
3129            insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS);
3130        } else {
3131            g_assert_not_reached();
3132        }
3133        sub = args[3];
3134        goto gen_simd_imm8;
3135    case INDEX_op_x86_vperm2i128_vec:
3136        insn = OPC_VPERM2I128;
3137        sub = args[3];
3138        goto gen_simd_imm8;
3139    case INDEX_op_x86_vpshldi_vec:
3140        insn = vpshldi_insn[vece];
3141        sub = args[3];
3142        goto gen_simd_imm8;
3143
3144    case INDEX_op_not_vec:
3145        insn = OPC_VPTERNLOGQ;
3146        a2 = a1;
3147        sub = 0x33; /* !B */
3148        goto gen_simd_imm8;
3149    case INDEX_op_nor_vec:
3150        insn = OPC_VPTERNLOGQ;
3151        sub = 0x11; /* norCB */
3152        goto gen_simd_imm8;
3153    case INDEX_op_nand_vec:
3154        insn = OPC_VPTERNLOGQ;
3155        sub = 0x77; /* nandCB */
3156        goto gen_simd_imm8;
3157    case INDEX_op_eqv_vec:
3158        insn = OPC_VPTERNLOGQ;
3159        sub = 0x99; /* xnorCB */
3160        goto gen_simd_imm8;
3161    case INDEX_op_orc_vec:
3162        insn = OPC_VPTERNLOGQ;
3163        sub = 0xdd; /* orB!C */
3164        goto gen_simd_imm8;
3165
3166    case INDEX_op_bitsel_vec:
3167        insn = OPC_VPTERNLOGQ;
3168        a3 = args[3];
3169        if (a0 == a1) {
3170            a1 = a2;
3171            a2 = a3;
3172            sub = 0xca; /* A?B:C */
3173        } else if (a0 == a2) {
3174            a2 = a3;
3175            sub = 0xe2; /* B?A:C */
3176        } else {
3177            tcg_out_mov(s, type, a0, a3);
3178            sub = 0xb8; /* B?C:A */
3179        }
3180        goto gen_simd_imm8;
3181
3182    gen_simd_imm8:
3183        tcg_debug_assert(insn != OPC_UD2);
3184        if (type == TCG_TYPE_V256) {
3185            insn |= P_VEXL;
3186        }
3187        tcg_out_vex_modrm(s, insn, a0, a1, a2);
3188        tcg_out8(s, sub);
3189        break;
3190
3191    case INDEX_op_x86_vpblendvb_vec:
3192        insn = OPC_VPBLENDVB;
3193        if (type == TCG_TYPE_V256) {
3194            insn |= P_VEXL;
3195        }
3196        tcg_out_vex_modrm(s, insn, a0, a1, a2);
3197        tcg_out8(s, args[3] << 4);
3198        break;
3199
3200    case INDEX_op_x86_psrldq_vec:
3201        tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1);
3202        tcg_out8(s, a2);
3203        break;
3204
3205    case INDEX_op_mov_vec:  /* Always emitted via tcg_out_mov.  */
3206    case INDEX_op_dup_vec:  /* Always emitted via tcg_out_dup_vec.  */
3207    default:
3208        g_assert_not_reached();
3209    }
3210}
3211
3212static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op)
3213{
3214    switch (op) {
3215    case INDEX_op_goto_ptr:
3216        return C_O0_I1(r);
3217
3218    case INDEX_op_ld8u_i32:
3219    case INDEX_op_ld8u_i64:
3220    case INDEX_op_ld8s_i32:
3221    case INDEX_op_ld8s_i64:
3222    case INDEX_op_ld16u_i32:
3223    case INDEX_op_ld16u_i64:
3224    case INDEX_op_ld16s_i32:
3225    case INDEX_op_ld16s_i64:
3226    case INDEX_op_ld_i32:
3227    case INDEX_op_ld32u_i64:
3228    case INDEX_op_ld32s_i64:
3229    case INDEX_op_ld_i64:
3230        return C_O1_I1(r, r);
3231
3232    case INDEX_op_st8_i32:
3233    case INDEX_op_st8_i64:
3234        return C_O0_I2(qi, r);
3235
3236    case INDEX_op_st16_i32:
3237    case INDEX_op_st16_i64:
3238    case INDEX_op_st_i32:
3239    case INDEX_op_st32_i64:
3240        return C_O0_I2(ri, r);
3241
3242    case INDEX_op_st_i64:
3243        return C_O0_I2(re, r);
3244
3245    case INDEX_op_add_i32:
3246    case INDEX_op_add_i64:
3247        return C_O1_I2(r, r, re);
3248
3249    case INDEX_op_sub_i32:
3250    case INDEX_op_sub_i64:
3251    case INDEX_op_mul_i32:
3252    case INDEX_op_mul_i64:
3253    case INDEX_op_or_i32:
3254    case INDEX_op_or_i64:
3255    case INDEX_op_xor_i32:
3256    case INDEX_op_xor_i64:
3257        return C_O1_I2(r, 0, re);
3258
3259    case INDEX_op_and_i32:
3260    case INDEX_op_and_i64:
3261        return C_O1_I2(r, 0, reZ);
3262
3263    case INDEX_op_andc_i32:
3264    case INDEX_op_andc_i64:
3265        return C_O1_I2(r, r, rI);
3266
3267    case INDEX_op_shl_i32:
3268    case INDEX_op_shl_i64:
3269    case INDEX_op_shr_i32:
3270    case INDEX_op_shr_i64:
3271    case INDEX_op_sar_i32:
3272    case INDEX_op_sar_i64:
3273        return have_bmi2 ? C_O1_I2(r, r, ri) : C_O1_I2(r, 0, ci);
3274
3275    case INDEX_op_rotl_i32:
3276    case INDEX_op_rotl_i64:
3277    case INDEX_op_rotr_i32:
3278    case INDEX_op_rotr_i64:
3279        return C_O1_I2(r, 0, ci);
3280
3281    case INDEX_op_brcond_i32:
3282    case INDEX_op_brcond_i64:
3283        return C_O0_I2(r, re);
3284
3285    case INDEX_op_bswap16_i32:
3286    case INDEX_op_bswap16_i64:
3287    case INDEX_op_bswap32_i32:
3288    case INDEX_op_bswap32_i64:
3289    case INDEX_op_bswap64_i64:
3290    case INDEX_op_neg_i32:
3291    case INDEX_op_neg_i64:
3292    case INDEX_op_not_i32:
3293    case INDEX_op_not_i64:
3294    case INDEX_op_extrh_i64_i32:
3295        return C_O1_I1(r, 0);
3296
3297    case INDEX_op_ext8s_i32:
3298    case INDEX_op_ext8s_i64:
3299    case INDEX_op_ext8u_i32:
3300    case INDEX_op_ext8u_i64:
3301        return C_O1_I1(r, q);
3302
3303    case INDEX_op_ext16s_i32:
3304    case INDEX_op_ext16s_i64:
3305    case INDEX_op_ext16u_i32:
3306    case INDEX_op_ext16u_i64:
3307    case INDEX_op_ext32s_i64:
3308    case INDEX_op_ext32u_i64:
3309    case INDEX_op_ext_i32_i64:
3310    case INDEX_op_extu_i32_i64:
3311    case INDEX_op_extrl_i64_i32:
3312    case INDEX_op_extract_i32:
3313    case INDEX_op_extract_i64:
3314    case INDEX_op_sextract_i32:
3315    case INDEX_op_ctpop_i32:
3316    case INDEX_op_ctpop_i64:
3317        return C_O1_I1(r, r);
3318
3319    case INDEX_op_extract2_i32:
3320    case INDEX_op_extract2_i64:
3321        return C_O1_I2(r, 0, r);
3322
3323    case INDEX_op_deposit_i32:
3324    case INDEX_op_deposit_i64:
3325        return C_O1_I2(Q, 0, Q);
3326
3327    case INDEX_op_setcond_i32:
3328    case INDEX_op_setcond_i64:
3329        return C_O1_I2(q, r, re);
3330
3331    case INDEX_op_movcond_i32:
3332    case INDEX_op_movcond_i64:
3333        return C_O1_I4(r, r, re, r, 0);
3334
3335    case INDEX_op_div2_i32:
3336    case INDEX_op_div2_i64:
3337    case INDEX_op_divu2_i32:
3338    case INDEX_op_divu2_i64:
3339        return C_O2_I3(a, d, 0, 1, r);
3340
3341    case INDEX_op_mulu2_i32:
3342    case INDEX_op_mulu2_i64:
3343    case INDEX_op_muls2_i32:
3344    case INDEX_op_muls2_i64:
3345        return C_O2_I2(a, d, a, r);
3346
3347    case INDEX_op_add2_i32:
3348    case INDEX_op_add2_i64:
3349    case INDEX_op_sub2_i32:
3350    case INDEX_op_sub2_i64:
3351        return C_O2_I4(r, r, 0, 1, re, re);
3352
3353    case INDEX_op_ctz_i32:
3354    case INDEX_op_ctz_i64:
3355        return have_bmi1 ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
3356
3357    case INDEX_op_clz_i32:
3358    case INDEX_op_clz_i64:
3359        return have_lzcnt ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
3360
3361    case INDEX_op_qemu_ld_i32:
3362        return (TARGET_LONG_BITS <= TCG_TARGET_REG_BITS
3363                ? C_O1_I1(r, L) : C_O1_I2(r, L, L));
3364
3365    case INDEX_op_qemu_st_i32:
3366        return (TARGET_LONG_BITS <= TCG_TARGET_REG_BITS
3367                ? C_O0_I2(L, L) : C_O0_I3(L, L, L));
3368    case INDEX_op_qemu_st8_i32:
3369        return (TARGET_LONG_BITS <= TCG_TARGET_REG_BITS
3370                ? C_O0_I2(s, L) : C_O0_I3(s, L, L));
3371
3372    case INDEX_op_qemu_ld_i64:
3373        return (TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L)
3374                : TARGET_LONG_BITS <= TCG_TARGET_REG_BITS ? C_O2_I1(r, r, L)
3375                : C_O2_I2(r, r, L, L));
3376
3377    case INDEX_op_qemu_st_i64:
3378        return (TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L)
3379                : TARGET_LONG_BITS <= TCG_TARGET_REG_BITS ? C_O0_I3(L, L, L)
3380                : C_O0_I4(L, L, L, L));
3381
3382    case INDEX_op_brcond2_i32:
3383        return C_O0_I4(r, r, ri, ri);
3384
3385    case INDEX_op_setcond2_i32:
3386        return C_O1_I4(r, r, r, ri, ri);
3387
3388    case INDEX_op_ld_vec:
3389    case INDEX_op_dupm_vec:
3390        return C_O1_I1(x, r);
3391
3392    case INDEX_op_st_vec:
3393        return C_O0_I2(x, r);
3394
3395    case INDEX_op_add_vec:
3396    case INDEX_op_sub_vec:
3397    case INDEX_op_mul_vec:
3398    case INDEX_op_and_vec:
3399    case INDEX_op_or_vec:
3400    case INDEX_op_xor_vec:
3401    case INDEX_op_andc_vec:
3402    case INDEX_op_orc_vec:
3403    case INDEX_op_nand_vec:
3404    case INDEX_op_nor_vec:
3405    case INDEX_op_eqv_vec:
3406    case INDEX_op_ssadd_vec:
3407    case INDEX_op_usadd_vec:
3408    case INDEX_op_sssub_vec:
3409    case INDEX_op_ussub_vec:
3410    case INDEX_op_smin_vec:
3411    case INDEX_op_umin_vec:
3412    case INDEX_op_smax_vec:
3413    case INDEX_op_umax_vec:
3414    case INDEX_op_shlv_vec:
3415    case INDEX_op_shrv_vec:
3416    case INDEX_op_sarv_vec:
3417    case INDEX_op_rotlv_vec:
3418    case INDEX_op_rotrv_vec:
3419    case INDEX_op_shls_vec:
3420    case INDEX_op_shrs_vec:
3421    case INDEX_op_sars_vec:
3422    case INDEX_op_cmp_vec:
3423    case INDEX_op_x86_shufps_vec:
3424    case INDEX_op_x86_blend_vec:
3425    case INDEX_op_x86_packss_vec:
3426    case INDEX_op_x86_packus_vec:
3427    case INDEX_op_x86_vperm2i128_vec:
3428    case INDEX_op_x86_punpckl_vec:
3429    case INDEX_op_x86_punpckh_vec:
3430    case INDEX_op_x86_vpshldi_vec:
3431#if TCG_TARGET_REG_BITS == 32
3432    case INDEX_op_dup2_vec:
3433#endif
3434        return C_O1_I2(x, x, x);
3435
3436    case INDEX_op_abs_vec:
3437    case INDEX_op_dup_vec:
3438    case INDEX_op_not_vec:
3439    case INDEX_op_shli_vec:
3440    case INDEX_op_shri_vec:
3441    case INDEX_op_sari_vec:
3442    case INDEX_op_rotli_vec:
3443    case INDEX_op_x86_psrldq_vec:
3444        return C_O1_I1(x, x);
3445
3446    case INDEX_op_x86_vpshldv_vec:
3447    case INDEX_op_x86_vpshrdv_vec:
3448        return C_O1_I3(x, 0, x, x);
3449
3450    case INDEX_op_bitsel_vec:
3451    case INDEX_op_x86_vpblendvb_vec:
3452        return C_O1_I3(x, x, x, x);
3453
3454    default:
3455        g_assert_not_reached();
3456    }
3457}
3458
3459int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
3460{
3461    switch (opc) {
3462    case INDEX_op_add_vec:
3463    case INDEX_op_sub_vec:
3464    case INDEX_op_and_vec:
3465    case INDEX_op_or_vec:
3466    case INDEX_op_xor_vec:
3467    case INDEX_op_andc_vec:
3468    case INDEX_op_orc_vec:
3469    case INDEX_op_nand_vec:
3470    case INDEX_op_nor_vec:
3471    case INDEX_op_eqv_vec:
3472    case INDEX_op_not_vec:
3473    case INDEX_op_bitsel_vec:
3474        return 1;
3475    case INDEX_op_cmp_vec:
3476    case INDEX_op_cmpsel_vec:
3477        return -1;
3478
3479    case INDEX_op_rotli_vec:
3480        return have_avx512vl && vece >= MO_32 ? 1 : -1;
3481
3482    case INDEX_op_shli_vec:
3483    case INDEX_op_shri_vec:
3484        /* We must expand the operation for MO_8.  */
3485        return vece == MO_8 ? -1 : 1;
3486
3487    case INDEX_op_sari_vec:
3488        switch (vece) {
3489        case MO_8:
3490            return -1;
3491        case MO_16:
3492        case MO_32:
3493            return 1;
3494        case MO_64:
3495            if (have_avx512vl) {
3496                return 1;
3497            }
3498            /*
3499             * We can emulate this for MO_64, but it does not pay off
3500             * unless we're producing at least 4 values.
3501             */
3502            return type >= TCG_TYPE_V256 ? -1 : 0;
3503        }
3504        return 0;
3505
3506    case INDEX_op_shls_vec:
3507    case INDEX_op_shrs_vec:
3508        return vece >= MO_16;
3509    case INDEX_op_sars_vec:
3510        switch (vece) {
3511        case MO_16:
3512        case MO_32:
3513            return 1;
3514        case MO_64:
3515            return have_avx512vl;
3516        }
3517        return 0;
3518    case INDEX_op_rotls_vec:
3519        return vece >= MO_16 ? -1 : 0;
3520
3521    case INDEX_op_shlv_vec:
3522    case INDEX_op_shrv_vec:
3523        switch (vece) {
3524        case MO_16:
3525            return have_avx512bw;
3526        case MO_32:
3527        case MO_64:
3528            return have_avx2;
3529        }
3530        return 0;
3531    case INDEX_op_sarv_vec:
3532        switch (vece) {
3533        case MO_16:
3534            return have_avx512bw;
3535        case MO_32:
3536            return have_avx2;
3537        case MO_64:
3538            return have_avx512vl;
3539        }
3540        return 0;
3541    case INDEX_op_rotlv_vec:
3542    case INDEX_op_rotrv_vec:
3543        switch (vece) {
3544        case MO_16:
3545            return have_avx512vbmi2 ? -1 : 0;
3546        case MO_32:
3547        case MO_64:
3548            return have_avx512vl ? 1 : have_avx2 ? -1 : 0;
3549        }
3550        return 0;
3551
3552    case INDEX_op_mul_vec:
3553        switch (vece) {
3554        case MO_8:
3555            return -1;
3556        case MO_64:
3557            return have_avx512dq;
3558        }
3559        return 1;
3560
3561    case INDEX_op_ssadd_vec:
3562    case INDEX_op_usadd_vec:
3563    case INDEX_op_sssub_vec:
3564    case INDEX_op_ussub_vec:
3565        return vece <= MO_16;
3566    case INDEX_op_smin_vec:
3567    case INDEX_op_smax_vec:
3568    case INDEX_op_umin_vec:
3569    case INDEX_op_umax_vec:
3570    case INDEX_op_abs_vec:
3571        return vece <= MO_32 || have_avx512vl;
3572
3573    default:
3574        return 0;
3575    }
3576}
3577
3578static void expand_vec_shi(TCGType type, unsigned vece, TCGOpcode opc,
3579                           TCGv_vec v0, TCGv_vec v1, TCGArg imm)
3580{
3581    TCGv_vec t1, t2;
3582
3583    tcg_debug_assert(vece == MO_8);
3584
3585    t1 = tcg_temp_new_vec(type);
3586    t2 = tcg_temp_new_vec(type);
3587
3588    /*
3589     * Unpack to W, shift, and repack.  Tricky bits:
3590     * (1) Use punpck*bw x,x to produce DDCCBBAA,
3591     *     i.e. duplicate in other half of the 16-bit lane.
3592     * (2) For right-shift, add 8 so that the high half of the lane
3593     *     becomes zero.  For left-shift, and left-rotate, we must
3594     *     shift up and down again.
3595     * (3) Step 2 leaves high half zero such that PACKUSWB
3596     *     (pack with unsigned saturation) does not modify
3597     *     the quantity.
3598     */
3599    vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3600              tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3601    vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3602              tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3603
3604    if (opc != INDEX_op_rotli_vec) {
3605        imm += 8;
3606    }
3607    if (opc == INDEX_op_shri_vec) {
3608        tcg_gen_shri_vec(MO_16, t1, t1, imm);
3609        tcg_gen_shri_vec(MO_16, t2, t2, imm);
3610    } else {
3611        tcg_gen_shli_vec(MO_16, t1, t1, imm);
3612        tcg_gen_shli_vec(MO_16, t2, t2, imm);
3613        tcg_gen_shri_vec(MO_16, t1, t1, 8);
3614        tcg_gen_shri_vec(MO_16, t2, t2, 8);
3615    }
3616
3617    vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
3618              tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3619    tcg_temp_free_vec(t1);
3620    tcg_temp_free_vec(t2);
3621}
3622
3623static void expand_vec_sari(TCGType type, unsigned vece,
3624                            TCGv_vec v0, TCGv_vec v1, TCGArg imm)
3625{
3626    TCGv_vec t1, t2;
3627
3628    switch (vece) {
3629    case MO_8:
3630        /* Unpack to W, shift, and repack, as in expand_vec_shi.  */
3631        t1 = tcg_temp_new_vec(type);
3632        t2 = tcg_temp_new_vec(type);
3633        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3634                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3635        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3636                  tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3637        tcg_gen_sari_vec(MO_16, t1, t1, imm + 8);
3638        tcg_gen_sari_vec(MO_16, t2, t2, imm + 8);
3639        vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8,
3640                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3641        tcg_temp_free_vec(t1);
3642        tcg_temp_free_vec(t2);
3643        break;
3644
3645    case MO_64:
3646        t1 = tcg_temp_new_vec(type);
3647        if (imm <= 32) {
3648            /*
3649             * We can emulate a small sign extend by performing an arithmetic
3650             * 32-bit shift and overwriting the high half of a 64-bit logical
3651             * shift.  Note that the ISA says shift of 32 is valid, but TCG
3652             * does not, so we have to bound the smaller shift -- we get the
3653             * same result in the high half either way.
3654             */
3655            tcg_gen_sari_vec(MO_32, t1, v1, MIN(imm, 31));
3656            tcg_gen_shri_vec(MO_64, v0, v1, imm);
3657            vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32,
3658                      tcgv_vec_arg(v0), tcgv_vec_arg(v0),
3659                      tcgv_vec_arg(t1), 0xaa);
3660        } else {
3661            /* Otherwise we will need to use a compare vs 0 to produce
3662             * the sign-extend, shift and merge.
3663             */
3664            tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1,
3665                            tcg_constant_vec(type, MO_64, 0), v1);
3666            tcg_gen_shri_vec(MO_64, v0, v1, imm);
3667            tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm);
3668            tcg_gen_or_vec(MO_64, v0, v0, t1);
3669        }
3670        tcg_temp_free_vec(t1);
3671        break;
3672
3673    default:
3674        g_assert_not_reached();
3675    }
3676}
3677
3678static void expand_vec_rotli(TCGType type, unsigned vece,
3679                             TCGv_vec v0, TCGv_vec v1, TCGArg imm)
3680{
3681    TCGv_vec t;
3682
3683    if (vece == MO_8) {
3684        expand_vec_shi(type, vece, INDEX_op_rotli_vec, v0, v1, imm);
3685        return;
3686    }
3687
3688    if (have_avx512vbmi2) {
3689        vec_gen_4(INDEX_op_x86_vpshldi_vec, type, vece,
3690                  tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v1), imm);
3691        return;
3692    }
3693
3694    t = tcg_temp_new_vec(type);
3695    tcg_gen_shli_vec(vece, t, v1, imm);
3696    tcg_gen_shri_vec(vece, v0, v1, (8 << vece) - imm);
3697    tcg_gen_or_vec(vece, v0, v0, t);
3698    tcg_temp_free_vec(t);
3699}
3700
3701static void expand_vec_rotv(TCGType type, unsigned vece, TCGv_vec v0,
3702                            TCGv_vec v1, TCGv_vec sh, bool right)
3703{
3704    TCGv_vec t;
3705
3706    if (have_avx512vbmi2) {
3707        vec_gen_4(right ? INDEX_op_x86_vpshrdv_vec : INDEX_op_x86_vpshldv_vec,
3708                  type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1),
3709                  tcgv_vec_arg(v1), tcgv_vec_arg(sh));
3710        return;
3711    }
3712
3713    t = tcg_temp_new_vec(type);
3714    tcg_gen_dupi_vec(vece, t, 8 << vece);
3715    tcg_gen_sub_vec(vece, t, t, sh);
3716    if (right) {
3717        tcg_gen_shlv_vec(vece, t, v1, t);
3718        tcg_gen_shrv_vec(vece, v0, v1, sh);
3719    } else {
3720        tcg_gen_shrv_vec(vece, t, v1, t);
3721        tcg_gen_shlv_vec(vece, v0, v1, sh);
3722    }
3723    tcg_gen_or_vec(vece, v0, v0, t);
3724    tcg_temp_free_vec(t);
3725}
3726
3727static void expand_vec_rotls(TCGType type, unsigned vece,
3728                             TCGv_vec v0, TCGv_vec v1, TCGv_i32 lsh)
3729{
3730    TCGv_vec t = tcg_temp_new_vec(type);
3731
3732    tcg_debug_assert(vece != MO_8);
3733
3734    if (vece >= MO_32 ? have_avx512vl : have_avx512vbmi2) {
3735        tcg_gen_dup_i32_vec(vece, t, lsh);
3736        if (vece >= MO_32) {
3737            tcg_gen_rotlv_vec(vece, v0, v1, t);
3738        } else {
3739            expand_vec_rotv(type, vece, v0, v1, t, false);
3740        }
3741    } else {
3742        TCGv_i32 rsh = tcg_temp_new_i32();
3743
3744        tcg_gen_neg_i32(rsh, lsh);
3745        tcg_gen_andi_i32(rsh, rsh, (8 << vece) - 1);
3746        tcg_gen_shls_vec(vece, t, v1, lsh);
3747        tcg_gen_shrs_vec(vece, v0, v1, rsh);
3748        tcg_gen_or_vec(vece, v0, v0, t);
3749
3750        tcg_temp_free_i32(rsh);
3751    }
3752
3753    tcg_temp_free_vec(t);
3754}
3755
3756static void expand_vec_mul(TCGType type, unsigned vece,
3757                           TCGv_vec v0, TCGv_vec v1, TCGv_vec v2)
3758{
3759    TCGv_vec t1, t2, t3, t4, zero;
3760
3761    tcg_debug_assert(vece == MO_8);
3762
3763    /*
3764     * Unpack v1 bytes to words, 0 | x.
3765     * Unpack v2 bytes to words, y | 0.
3766     * This leaves the 8-bit result, x * y, with 8 bits of right padding.
3767     * Shift logical right by 8 bits to clear the high 8 bytes before
3768     * using an unsigned saturated pack.
3769     *
3770     * The difference between the V64, V128 and V256 cases is merely how
3771     * we distribute the expansion between temporaries.
3772     */
3773    switch (type) {
3774    case TCG_TYPE_V64:
3775        t1 = tcg_temp_new_vec(TCG_TYPE_V128);
3776        t2 = tcg_temp_new_vec(TCG_TYPE_V128);
3777        zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
3778        vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
3779                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
3780        vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
3781                  tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
3782        tcg_gen_mul_vec(MO_16, t1, t1, t2);
3783        tcg_gen_shri_vec(MO_16, t1, t1, 8);
3784        vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8,
3785                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1));
3786        tcg_temp_free_vec(t1);
3787        tcg_temp_free_vec(t2);
3788        break;
3789
3790    case TCG_TYPE_V128:
3791    case TCG_TYPE_V256:
3792        t1 = tcg_temp_new_vec(type);
3793        t2 = tcg_temp_new_vec(type);
3794        t3 = tcg_temp_new_vec(type);
3795        t4 = tcg_temp_new_vec(type);
3796        zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
3797        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3798                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
3799        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3800                  tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
3801        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3802                  tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
3803        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3804                  tcgv_vec_arg(t4), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
3805        tcg_gen_mul_vec(MO_16, t1, t1, t2);
3806        tcg_gen_mul_vec(MO_16, t3, t3, t4);
3807        tcg_gen_shri_vec(MO_16, t1, t1, 8);
3808        tcg_gen_shri_vec(MO_16, t3, t3, 8);
3809        vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
3810                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3));
3811        tcg_temp_free_vec(t1);
3812        tcg_temp_free_vec(t2);
3813        tcg_temp_free_vec(t3);
3814        tcg_temp_free_vec(t4);
3815        break;
3816
3817    default:
3818        g_assert_not_reached();
3819    }
3820}
3821
3822static bool expand_vec_cmp_noinv(TCGType type, unsigned vece, TCGv_vec v0,
3823                                 TCGv_vec v1, TCGv_vec v2, TCGCond cond)
3824{
3825    enum {
3826        NEED_INV  = 1,
3827        NEED_SWAP = 2,
3828        NEED_BIAS = 4,
3829        NEED_UMIN = 8,
3830        NEED_UMAX = 16,
3831    };
3832    TCGv_vec t1, t2, t3;
3833    uint8_t fixup;
3834
3835    switch (cond) {
3836    case TCG_COND_EQ:
3837    case TCG_COND_GT:
3838        fixup = 0;
3839        break;
3840    case TCG_COND_NE:
3841    case TCG_COND_LE:
3842        fixup = NEED_INV;
3843        break;
3844    case TCG_COND_LT:
3845        fixup = NEED_SWAP;
3846        break;
3847    case TCG_COND_GE:
3848        fixup = NEED_SWAP | NEED_INV;
3849        break;
3850    case TCG_COND_LEU:
3851        if (tcg_can_emit_vec_op(INDEX_op_umin_vec, type, vece)) {
3852            fixup = NEED_UMIN;
3853        } else {
3854            fixup = NEED_BIAS | NEED_INV;
3855        }
3856        break;
3857    case TCG_COND_GTU:
3858        if (tcg_can_emit_vec_op(INDEX_op_umin_vec, type, vece)) {
3859            fixup = NEED_UMIN | NEED_INV;
3860        } else {
3861            fixup = NEED_BIAS;
3862        }
3863        break;
3864    case TCG_COND_GEU:
3865        if (tcg_can_emit_vec_op(INDEX_op_umax_vec, type, vece)) {
3866            fixup = NEED_UMAX;
3867        } else {
3868            fixup = NEED_BIAS | NEED_SWAP | NEED_INV;
3869        }
3870        break;
3871    case TCG_COND_LTU:
3872        if (tcg_can_emit_vec_op(INDEX_op_umax_vec, type, vece)) {
3873            fixup = NEED_UMAX | NEED_INV;
3874        } else {
3875            fixup = NEED_BIAS | NEED_SWAP;
3876        }
3877        break;
3878    default:
3879        g_assert_not_reached();
3880    }
3881
3882    if (fixup & NEED_INV) {
3883        cond = tcg_invert_cond(cond);
3884    }
3885    if (fixup & NEED_SWAP) {
3886        t1 = v1, v1 = v2, v2 = t1;
3887        cond = tcg_swap_cond(cond);
3888    }
3889
3890    t1 = t2 = NULL;
3891    if (fixup & (NEED_UMIN | NEED_UMAX)) {
3892        t1 = tcg_temp_new_vec(type);
3893        if (fixup & NEED_UMIN) {
3894            tcg_gen_umin_vec(vece, t1, v1, v2);
3895        } else {
3896            tcg_gen_umax_vec(vece, t1, v1, v2);
3897        }
3898        v2 = t1;
3899        cond = TCG_COND_EQ;
3900    } else if (fixup & NEED_BIAS) {
3901        t1 = tcg_temp_new_vec(type);
3902        t2 = tcg_temp_new_vec(type);
3903        t3 = tcg_constant_vec(type, vece, 1ull << ((8 << vece) - 1));
3904        tcg_gen_sub_vec(vece, t1, v1, t3);
3905        tcg_gen_sub_vec(vece, t2, v2, t3);
3906        v1 = t1;
3907        v2 = t2;
3908        cond = tcg_signed_cond(cond);
3909    }
3910
3911    tcg_debug_assert(cond == TCG_COND_EQ || cond == TCG_COND_GT);
3912    /* Expand directly; do not recurse.  */
3913    vec_gen_4(INDEX_op_cmp_vec, type, vece,
3914              tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond);
3915
3916    if (t1) {
3917        tcg_temp_free_vec(t1);
3918        if (t2) {
3919            tcg_temp_free_vec(t2);
3920        }
3921    }
3922    return fixup & NEED_INV;
3923}
3924
3925static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0,
3926                           TCGv_vec v1, TCGv_vec v2, TCGCond cond)
3927{
3928    if (expand_vec_cmp_noinv(type, vece, v0, v1, v2, cond)) {
3929        tcg_gen_not_vec(vece, v0, v0);
3930    }
3931}
3932
3933static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGv_vec v0,
3934                              TCGv_vec c1, TCGv_vec c2,
3935                              TCGv_vec v3, TCGv_vec v4, TCGCond cond)
3936{
3937    TCGv_vec t = tcg_temp_new_vec(type);
3938
3939    if (expand_vec_cmp_noinv(type, vece, t, c1, c2, cond)) {
3940        /* Invert the sense of the compare by swapping arguments.  */
3941        TCGv_vec x;
3942        x = v3, v3 = v4, v4 = x;
3943    }
3944    vec_gen_4(INDEX_op_x86_vpblendvb_vec, type, vece,
3945              tcgv_vec_arg(v0), tcgv_vec_arg(v4),
3946              tcgv_vec_arg(v3), tcgv_vec_arg(t));
3947    tcg_temp_free_vec(t);
3948}
3949
3950void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
3951                       TCGArg a0, ...)
3952{
3953    va_list va;
3954    TCGArg a2;
3955    TCGv_vec v0, v1, v2, v3, v4;
3956
3957    va_start(va, a0);
3958    v0 = temp_tcgv_vec(arg_temp(a0));
3959    v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
3960    a2 = va_arg(va, TCGArg);
3961
3962    switch (opc) {
3963    case INDEX_op_shli_vec:
3964    case INDEX_op_shri_vec:
3965        expand_vec_shi(type, vece, opc, v0, v1, a2);
3966        break;
3967
3968    case INDEX_op_sari_vec:
3969        expand_vec_sari(type, vece, v0, v1, a2);
3970        break;
3971
3972    case INDEX_op_rotli_vec:
3973        expand_vec_rotli(type, vece, v0, v1, a2);
3974        break;
3975
3976    case INDEX_op_rotls_vec:
3977        expand_vec_rotls(type, vece, v0, v1, temp_tcgv_i32(arg_temp(a2)));
3978        break;
3979
3980    case INDEX_op_rotlv_vec:
3981        v2 = temp_tcgv_vec(arg_temp(a2));
3982        expand_vec_rotv(type, vece, v0, v1, v2, false);
3983        break;
3984    case INDEX_op_rotrv_vec:
3985        v2 = temp_tcgv_vec(arg_temp(a2));
3986        expand_vec_rotv(type, vece, v0, v1, v2, true);
3987        break;
3988
3989    case INDEX_op_mul_vec:
3990        v2 = temp_tcgv_vec(arg_temp(a2));
3991        expand_vec_mul(type, vece, v0, v1, v2);
3992        break;
3993
3994    case INDEX_op_cmp_vec:
3995        v2 = temp_tcgv_vec(arg_temp(a2));
3996        expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg));
3997        break;
3998
3999    case INDEX_op_cmpsel_vec:
4000        v2 = temp_tcgv_vec(arg_temp(a2));
4001        v3 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
4002        v4 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
4003        expand_vec_cmpsel(type, vece, v0, v1, v2, v3, v4, va_arg(va, TCGArg));
4004        break;
4005
4006    default:
4007        break;
4008    }
4009
4010    va_end(va);
4011}
4012
4013static const int tcg_target_callee_save_regs[] = {
4014#if TCG_TARGET_REG_BITS == 64
4015    TCG_REG_RBP,
4016    TCG_REG_RBX,
4017#if defined(_WIN64)
4018    TCG_REG_RDI,
4019    TCG_REG_RSI,
4020#endif
4021    TCG_REG_R12,
4022    TCG_REG_R13,
4023    TCG_REG_R14, /* Currently used for the global env. */
4024    TCG_REG_R15,
4025#else
4026    TCG_REG_EBP, /* Currently used for the global env. */
4027    TCG_REG_EBX,
4028    TCG_REG_ESI,
4029    TCG_REG_EDI,
4030#endif
4031};
4032
4033/* Compute frame size via macros, to share between tcg_target_qemu_prologue
4034   and tcg_register_jit.  */
4035
4036#define PUSH_SIZE \
4037    ((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \
4038     * (TCG_TARGET_REG_BITS / 8))
4039
4040#define FRAME_SIZE \
4041    ((PUSH_SIZE \
4042      + TCG_STATIC_CALL_ARGS_SIZE \
4043      + CPU_TEMP_BUF_NLONGS * sizeof(long) \
4044      + TCG_TARGET_STACK_ALIGN - 1) \
4045     & ~(TCG_TARGET_STACK_ALIGN - 1))
4046
4047/* Generate global QEMU prologue and epilogue code */
4048static void tcg_target_qemu_prologue(TCGContext *s)
4049{
4050    int i, stack_addend;
4051
4052    /* TB prologue */
4053
4054    /* Reserve some stack space, also for TCG temps.  */
4055    stack_addend = FRAME_SIZE - PUSH_SIZE;
4056    tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE,
4057                  CPU_TEMP_BUF_NLONGS * sizeof(long));
4058
4059    /* Save all callee saved registers.  */
4060    for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
4061        tcg_out_push(s, tcg_target_callee_save_regs[i]);
4062    }
4063
4064#if TCG_TARGET_REG_BITS == 32
4065    tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP,
4066               (ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4);
4067    tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
4068    /* jmp *tb.  */
4069    tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP,
4070                         (ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4
4071                         + stack_addend);
4072#else
4073# if !defined(CONFIG_SOFTMMU) && TCG_TARGET_REG_BITS == 64
4074    if (guest_base) {
4075        int seg = setup_guest_base_seg();
4076        if (seg != 0) {
4077            x86_guest_base_seg = seg;
4078        } else if (guest_base == (int32_t)guest_base) {
4079            x86_guest_base_offset = guest_base;
4080        } else {
4081            /* Choose R12 because, as a base, it requires a SIB byte. */
4082            x86_guest_base_index = TCG_REG_R12;
4083            tcg_out_movi(s, TCG_TYPE_PTR, x86_guest_base_index, guest_base);
4084            tcg_regset_set_reg(s->reserved_regs, x86_guest_base_index);
4085        }
4086    }
4087# endif
4088    tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
4089    tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
4090    /* jmp *tb.  */
4091    tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]);
4092#endif
4093
4094    /*
4095     * Return path for goto_ptr. Set return value to 0, a-la exit_tb,
4096     * and fall through to the rest of the epilogue.
4097     */
4098    tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
4099    tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0);
4100
4101    /* TB epilogue */
4102    tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr);
4103
4104    tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend);
4105
4106    if (have_avx2) {
4107        tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0);
4108    }
4109    for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) {
4110        tcg_out_pop(s, tcg_target_callee_save_regs[i]);
4111    }
4112    tcg_out_opc(s, OPC_RET, 0, 0, 0);
4113}
4114
4115static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
4116{
4117    memset(p, 0x90, count);
4118}
4119
4120static void tcg_target_init(TCGContext *s)
4121{
4122#ifdef CONFIG_CPUID_H
4123    unsigned a, b, c, d, b7 = 0, c7 = 0;
4124    unsigned max = __get_cpuid_max(0, 0);
4125
4126    if (max >= 7) {
4127        /* BMI1 is available on AMD Piledriver and Intel Haswell CPUs.  */
4128        __cpuid_count(7, 0, a, b7, c7, d);
4129        have_bmi1 = (b7 & bit_BMI) != 0;
4130        have_bmi2 = (b7 & bit_BMI2) != 0;
4131    }
4132
4133    if (max >= 1) {
4134        __cpuid(1, a, b, c, d);
4135#ifndef have_cmov
4136        /* For 32-bit, 99% certainty that we're running on hardware that
4137           supports cmov, but we still need to check.  In case cmov is not
4138           available, we'll use a small forward branch.  */
4139        have_cmov = (d & bit_CMOV) != 0;
4140#endif
4141
4142        /* MOVBE is only available on Intel Atom and Haswell CPUs, so we
4143           need to probe for it.  */
4144        have_movbe = (c & bit_MOVBE) != 0;
4145        have_popcnt = (c & bit_POPCNT) != 0;
4146
4147        /* There are a number of things we must check before we can be
4148           sure of not hitting invalid opcode.  */
4149        if (c & bit_OSXSAVE) {
4150            unsigned bv = xgetbv_low(0);
4151
4152            if ((bv & 6) == 6) {
4153                have_avx1 = (c & bit_AVX) != 0;
4154                have_avx2 = (b7 & bit_AVX2) != 0;
4155
4156                /*
4157                 * There are interesting instructions in AVX512, so long
4158                 * as we have AVX512VL, which indicates support for EVEX
4159                 * on sizes smaller than 512 bits.  We are required to
4160                 * check that OPMASK and all extended ZMM state are enabled
4161                 * even if we're not using them -- the insns will fault.
4162                 */
4163                if ((bv & 0xe0) == 0xe0
4164                    && (b7 & bit_AVX512F)
4165                    && (b7 & bit_AVX512VL)) {
4166                    have_avx512vl = true;
4167                    have_avx512bw = (b7 & bit_AVX512BW) != 0;
4168                    have_avx512dq = (b7 & bit_AVX512DQ) != 0;
4169                    have_avx512vbmi2 = (c7 & bit_AVX512VBMI2) != 0;
4170                }
4171            }
4172        }
4173    }
4174
4175    max = __get_cpuid_max(0x8000000, 0);
4176    if (max >= 1) {
4177        __cpuid(0x80000001, a, b, c, d);
4178        /* LZCNT was introduced with AMD Barcelona and Intel Haswell CPUs.  */
4179        have_lzcnt = (c & bit_LZCNT) != 0;
4180    }
4181#endif /* CONFIG_CPUID_H */
4182
4183    tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
4184    if (TCG_TARGET_REG_BITS == 64) {
4185        tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS;
4186    }
4187    if (have_avx1) {
4188        tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS;
4189        tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS;
4190    }
4191    if (have_avx2) {
4192        tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS;
4193    }
4194
4195    tcg_target_call_clobber_regs = ALL_VECTOR_REGS;
4196    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX);
4197    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX);
4198    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX);
4199    if (TCG_TARGET_REG_BITS == 64) {
4200#if !defined(_WIN64)
4201        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI);
4202        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI);
4203#endif
4204        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
4205        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
4206        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
4207        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
4208    }
4209
4210    s->reserved_regs = 0;
4211    tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK);
4212#ifdef _WIN64
4213    /* These are call saved, and we don't save them, so don't use them. */
4214    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM6);
4215    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM7);
4216    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM8);
4217    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM9);
4218    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM10);
4219    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM11);
4220    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM12);
4221    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM13);
4222    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM14);
4223    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM15);
4224#endif
4225}
4226
4227typedef struct {
4228    DebugFrameHeader h;
4229    uint8_t fde_def_cfa[4];
4230    uint8_t fde_reg_ofs[14];
4231} DebugFrame;
4232
4233/* We're expecting a 2 byte uleb128 encoded value.  */
4234QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
4235
4236#if !defined(__ELF__)
4237    /* Host machine without ELF. */
4238#elif TCG_TARGET_REG_BITS == 64
4239#define ELF_HOST_MACHINE EM_X86_64
4240static const DebugFrame debug_frame = {
4241    .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4242    .h.cie.id = -1,
4243    .h.cie.version = 1,
4244    .h.cie.code_align = 1,
4245    .h.cie.data_align = 0x78,             /* sleb128 -8 */
4246    .h.cie.return_column = 16,
4247
4248    /* Total FDE size does not include the "len" member.  */
4249    .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
4250
4251    .fde_def_cfa = {
4252        12, 7,                          /* DW_CFA_def_cfa %rsp, ... */
4253        (FRAME_SIZE & 0x7f) | 0x80,     /* ... uleb128 FRAME_SIZE */
4254        (FRAME_SIZE >> 7)
4255    },
4256    .fde_reg_ofs = {
4257        0x90, 1,                        /* DW_CFA_offset, %rip, -8 */
4258        /* The following ordering must match tcg_target_callee_save_regs.  */
4259        0x86, 2,                        /* DW_CFA_offset, %rbp, -16 */
4260        0x83, 3,                        /* DW_CFA_offset, %rbx, -24 */
4261        0x8c, 4,                        /* DW_CFA_offset, %r12, -32 */
4262        0x8d, 5,                        /* DW_CFA_offset, %r13, -40 */
4263        0x8e, 6,                        /* DW_CFA_offset, %r14, -48 */
4264        0x8f, 7,                        /* DW_CFA_offset, %r15, -56 */
4265    }
4266};
4267#else
4268#define ELF_HOST_MACHINE EM_386
4269static const DebugFrame debug_frame = {
4270    .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4271    .h.cie.id = -1,
4272    .h.cie.version = 1,
4273    .h.cie.code_align = 1,
4274    .h.cie.data_align = 0x7c,             /* sleb128 -4 */
4275    .h.cie.return_column = 8,
4276
4277    /* Total FDE size does not include the "len" member.  */
4278    .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
4279
4280    .fde_def_cfa = {
4281        12, 4,                          /* DW_CFA_def_cfa %esp, ... */
4282        (FRAME_SIZE & 0x7f) | 0x80,     /* ... uleb128 FRAME_SIZE */
4283        (FRAME_SIZE >> 7)
4284    },
4285    .fde_reg_ofs = {
4286        0x88, 1,                        /* DW_CFA_offset, %eip, -4 */
4287        /* The following ordering must match tcg_target_callee_save_regs.  */
4288        0x85, 2,                        /* DW_CFA_offset, %ebp, -8 */
4289        0x83, 3,                        /* DW_CFA_offset, %ebx, -12 */
4290        0x86, 4,                        /* DW_CFA_offset, %esi, -16 */
4291        0x87, 5,                        /* DW_CFA_offset, %edi, -20 */
4292    }
4293};
4294#endif
4295
4296#if defined(ELF_HOST_MACHINE)
4297void tcg_register_jit(const void *buf, size_t buf_size)
4298{
4299    tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
4300}
4301#endif
4302