xref: /qemu/tcg/region.c (revision 336d354b)
1 /*
2  * Memory region management for Tiny Code Generator for QEMU
3  *
4  * Copyright (c) 2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/madvise.h"
28 #include "qemu/mprotect.h"
29 #include "qemu/memalign.h"
30 #include "qemu/cacheinfo.h"
31 #include "qapi/error.h"
32 #include "exec/exec-all.h"
33 #include "tcg/tcg.h"
34 #include "tcg-internal.h"
35 
36 
37 struct tcg_region_tree {
38     QemuMutex lock;
39     GTree *tree;
40     /* padding to avoid false sharing is computed at run-time */
41 };
42 
43 /*
44  * We divide code_gen_buffer into equally-sized "regions" that TCG threads
45  * dynamically allocate from as demand dictates. Given appropriate region
46  * sizing, this minimizes flushes even when some TCG threads generate a lot
47  * more code than others.
48  */
49 struct tcg_region_state {
50     QemuMutex lock;
51 
52     /* fields set at init time */
53     void *start_aligned;
54     void *after_prologue;
55     size_t n;
56     size_t size; /* size of one region */
57     size_t stride; /* .size + guard size */
58     size_t total_size; /* size of entire buffer, >= n * stride */
59 
60     /* fields protected by the lock */
61     size_t current; /* current region index */
62     size_t agg_size_full; /* aggregate size of full regions */
63 };
64 
65 static struct tcg_region_state region;
66 
67 /*
68  * This is an array of struct tcg_region_tree's, with padding.
69  * We use void * to simplify the computation of region_trees[i]; each
70  * struct is found every tree_size bytes.
71  */
72 static void *region_trees;
73 static size_t tree_size;
74 
75 bool in_code_gen_buffer(const void *p)
76 {
77     /*
78      * Much like it is valid to have a pointer to the byte past the
79      * end of an array (so long as you don't dereference it), allow
80      * a pointer to the byte past the end of the code gen buffer.
81      */
82     return (size_t)(p - region.start_aligned) <= region.total_size;
83 }
84 
85 #ifdef CONFIG_DEBUG_TCG
86 const void *tcg_splitwx_to_rx(void *rw)
87 {
88     /* Pass NULL pointers unchanged. */
89     if (rw) {
90         g_assert(in_code_gen_buffer(rw));
91         rw += tcg_splitwx_diff;
92     }
93     return rw;
94 }
95 
96 void *tcg_splitwx_to_rw(const void *rx)
97 {
98     /* Pass NULL pointers unchanged. */
99     if (rx) {
100         rx -= tcg_splitwx_diff;
101         /* Assert that we end with a pointer in the rw region. */
102         g_assert(in_code_gen_buffer(rx));
103     }
104     return (void *)rx;
105 }
106 #endif /* CONFIG_DEBUG_TCG */
107 
108 /* compare a pointer @ptr and a tb_tc @s */
109 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s)
110 {
111     if (ptr >= s->ptr + s->size) {
112         return 1;
113     } else if (ptr < s->ptr) {
114         return -1;
115     }
116     return 0;
117 }
118 
119 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp, gpointer userdata)
120 {
121     const struct tb_tc *a = ap;
122     const struct tb_tc *b = bp;
123 
124     /*
125      * When both sizes are set, we know this isn't a lookup.
126      * This is the most likely case: every TB must be inserted; lookups
127      * are a lot less frequent.
128      */
129     if (likely(a->size && b->size)) {
130         if (a->ptr > b->ptr) {
131             return 1;
132         } else if (a->ptr < b->ptr) {
133             return -1;
134         }
135         /* a->ptr == b->ptr should happen only on deletions */
136         g_assert(a->size == b->size);
137         return 0;
138     }
139     /*
140      * All lookups have either .size field set to 0.
141      * From the glib sources we see that @ap is always the lookup key. However
142      * the docs provide no guarantee, so we just mark this case as likely.
143      */
144     if (likely(a->size == 0)) {
145         return ptr_cmp_tb_tc(a->ptr, b);
146     }
147     return ptr_cmp_tb_tc(b->ptr, a);
148 }
149 
150 static void tb_destroy(gpointer value)
151 {
152     TranslationBlock *tb = value;
153     qemu_spin_destroy(&tb->jmp_lock);
154 }
155 
156 static void tcg_region_trees_init(void)
157 {
158     size_t i;
159 
160     tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize);
161     region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size);
162     for (i = 0; i < region.n; i++) {
163         struct tcg_region_tree *rt = region_trees + i * tree_size;
164 
165         qemu_mutex_init(&rt->lock);
166         rt->tree = g_tree_new_full(tb_tc_cmp, NULL, NULL, tb_destroy);
167     }
168 }
169 
170 static struct tcg_region_tree *tc_ptr_to_region_tree(const void *p)
171 {
172     size_t region_idx;
173 
174     /*
175      * Like tcg_splitwx_to_rw, with no assert.  The pc may come from
176      * a signal handler over which the caller has no control.
177      */
178     if (!in_code_gen_buffer(p)) {
179         p -= tcg_splitwx_diff;
180         if (!in_code_gen_buffer(p)) {
181             return NULL;
182         }
183     }
184 
185     if (p < region.start_aligned) {
186         region_idx = 0;
187     } else {
188         ptrdiff_t offset = p - region.start_aligned;
189 
190         if (offset > region.stride * (region.n - 1)) {
191             region_idx = region.n - 1;
192         } else {
193             region_idx = offset / region.stride;
194         }
195     }
196     return region_trees + region_idx * tree_size;
197 }
198 
199 void tcg_tb_insert(TranslationBlock *tb)
200 {
201     struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
202 
203     g_assert(rt != NULL);
204     qemu_mutex_lock(&rt->lock);
205     g_tree_insert(rt->tree, &tb->tc, tb);
206     qemu_mutex_unlock(&rt->lock);
207 }
208 
209 void tcg_tb_remove(TranslationBlock *tb)
210 {
211     struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
212 
213     g_assert(rt != NULL);
214     qemu_mutex_lock(&rt->lock);
215     g_tree_remove(rt->tree, &tb->tc);
216     qemu_mutex_unlock(&rt->lock);
217 }
218 
219 /*
220  * Find the TB 'tb' such that
221  * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size
222  * Return NULL if not found.
223  */
224 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr)
225 {
226     struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr);
227     TranslationBlock *tb;
228     struct tb_tc s = { .ptr = (void *)tc_ptr };
229 
230     if (rt == NULL) {
231         return NULL;
232     }
233 
234     qemu_mutex_lock(&rt->lock);
235     tb = g_tree_lookup(rt->tree, &s);
236     qemu_mutex_unlock(&rt->lock);
237     return tb;
238 }
239 
240 static void tcg_region_tree_lock_all(void)
241 {
242     size_t i;
243 
244     for (i = 0; i < region.n; i++) {
245         struct tcg_region_tree *rt = region_trees + i * tree_size;
246 
247         qemu_mutex_lock(&rt->lock);
248     }
249 }
250 
251 static void tcg_region_tree_unlock_all(void)
252 {
253     size_t i;
254 
255     for (i = 0; i < region.n; i++) {
256         struct tcg_region_tree *rt = region_trees + i * tree_size;
257 
258         qemu_mutex_unlock(&rt->lock);
259     }
260 }
261 
262 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data)
263 {
264     size_t i;
265 
266     tcg_region_tree_lock_all();
267     for (i = 0; i < region.n; i++) {
268         struct tcg_region_tree *rt = region_trees + i * tree_size;
269 
270         g_tree_foreach(rt->tree, func, user_data);
271     }
272     tcg_region_tree_unlock_all();
273 }
274 
275 size_t tcg_nb_tbs(void)
276 {
277     size_t nb_tbs = 0;
278     size_t i;
279 
280     tcg_region_tree_lock_all();
281     for (i = 0; i < region.n; i++) {
282         struct tcg_region_tree *rt = region_trees + i * tree_size;
283 
284         nb_tbs += g_tree_nnodes(rt->tree);
285     }
286     tcg_region_tree_unlock_all();
287     return nb_tbs;
288 }
289 
290 static void tcg_region_tree_reset_all(void)
291 {
292     size_t i;
293 
294     tcg_region_tree_lock_all();
295     for (i = 0; i < region.n; i++) {
296         struct tcg_region_tree *rt = region_trees + i * tree_size;
297 
298         /* Increment the refcount first so that destroy acts as a reset */
299         g_tree_ref(rt->tree);
300         g_tree_destroy(rt->tree);
301     }
302     tcg_region_tree_unlock_all();
303 }
304 
305 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend)
306 {
307     void *start, *end;
308 
309     start = region.start_aligned + curr_region * region.stride;
310     end = start + region.size;
311 
312     if (curr_region == 0) {
313         start = region.after_prologue;
314     }
315     /* The final region may have a few extra pages due to earlier rounding. */
316     if (curr_region == region.n - 1) {
317         end = region.start_aligned + region.total_size;
318     }
319 
320     *pstart = start;
321     *pend = end;
322 }
323 
324 static void tcg_region_assign(TCGContext *s, size_t curr_region)
325 {
326     void *start, *end;
327 
328     tcg_region_bounds(curr_region, &start, &end);
329 
330     s->code_gen_buffer = start;
331     s->code_gen_ptr = start;
332     s->code_gen_buffer_size = end - start;
333     s->code_gen_highwater = end - TCG_HIGHWATER;
334 }
335 
336 static bool tcg_region_alloc__locked(TCGContext *s)
337 {
338     if (region.current == region.n) {
339         return true;
340     }
341     tcg_region_assign(s, region.current);
342     region.current++;
343     return false;
344 }
345 
346 /*
347  * Request a new region once the one in use has filled up.
348  * Returns true on error.
349  */
350 bool tcg_region_alloc(TCGContext *s)
351 {
352     bool err;
353     /* read the region size now; alloc__locked will overwrite it on success */
354     size_t size_full = s->code_gen_buffer_size;
355 
356     qemu_mutex_lock(&region.lock);
357     err = tcg_region_alloc__locked(s);
358     if (!err) {
359         region.agg_size_full += size_full - TCG_HIGHWATER;
360     }
361     qemu_mutex_unlock(&region.lock);
362     return err;
363 }
364 
365 /*
366  * Perform a context's first region allocation.
367  * This function does _not_ increment region.agg_size_full.
368  */
369 static void tcg_region_initial_alloc__locked(TCGContext *s)
370 {
371     bool err = tcg_region_alloc__locked(s);
372     g_assert(!err);
373 }
374 
375 void tcg_region_initial_alloc(TCGContext *s)
376 {
377     qemu_mutex_lock(&region.lock);
378     tcg_region_initial_alloc__locked(s);
379     qemu_mutex_unlock(&region.lock);
380 }
381 
382 /* Call from a safe-work context */
383 void tcg_region_reset_all(void)
384 {
385     unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs);
386     unsigned int i;
387 
388     qemu_mutex_lock(&region.lock);
389     region.current = 0;
390     region.agg_size_full = 0;
391 
392     for (i = 0; i < n_ctxs; i++) {
393         TCGContext *s = qatomic_read(&tcg_ctxs[i]);
394         tcg_region_initial_alloc__locked(s);
395     }
396     qemu_mutex_unlock(&region.lock);
397 
398     tcg_region_tree_reset_all();
399 }
400 
401 static size_t tcg_n_regions(size_t tb_size, unsigned max_cpus)
402 {
403 #ifdef CONFIG_USER_ONLY
404     return 1;
405 #else
406     size_t n_regions;
407 
408     /*
409      * It is likely that some vCPUs will translate more code than others,
410      * so we first try to set more regions than max_cpus, with those regions
411      * being of reasonable size. If that's not possible we make do by evenly
412      * dividing the code_gen_buffer among the vCPUs.
413      */
414     /* Use a single region if all we have is one vCPU thread */
415     if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) {
416         return 1;
417     }
418 
419     /*
420      * Try to have more regions than max_cpus, with each region being >= 2 MB.
421      * If we can't, then just allocate one region per vCPU thread.
422      */
423     n_regions = tb_size / (2 * MiB);
424     if (n_regions <= max_cpus) {
425         return max_cpus;
426     }
427     return MIN(n_regions, max_cpus * 8);
428 #endif
429 }
430 
431 /*
432  * Minimum size of the code gen buffer.  This number is randomly chosen,
433  * but not so small that we can't have a fair number of TB's live.
434  *
435  * Maximum size, MAX_CODE_GEN_BUFFER_SIZE, is defined in tcg-target.h.
436  * Unless otherwise indicated, this is constrained by the range of
437  * direct branches on the host cpu, as used by the TCG implementation
438  * of goto_tb.
439  */
440 #define MIN_CODE_GEN_BUFFER_SIZE     (1 * MiB)
441 
442 #if TCG_TARGET_REG_BITS == 32
443 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
444 #ifdef CONFIG_USER_ONLY
445 /*
446  * For user mode on smaller 32 bit systems we may run into trouble
447  * allocating big chunks of data in the right place. On these systems
448  * we utilise a static code generation buffer directly in the binary.
449  */
450 #define USE_STATIC_CODE_GEN_BUFFER
451 #endif
452 #else /* TCG_TARGET_REG_BITS == 64 */
453 #ifdef CONFIG_USER_ONLY
454 /*
455  * As user-mode emulation typically means running multiple instances
456  * of the translator don't go too nuts with our default code gen
457  * buffer lest we make things too hard for the OS.
458  */
459 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
460 #else
461 /*
462  * We expect most system emulation to run one or two guests per host.
463  * Users running large scale system emulation may want to tweak their
464  * runtime setup via the tb-size control on the command line.
465  */
466 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
467 #endif
468 #endif
469 
470 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
471   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
472    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
473 
474 #ifdef USE_STATIC_CODE_GEN_BUFFER
475 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
476     __attribute__((aligned(CODE_GEN_ALIGN)));
477 
478 static int alloc_code_gen_buffer(size_t tb_size, int splitwx, Error **errp)
479 {
480     void *buf, *end;
481     size_t size;
482 
483     if (splitwx > 0) {
484         error_setg(errp, "jit split-wx not supported");
485         return -1;
486     }
487 
488     /* page-align the beginning and end of the buffer */
489     buf = static_code_gen_buffer;
490     end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
491     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
492     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
493 
494     size = end - buf;
495 
496     /* Honor a command-line option limiting the size of the buffer.  */
497     if (size > tb_size) {
498         size = QEMU_ALIGN_DOWN(tb_size, qemu_real_host_page_size);
499     }
500 
501     region.start_aligned = buf;
502     region.total_size = size;
503 
504     return PROT_READ | PROT_WRITE;
505 }
506 #elif defined(_WIN32)
507 static int alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
508 {
509     void *buf;
510 
511     if (splitwx > 0) {
512         error_setg(errp, "jit split-wx not supported");
513         return -1;
514     }
515 
516     buf = VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
517                              PAGE_EXECUTE_READWRITE);
518     if (buf == NULL) {
519         error_setg_win32(errp, GetLastError(),
520                          "allocate %zu bytes for jit buffer", size);
521         return false;
522     }
523 
524     region.start_aligned = buf;
525     region.total_size = size;
526 
527     return PAGE_READ | PAGE_WRITE | PAGE_EXEC;
528 }
529 #else
530 static int alloc_code_gen_buffer_anon(size_t size, int prot,
531                                       int flags, Error **errp)
532 {
533     void *buf;
534 
535     buf = mmap(NULL, size, prot, flags, -1, 0);
536     if (buf == MAP_FAILED) {
537         error_setg_errno(errp, errno,
538                          "allocate %zu bytes for jit buffer", size);
539         return -1;
540     }
541 
542     region.start_aligned = buf;
543     region.total_size = size;
544     return prot;
545 }
546 
547 #ifndef CONFIG_TCG_INTERPRETER
548 #ifdef CONFIG_POSIX
549 #include "qemu/memfd.h"
550 
551 static bool alloc_code_gen_buffer_splitwx_memfd(size_t size, Error **errp)
552 {
553     void *buf_rw = NULL, *buf_rx = MAP_FAILED;
554     int fd = -1;
555 
556     buf_rw = qemu_memfd_alloc("tcg-jit", size, 0, &fd, errp);
557     if (buf_rw == NULL) {
558         goto fail;
559     }
560 
561     buf_rx = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0);
562     if (buf_rx == MAP_FAILED) {
563         goto fail_rx;
564     }
565 
566     close(fd);
567     region.start_aligned = buf_rw;
568     region.total_size = size;
569     tcg_splitwx_diff = buf_rx - buf_rw;
570 
571     return PROT_READ | PROT_WRITE;
572 
573  fail_rx:
574     error_setg_errno(errp, errno, "failed to map shared memory for execute");
575  fail:
576     if (buf_rx != MAP_FAILED) {
577         munmap(buf_rx, size);
578     }
579     if (buf_rw) {
580         munmap(buf_rw, size);
581     }
582     if (fd >= 0) {
583         close(fd);
584     }
585     return -1;
586 }
587 #endif /* CONFIG_POSIX */
588 
589 #ifdef CONFIG_DARWIN
590 #include <mach/mach.h>
591 
592 extern kern_return_t mach_vm_remap(vm_map_t target_task,
593                                    mach_vm_address_t *target_address,
594                                    mach_vm_size_t size,
595                                    mach_vm_offset_t mask,
596                                    int flags,
597                                    vm_map_t src_task,
598                                    mach_vm_address_t src_address,
599                                    boolean_t copy,
600                                    vm_prot_t *cur_protection,
601                                    vm_prot_t *max_protection,
602                                    vm_inherit_t inheritance);
603 
604 static int alloc_code_gen_buffer_splitwx_vmremap(size_t size, Error **errp)
605 {
606     kern_return_t ret;
607     mach_vm_address_t buf_rw, buf_rx;
608     vm_prot_t cur_prot, max_prot;
609 
610     /* Map the read-write portion via normal anon memory. */
611     if (!alloc_code_gen_buffer_anon(size, PROT_READ | PROT_WRITE,
612                                     MAP_PRIVATE | MAP_ANONYMOUS, errp)) {
613         return -1;
614     }
615 
616     buf_rw = (mach_vm_address_t)region.start_aligned;
617     buf_rx = 0;
618     ret = mach_vm_remap(mach_task_self(),
619                         &buf_rx,
620                         size,
621                         0,
622                         VM_FLAGS_ANYWHERE,
623                         mach_task_self(),
624                         buf_rw,
625                         false,
626                         &cur_prot,
627                         &max_prot,
628                         VM_INHERIT_NONE);
629     if (ret != KERN_SUCCESS) {
630         /* TODO: Convert "ret" to a human readable error message. */
631         error_setg(errp, "vm_remap for jit splitwx failed");
632         munmap((void *)buf_rw, size);
633         return -1;
634     }
635 
636     if (mprotect((void *)buf_rx, size, PROT_READ | PROT_EXEC) != 0) {
637         error_setg_errno(errp, errno, "mprotect for jit splitwx");
638         munmap((void *)buf_rx, size);
639         munmap((void *)buf_rw, size);
640         return -1;
641     }
642 
643     tcg_splitwx_diff = buf_rx - buf_rw;
644     return PROT_READ | PROT_WRITE;
645 }
646 #endif /* CONFIG_DARWIN */
647 #endif /* CONFIG_TCG_INTERPRETER */
648 
649 static int alloc_code_gen_buffer_splitwx(size_t size, Error **errp)
650 {
651 #ifndef CONFIG_TCG_INTERPRETER
652 # ifdef CONFIG_DARWIN
653     return alloc_code_gen_buffer_splitwx_vmremap(size, errp);
654 # endif
655 # ifdef CONFIG_POSIX
656     return alloc_code_gen_buffer_splitwx_memfd(size, errp);
657 # endif
658 #endif
659     error_setg(errp, "jit split-wx not supported");
660     return -1;
661 }
662 
663 static int alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
664 {
665     ERRP_GUARD();
666     int prot, flags;
667 
668     if (splitwx) {
669         prot = alloc_code_gen_buffer_splitwx(size, errp);
670         if (prot >= 0) {
671             return prot;
672         }
673         /*
674          * If splitwx force-on (1), fail;
675          * if splitwx default-on (-1), fall through to splitwx off.
676          */
677         if (splitwx > 0) {
678             return -1;
679         }
680         error_free_or_abort(errp);
681     }
682 
683     /*
684      * macOS 11.2 has a bug (Apple Feedback FB8994773) in which mprotect
685      * rejects a permission change from RWX -> NONE when reserving the
686      * guard pages later.  We can go the other way with the same number
687      * of syscalls, so always begin with PROT_NONE.
688      */
689     prot = PROT_NONE;
690     flags = MAP_PRIVATE | MAP_ANONYMOUS;
691 #ifdef CONFIG_DARWIN
692     /* Applicable to both iOS and macOS (Apple Silicon). */
693     if (!splitwx) {
694         flags |= MAP_JIT;
695     }
696 #endif
697 
698     return alloc_code_gen_buffer_anon(size, prot, flags, errp);
699 }
700 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
701 
702 /*
703  * Initializes region partitioning.
704  *
705  * Called at init time from the parent thread (i.e. the one calling
706  * tcg_context_init), after the target's TCG globals have been set.
707  *
708  * Region partitioning works by splitting code_gen_buffer into separate regions,
709  * and then assigning regions to TCG threads so that the threads can translate
710  * code in parallel without synchronization.
711  *
712  * In softmmu the number of TCG threads is bounded by max_cpus, so we use at
713  * least max_cpus regions in MTTCG. In !MTTCG we use a single region.
714  * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...])
715  * must have been parsed before calling this function, since it calls
716  * qemu_tcg_mttcg_enabled().
717  *
718  * In user-mode we use a single region.  Having multiple regions in user-mode
719  * is not supported, because the number of vCPU threads (recall that each thread
720  * spawned by the guest corresponds to a vCPU thread) is only bounded by the
721  * OS, and usually this number is huge (tens of thousands is not uncommon).
722  * Thus, given this large bound on the number of vCPU threads and the fact
723  * that code_gen_buffer is allocated at compile-time, we cannot guarantee
724  * that the availability of at least one region per vCPU thread.
725  *
726  * However, this user-mode limitation is unlikely to be a significant problem
727  * in practice. Multi-threaded guests share most if not all of their translated
728  * code, which makes parallel code generation less appealing than in softmmu.
729  */
730 void tcg_region_init(size_t tb_size, int splitwx, unsigned max_cpus)
731 {
732     const size_t page_size = qemu_real_host_page_size;
733     size_t region_size;
734     int have_prot, need_prot;
735 
736     /* Size the buffer.  */
737     if (tb_size == 0) {
738         size_t phys_mem = qemu_get_host_physmem();
739         if (phys_mem == 0) {
740             tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
741         } else {
742             tb_size = QEMU_ALIGN_DOWN(phys_mem / 8, page_size);
743             tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, tb_size);
744         }
745     }
746     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
747         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
748     }
749     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
750         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
751     }
752 
753     have_prot = alloc_code_gen_buffer(tb_size, splitwx, &error_fatal);
754     assert(have_prot >= 0);
755 
756     /* Request large pages for the buffer and the splitwx.  */
757     qemu_madvise(region.start_aligned, region.total_size, QEMU_MADV_HUGEPAGE);
758     if (tcg_splitwx_diff) {
759         qemu_madvise(region.start_aligned + tcg_splitwx_diff,
760                      region.total_size, QEMU_MADV_HUGEPAGE);
761     }
762 
763     /*
764      * Make region_size a multiple of page_size, using aligned as the start.
765      * As a result of this we might end up with a few extra pages at the end of
766      * the buffer; we will assign those to the last region.
767      */
768     region.n = tcg_n_regions(tb_size, max_cpus);
769     region_size = tb_size / region.n;
770     region_size = QEMU_ALIGN_DOWN(region_size, page_size);
771 
772     /* A region must have at least 2 pages; one code, one guard */
773     g_assert(region_size >= 2 * page_size);
774     region.stride = region_size;
775 
776     /* Reserve space for guard pages. */
777     region.size = region_size - page_size;
778     region.total_size -= page_size;
779 
780     /*
781      * The first region will be smaller than the others, via the prologue,
782      * which has yet to be allocated.  For now, the first region begins at
783      * the page boundary.
784      */
785     region.after_prologue = region.start_aligned;
786 
787     /* init the region struct */
788     qemu_mutex_init(&region.lock);
789 
790     /*
791      * Set guard pages in the rw buffer, as that's the one into which
792      * buffer overruns could occur.  Do not set guard pages in the rx
793      * buffer -- let that one use hugepages throughout.
794      * Work with the page protections set up with the initial mapping.
795      */
796     need_prot = PAGE_READ | PAGE_WRITE;
797 #ifndef CONFIG_TCG_INTERPRETER
798     if (tcg_splitwx_diff == 0) {
799         need_prot |= PAGE_EXEC;
800     }
801 #endif
802     for (size_t i = 0, n = region.n; i < n; i++) {
803         void *start, *end;
804 
805         tcg_region_bounds(i, &start, &end);
806         if (have_prot != need_prot) {
807             int rc;
808 
809             if (need_prot == (PAGE_READ | PAGE_WRITE | PAGE_EXEC)) {
810                 rc = qemu_mprotect_rwx(start, end - start);
811             } else if (need_prot == (PAGE_READ | PAGE_WRITE)) {
812                 rc = qemu_mprotect_rw(start, end - start);
813             } else {
814                 g_assert_not_reached();
815             }
816             if (rc) {
817                 error_setg_errno(&error_fatal, errno,
818                                  "mprotect of jit buffer");
819             }
820         }
821         if (have_prot != 0) {
822             /* Guard pages are nice for bug detection but are not essential. */
823             (void)qemu_mprotect_none(end, page_size);
824         }
825     }
826 
827     tcg_region_trees_init();
828 
829     /*
830      * Leave the initial context initialized to the first region.
831      * This will be the context into which we generate the prologue.
832      * It is also the only context for CONFIG_USER_ONLY.
833      */
834     tcg_region_initial_alloc__locked(&tcg_init_ctx);
835 }
836 
837 void tcg_region_prologue_set(TCGContext *s)
838 {
839     /* Deduct the prologue from the first region.  */
840     g_assert(region.start_aligned == s->code_gen_buffer);
841     region.after_prologue = s->code_ptr;
842 
843     /* Recompute boundaries of the first region. */
844     tcg_region_assign(s, 0);
845 
846     /* Register the balance of the buffer with gdb. */
847     tcg_register_jit(tcg_splitwx_to_rx(region.after_prologue),
848                      region.start_aligned + region.total_size -
849                      region.after_prologue);
850 }
851 
852 /*
853  * Returns the size (in bytes) of all translated code (i.e. from all regions)
854  * currently in the cache.
855  * See also: tcg_code_capacity()
856  * Do not confuse with tcg_current_code_size(); that one applies to a single
857  * TCG context.
858  */
859 size_t tcg_code_size(void)
860 {
861     unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs);
862     unsigned int i;
863     size_t total;
864 
865     qemu_mutex_lock(&region.lock);
866     total = region.agg_size_full;
867     for (i = 0; i < n_ctxs; i++) {
868         const TCGContext *s = qatomic_read(&tcg_ctxs[i]);
869         size_t size;
870 
871         size = qatomic_read(&s->code_gen_ptr) - s->code_gen_buffer;
872         g_assert(size <= s->code_gen_buffer_size);
873         total += size;
874     }
875     qemu_mutex_unlock(&region.lock);
876     return total;
877 }
878 
879 /*
880  * Returns the code capacity (in bytes) of the entire cache, i.e. including all
881  * regions.
882  * See also: tcg_code_size()
883  */
884 size_t tcg_code_capacity(void)
885 {
886     size_t guard_size, capacity;
887 
888     /* no need for synchronization; these variables are set at init time */
889     guard_size = region.stride - region.size;
890     capacity = region.total_size;
891     capacity -= (region.n - 1) * guard_size;
892     capacity -= region.n * TCG_HIGHWATER;
893 
894     return capacity;
895 }
896