xref: /qemu/tcg/region.c (revision 6538692e)
1 /*
2  * Memory region management for Tiny Code Generator for QEMU
3  *
4  * Copyright (c) 2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/madvise.h"
28 #include "qemu/mprotect.h"
29 #include "qemu/cacheinfo.h"
30 #include "qapi/error.h"
31 #include "exec/exec-all.h"
32 #include "tcg/tcg.h"
33 #include "tcg-internal.h"
34 
35 
36 struct tcg_region_tree {
37     QemuMutex lock;
38     GTree *tree;
39     /* padding to avoid false sharing is computed at run-time */
40 };
41 
42 /*
43  * We divide code_gen_buffer into equally-sized "regions" that TCG threads
44  * dynamically allocate from as demand dictates. Given appropriate region
45  * sizing, this minimizes flushes even when some TCG threads generate a lot
46  * more code than others.
47  */
48 struct tcg_region_state {
49     QemuMutex lock;
50 
51     /* fields set at init time */
52     void *start_aligned;
53     void *after_prologue;
54     size_t n;
55     size_t size; /* size of one region */
56     size_t stride; /* .size + guard size */
57     size_t total_size; /* size of entire buffer, >= n * stride */
58 
59     /* fields protected by the lock */
60     size_t current; /* current region index */
61     size_t agg_size_full; /* aggregate size of full regions */
62 };
63 
64 static struct tcg_region_state region;
65 
66 /*
67  * This is an array of struct tcg_region_tree's, with padding.
68  * We use void * to simplify the computation of region_trees[i]; each
69  * struct is found every tree_size bytes.
70  */
71 static void *region_trees;
72 static size_t tree_size;
73 
74 bool in_code_gen_buffer(const void *p)
75 {
76     /*
77      * Much like it is valid to have a pointer to the byte past the
78      * end of an array (so long as you don't dereference it), allow
79      * a pointer to the byte past the end of the code gen buffer.
80      */
81     return (size_t)(p - region.start_aligned) <= region.total_size;
82 }
83 
84 #ifdef CONFIG_DEBUG_TCG
85 const void *tcg_splitwx_to_rx(void *rw)
86 {
87     /* Pass NULL pointers unchanged. */
88     if (rw) {
89         g_assert(in_code_gen_buffer(rw));
90         rw += tcg_splitwx_diff;
91     }
92     return rw;
93 }
94 
95 void *tcg_splitwx_to_rw(const void *rx)
96 {
97     /* Pass NULL pointers unchanged. */
98     if (rx) {
99         rx -= tcg_splitwx_diff;
100         /* Assert that we end with a pointer in the rw region. */
101         g_assert(in_code_gen_buffer(rx));
102     }
103     return (void *)rx;
104 }
105 #endif /* CONFIG_DEBUG_TCG */
106 
107 /* compare a pointer @ptr and a tb_tc @s */
108 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s)
109 {
110     if (ptr >= s->ptr + s->size) {
111         return 1;
112     } else if (ptr < s->ptr) {
113         return -1;
114     }
115     return 0;
116 }
117 
118 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp, gpointer userdata)
119 {
120     const struct tb_tc *a = ap;
121     const struct tb_tc *b = bp;
122 
123     /*
124      * When both sizes are set, we know this isn't a lookup.
125      * This is the most likely case: every TB must be inserted; lookups
126      * are a lot less frequent.
127      */
128     if (likely(a->size && b->size)) {
129         if (a->ptr > b->ptr) {
130             return 1;
131         } else if (a->ptr < b->ptr) {
132             return -1;
133         }
134         /* a->ptr == b->ptr should happen only on deletions */
135         g_assert(a->size == b->size);
136         return 0;
137     }
138     /*
139      * All lookups have either .size field set to 0.
140      * From the glib sources we see that @ap is always the lookup key. However
141      * the docs provide no guarantee, so we just mark this case as likely.
142      */
143     if (likely(a->size == 0)) {
144         return ptr_cmp_tb_tc(a->ptr, b);
145     }
146     return ptr_cmp_tb_tc(b->ptr, a);
147 }
148 
149 static void tb_destroy(gpointer value)
150 {
151     TranslationBlock *tb = value;
152     qemu_spin_destroy(&tb->jmp_lock);
153 }
154 
155 static void tcg_region_trees_init(void)
156 {
157     size_t i;
158 
159     tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize);
160     region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size);
161     for (i = 0; i < region.n; i++) {
162         struct tcg_region_tree *rt = region_trees + i * tree_size;
163 
164         qemu_mutex_init(&rt->lock);
165         rt->tree = g_tree_new_full(tb_tc_cmp, NULL, NULL, tb_destroy);
166     }
167 }
168 
169 static struct tcg_region_tree *tc_ptr_to_region_tree(const void *p)
170 {
171     size_t region_idx;
172 
173     /*
174      * Like tcg_splitwx_to_rw, with no assert.  The pc may come from
175      * a signal handler over which the caller has no control.
176      */
177     if (!in_code_gen_buffer(p)) {
178         p -= tcg_splitwx_diff;
179         if (!in_code_gen_buffer(p)) {
180             return NULL;
181         }
182     }
183 
184     if (p < region.start_aligned) {
185         region_idx = 0;
186     } else {
187         ptrdiff_t offset = p - region.start_aligned;
188 
189         if (offset > region.stride * (region.n - 1)) {
190             region_idx = region.n - 1;
191         } else {
192             region_idx = offset / region.stride;
193         }
194     }
195     return region_trees + region_idx * tree_size;
196 }
197 
198 void tcg_tb_insert(TranslationBlock *tb)
199 {
200     struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
201 
202     g_assert(rt != NULL);
203     qemu_mutex_lock(&rt->lock);
204     g_tree_insert(rt->tree, &tb->tc, tb);
205     qemu_mutex_unlock(&rt->lock);
206 }
207 
208 void tcg_tb_remove(TranslationBlock *tb)
209 {
210     struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
211 
212     g_assert(rt != NULL);
213     qemu_mutex_lock(&rt->lock);
214     g_tree_remove(rt->tree, &tb->tc);
215     qemu_mutex_unlock(&rt->lock);
216 }
217 
218 /*
219  * Find the TB 'tb' such that
220  * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size
221  * Return NULL if not found.
222  */
223 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr)
224 {
225     struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr);
226     TranslationBlock *tb;
227     struct tb_tc s = { .ptr = (void *)tc_ptr };
228 
229     if (rt == NULL) {
230         return NULL;
231     }
232 
233     qemu_mutex_lock(&rt->lock);
234     tb = g_tree_lookup(rt->tree, &s);
235     qemu_mutex_unlock(&rt->lock);
236     return tb;
237 }
238 
239 static void tcg_region_tree_lock_all(void)
240 {
241     size_t i;
242 
243     for (i = 0; i < region.n; i++) {
244         struct tcg_region_tree *rt = region_trees + i * tree_size;
245 
246         qemu_mutex_lock(&rt->lock);
247     }
248 }
249 
250 static void tcg_region_tree_unlock_all(void)
251 {
252     size_t i;
253 
254     for (i = 0; i < region.n; i++) {
255         struct tcg_region_tree *rt = region_trees + i * tree_size;
256 
257         qemu_mutex_unlock(&rt->lock);
258     }
259 }
260 
261 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data)
262 {
263     size_t i;
264 
265     tcg_region_tree_lock_all();
266     for (i = 0; i < region.n; i++) {
267         struct tcg_region_tree *rt = region_trees + i * tree_size;
268 
269         g_tree_foreach(rt->tree, func, user_data);
270     }
271     tcg_region_tree_unlock_all();
272 }
273 
274 size_t tcg_nb_tbs(void)
275 {
276     size_t nb_tbs = 0;
277     size_t i;
278 
279     tcg_region_tree_lock_all();
280     for (i = 0; i < region.n; i++) {
281         struct tcg_region_tree *rt = region_trees + i * tree_size;
282 
283         nb_tbs += g_tree_nnodes(rt->tree);
284     }
285     tcg_region_tree_unlock_all();
286     return nb_tbs;
287 }
288 
289 static void tcg_region_tree_reset_all(void)
290 {
291     size_t i;
292 
293     tcg_region_tree_lock_all();
294     for (i = 0; i < region.n; i++) {
295         struct tcg_region_tree *rt = region_trees + i * tree_size;
296 
297         /* Increment the refcount first so that destroy acts as a reset */
298         g_tree_ref(rt->tree);
299         g_tree_destroy(rt->tree);
300     }
301     tcg_region_tree_unlock_all();
302 }
303 
304 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend)
305 {
306     void *start, *end;
307 
308     start = region.start_aligned + curr_region * region.stride;
309     end = start + region.size;
310 
311     if (curr_region == 0) {
312         start = region.after_prologue;
313     }
314     /* The final region may have a few extra pages due to earlier rounding. */
315     if (curr_region == region.n - 1) {
316         end = region.start_aligned + region.total_size;
317     }
318 
319     *pstart = start;
320     *pend = end;
321 }
322 
323 static void tcg_region_assign(TCGContext *s, size_t curr_region)
324 {
325     void *start, *end;
326 
327     tcg_region_bounds(curr_region, &start, &end);
328 
329     s->code_gen_buffer = start;
330     s->code_gen_ptr = start;
331     s->code_gen_buffer_size = end - start;
332     s->code_gen_highwater = end - TCG_HIGHWATER;
333 }
334 
335 static bool tcg_region_alloc__locked(TCGContext *s)
336 {
337     if (region.current == region.n) {
338         return true;
339     }
340     tcg_region_assign(s, region.current);
341     region.current++;
342     return false;
343 }
344 
345 /*
346  * Request a new region once the one in use has filled up.
347  * Returns true on error.
348  */
349 bool tcg_region_alloc(TCGContext *s)
350 {
351     bool err;
352     /* read the region size now; alloc__locked will overwrite it on success */
353     size_t size_full = s->code_gen_buffer_size;
354 
355     qemu_mutex_lock(&region.lock);
356     err = tcg_region_alloc__locked(s);
357     if (!err) {
358         region.agg_size_full += size_full - TCG_HIGHWATER;
359     }
360     qemu_mutex_unlock(&region.lock);
361     return err;
362 }
363 
364 /*
365  * Perform a context's first region allocation.
366  * This function does _not_ increment region.agg_size_full.
367  */
368 static void tcg_region_initial_alloc__locked(TCGContext *s)
369 {
370     bool err = tcg_region_alloc__locked(s);
371     g_assert(!err);
372 }
373 
374 void tcg_region_initial_alloc(TCGContext *s)
375 {
376     qemu_mutex_lock(&region.lock);
377     tcg_region_initial_alloc__locked(s);
378     qemu_mutex_unlock(&region.lock);
379 }
380 
381 /* Call from a safe-work context */
382 void tcg_region_reset_all(void)
383 {
384     unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs);
385     unsigned int i;
386 
387     qemu_mutex_lock(&region.lock);
388     region.current = 0;
389     region.agg_size_full = 0;
390 
391     for (i = 0; i < n_ctxs; i++) {
392         TCGContext *s = qatomic_read(&tcg_ctxs[i]);
393         tcg_region_initial_alloc__locked(s);
394     }
395     qemu_mutex_unlock(&region.lock);
396 
397     tcg_region_tree_reset_all();
398 }
399 
400 static size_t tcg_n_regions(size_t tb_size, unsigned max_cpus)
401 {
402 #ifdef CONFIG_USER_ONLY
403     return 1;
404 #else
405     size_t n_regions;
406 
407     /*
408      * It is likely that some vCPUs will translate more code than others,
409      * so we first try to set more regions than max_cpus, with those regions
410      * being of reasonable size. If that's not possible we make do by evenly
411      * dividing the code_gen_buffer among the vCPUs.
412      */
413     /* Use a single region if all we have is one vCPU thread */
414     if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) {
415         return 1;
416     }
417 
418     /*
419      * Try to have more regions than max_cpus, with each region being >= 2 MB.
420      * If we can't, then just allocate one region per vCPU thread.
421      */
422     n_regions = tb_size / (2 * MiB);
423     if (n_regions <= max_cpus) {
424         return max_cpus;
425     }
426     return MIN(n_regions, max_cpus * 8);
427 #endif
428 }
429 
430 /*
431  * Minimum size of the code gen buffer.  This number is randomly chosen,
432  * but not so small that we can't have a fair number of TB's live.
433  *
434  * Maximum size, MAX_CODE_GEN_BUFFER_SIZE, is defined in tcg-target.h.
435  * Unless otherwise indicated, this is constrained by the range of
436  * direct branches on the host cpu, as used by the TCG implementation
437  * of goto_tb.
438  */
439 #define MIN_CODE_GEN_BUFFER_SIZE     (1 * MiB)
440 
441 #if TCG_TARGET_REG_BITS == 32
442 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
443 #ifdef CONFIG_USER_ONLY
444 /*
445  * For user mode on smaller 32 bit systems we may run into trouble
446  * allocating big chunks of data in the right place. On these systems
447  * we utilise a static code generation buffer directly in the binary.
448  */
449 #define USE_STATIC_CODE_GEN_BUFFER
450 #endif
451 #else /* TCG_TARGET_REG_BITS == 64 */
452 #ifdef CONFIG_USER_ONLY
453 /*
454  * As user-mode emulation typically means running multiple instances
455  * of the translator don't go too nuts with our default code gen
456  * buffer lest we make things too hard for the OS.
457  */
458 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
459 #else
460 /*
461  * We expect most system emulation to run one or two guests per host.
462  * Users running large scale system emulation may want to tweak their
463  * runtime setup via the tb-size control on the command line.
464  */
465 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
466 #endif
467 #endif
468 
469 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
470   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
471    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
472 
473 #ifdef USE_STATIC_CODE_GEN_BUFFER
474 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
475     __attribute__((aligned(CODE_GEN_ALIGN)));
476 
477 static int alloc_code_gen_buffer(size_t tb_size, int splitwx, Error **errp)
478 {
479     void *buf, *end;
480     size_t size;
481 
482     if (splitwx > 0) {
483         error_setg(errp, "jit split-wx not supported");
484         return -1;
485     }
486 
487     /* page-align the beginning and end of the buffer */
488     buf = static_code_gen_buffer;
489     end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
490     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
491     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
492 
493     size = end - buf;
494 
495     /* Honor a command-line option limiting the size of the buffer.  */
496     if (size > tb_size) {
497         size = QEMU_ALIGN_DOWN(tb_size, qemu_real_host_page_size);
498     }
499 
500     region.start_aligned = buf;
501     region.total_size = size;
502 
503     return PROT_READ | PROT_WRITE;
504 }
505 #elif defined(_WIN32)
506 static int alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
507 {
508     void *buf;
509 
510     if (splitwx > 0) {
511         error_setg(errp, "jit split-wx not supported");
512         return -1;
513     }
514 
515     buf = VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
516                              PAGE_EXECUTE_READWRITE);
517     if (buf == NULL) {
518         error_setg_win32(errp, GetLastError(),
519                          "allocate %zu bytes for jit buffer", size);
520         return false;
521     }
522 
523     region.start_aligned = buf;
524     region.total_size = size;
525 
526     return PAGE_READ | PAGE_WRITE | PAGE_EXEC;
527 }
528 #else
529 static int alloc_code_gen_buffer_anon(size_t size, int prot,
530                                       int flags, Error **errp)
531 {
532     void *buf;
533 
534     buf = mmap(NULL, size, prot, flags, -1, 0);
535     if (buf == MAP_FAILED) {
536         error_setg_errno(errp, errno,
537                          "allocate %zu bytes for jit buffer", size);
538         return -1;
539     }
540 
541     region.start_aligned = buf;
542     region.total_size = size;
543     return prot;
544 }
545 
546 #ifndef CONFIG_TCG_INTERPRETER
547 #ifdef CONFIG_POSIX
548 #include "qemu/memfd.h"
549 
550 static bool alloc_code_gen_buffer_splitwx_memfd(size_t size, Error **errp)
551 {
552     void *buf_rw = NULL, *buf_rx = MAP_FAILED;
553     int fd = -1;
554 
555     buf_rw = qemu_memfd_alloc("tcg-jit", size, 0, &fd, errp);
556     if (buf_rw == NULL) {
557         goto fail;
558     }
559 
560     buf_rx = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0);
561     if (buf_rx == MAP_FAILED) {
562         goto fail_rx;
563     }
564 
565     close(fd);
566     region.start_aligned = buf_rw;
567     region.total_size = size;
568     tcg_splitwx_diff = buf_rx - buf_rw;
569 
570     return PROT_READ | PROT_WRITE;
571 
572  fail_rx:
573     error_setg_errno(errp, errno, "failed to map shared memory for execute");
574  fail:
575     if (buf_rx != MAP_FAILED) {
576         munmap(buf_rx, size);
577     }
578     if (buf_rw) {
579         munmap(buf_rw, size);
580     }
581     if (fd >= 0) {
582         close(fd);
583     }
584     return -1;
585 }
586 #endif /* CONFIG_POSIX */
587 
588 #ifdef CONFIG_DARWIN
589 #include <mach/mach.h>
590 
591 extern kern_return_t mach_vm_remap(vm_map_t target_task,
592                                    mach_vm_address_t *target_address,
593                                    mach_vm_size_t size,
594                                    mach_vm_offset_t mask,
595                                    int flags,
596                                    vm_map_t src_task,
597                                    mach_vm_address_t src_address,
598                                    boolean_t copy,
599                                    vm_prot_t *cur_protection,
600                                    vm_prot_t *max_protection,
601                                    vm_inherit_t inheritance);
602 
603 static int alloc_code_gen_buffer_splitwx_vmremap(size_t size, Error **errp)
604 {
605     kern_return_t ret;
606     mach_vm_address_t buf_rw, buf_rx;
607     vm_prot_t cur_prot, max_prot;
608 
609     /* Map the read-write portion via normal anon memory. */
610     if (!alloc_code_gen_buffer_anon(size, PROT_READ | PROT_WRITE,
611                                     MAP_PRIVATE | MAP_ANONYMOUS, errp)) {
612         return -1;
613     }
614 
615     buf_rw = (mach_vm_address_t)region.start_aligned;
616     buf_rx = 0;
617     ret = mach_vm_remap(mach_task_self(),
618                         &buf_rx,
619                         size,
620                         0,
621                         VM_FLAGS_ANYWHERE,
622                         mach_task_self(),
623                         buf_rw,
624                         false,
625                         &cur_prot,
626                         &max_prot,
627                         VM_INHERIT_NONE);
628     if (ret != KERN_SUCCESS) {
629         /* TODO: Convert "ret" to a human readable error message. */
630         error_setg(errp, "vm_remap for jit splitwx failed");
631         munmap((void *)buf_rw, size);
632         return -1;
633     }
634 
635     if (mprotect((void *)buf_rx, size, PROT_READ | PROT_EXEC) != 0) {
636         error_setg_errno(errp, errno, "mprotect for jit splitwx");
637         munmap((void *)buf_rx, size);
638         munmap((void *)buf_rw, size);
639         return -1;
640     }
641 
642     tcg_splitwx_diff = buf_rx - buf_rw;
643     return PROT_READ | PROT_WRITE;
644 }
645 #endif /* CONFIG_DARWIN */
646 #endif /* CONFIG_TCG_INTERPRETER */
647 
648 static int alloc_code_gen_buffer_splitwx(size_t size, Error **errp)
649 {
650 #ifndef CONFIG_TCG_INTERPRETER
651 # ifdef CONFIG_DARWIN
652     return alloc_code_gen_buffer_splitwx_vmremap(size, errp);
653 # endif
654 # ifdef CONFIG_POSIX
655     return alloc_code_gen_buffer_splitwx_memfd(size, errp);
656 # endif
657 #endif
658     error_setg(errp, "jit split-wx not supported");
659     return -1;
660 }
661 
662 static int alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
663 {
664     ERRP_GUARD();
665     int prot, flags;
666 
667     if (splitwx) {
668         prot = alloc_code_gen_buffer_splitwx(size, errp);
669         if (prot >= 0) {
670             return prot;
671         }
672         /*
673          * If splitwx force-on (1), fail;
674          * if splitwx default-on (-1), fall through to splitwx off.
675          */
676         if (splitwx > 0) {
677             return -1;
678         }
679         error_free_or_abort(errp);
680     }
681 
682     /*
683      * macOS 11.2 has a bug (Apple Feedback FB8994773) in which mprotect
684      * rejects a permission change from RWX -> NONE when reserving the
685      * guard pages later.  We can go the other way with the same number
686      * of syscalls, so always begin with PROT_NONE.
687      */
688     prot = PROT_NONE;
689     flags = MAP_PRIVATE | MAP_ANONYMOUS;
690 #ifdef CONFIG_DARWIN
691     /* Applicable to both iOS and macOS (Apple Silicon). */
692     if (!splitwx) {
693         flags |= MAP_JIT;
694     }
695 #endif
696 
697     return alloc_code_gen_buffer_anon(size, prot, flags, errp);
698 }
699 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
700 
701 /*
702  * Initializes region partitioning.
703  *
704  * Called at init time from the parent thread (i.e. the one calling
705  * tcg_context_init), after the target's TCG globals have been set.
706  *
707  * Region partitioning works by splitting code_gen_buffer into separate regions,
708  * and then assigning regions to TCG threads so that the threads can translate
709  * code in parallel without synchronization.
710  *
711  * In softmmu the number of TCG threads is bounded by max_cpus, so we use at
712  * least max_cpus regions in MTTCG. In !MTTCG we use a single region.
713  * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...])
714  * must have been parsed before calling this function, since it calls
715  * qemu_tcg_mttcg_enabled().
716  *
717  * In user-mode we use a single region.  Having multiple regions in user-mode
718  * is not supported, because the number of vCPU threads (recall that each thread
719  * spawned by the guest corresponds to a vCPU thread) is only bounded by the
720  * OS, and usually this number is huge (tens of thousands is not uncommon).
721  * Thus, given this large bound on the number of vCPU threads and the fact
722  * that code_gen_buffer is allocated at compile-time, we cannot guarantee
723  * that the availability of at least one region per vCPU thread.
724  *
725  * However, this user-mode limitation is unlikely to be a significant problem
726  * in practice. Multi-threaded guests share most if not all of their translated
727  * code, which makes parallel code generation less appealing than in softmmu.
728  */
729 void tcg_region_init(size_t tb_size, int splitwx, unsigned max_cpus)
730 {
731     const size_t page_size = qemu_real_host_page_size;
732     size_t region_size;
733     int have_prot, need_prot;
734 
735     /* Size the buffer.  */
736     if (tb_size == 0) {
737         size_t phys_mem = qemu_get_host_physmem();
738         if (phys_mem == 0) {
739             tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
740         } else {
741             tb_size = QEMU_ALIGN_DOWN(phys_mem / 8, page_size);
742             tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, tb_size);
743         }
744     }
745     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
746         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
747     }
748     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
749         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
750     }
751 
752     have_prot = alloc_code_gen_buffer(tb_size, splitwx, &error_fatal);
753     assert(have_prot >= 0);
754 
755     /* Request large pages for the buffer and the splitwx.  */
756     qemu_madvise(region.start_aligned, region.total_size, QEMU_MADV_HUGEPAGE);
757     if (tcg_splitwx_diff) {
758         qemu_madvise(region.start_aligned + tcg_splitwx_diff,
759                      region.total_size, QEMU_MADV_HUGEPAGE);
760     }
761 
762     /*
763      * Make region_size a multiple of page_size, using aligned as the start.
764      * As a result of this we might end up with a few extra pages at the end of
765      * the buffer; we will assign those to the last region.
766      */
767     region.n = tcg_n_regions(tb_size, max_cpus);
768     region_size = tb_size / region.n;
769     region_size = QEMU_ALIGN_DOWN(region_size, page_size);
770 
771     /* A region must have at least 2 pages; one code, one guard */
772     g_assert(region_size >= 2 * page_size);
773     region.stride = region_size;
774 
775     /* Reserve space for guard pages. */
776     region.size = region_size - page_size;
777     region.total_size -= page_size;
778 
779     /*
780      * The first region will be smaller than the others, via the prologue,
781      * which has yet to be allocated.  For now, the first region begins at
782      * the page boundary.
783      */
784     region.after_prologue = region.start_aligned;
785 
786     /* init the region struct */
787     qemu_mutex_init(&region.lock);
788 
789     /*
790      * Set guard pages in the rw buffer, as that's the one into which
791      * buffer overruns could occur.  Do not set guard pages in the rx
792      * buffer -- let that one use hugepages throughout.
793      * Work with the page protections set up with the initial mapping.
794      */
795     need_prot = PAGE_READ | PAGE_WRITE;
796 #ifndef CONFIG_TCG_INTERPRETER
797     if (tcg_splitwx_diff == 0) {
798         need_prot |= PAGE_EXEC;
799     }
800 #endif
801     for (size_t i = 0, n = region.n; i < n; i++) {
802         void *start, *end;
803 
804         tcg_region_bounds(i, &start, &end);
805         if (have_prot != need_prot) {
806             int rc;
807 
808             if (need_prot == (PAGE_READ | PAGE_WRITE | PAGE_EXEC)) {
809                 rc = qemu_mprotect_rwx(start, end - start);
810             } else if (need_prot == (PAGE_READ | PAGE_WRITE)) {
811                 rc = qemu_mprotect_rw(start, end - start);
812             } else {
813                 g_assert_not_reached();
814             }
815             if (rc) {
816                 error_setg_errno(&error_fatal, errno,
817                                  "mprotect of jit buffer");
818             }
819         }
820         if (have_prot != 0) {
821             /* Guard pages are nice for bug detection but are not essential. */
822             (void)qemu_mprotect_none(end, page_size);
823         }
824     }
825 
826     tcg_region_trees_init();
827 
828     /*
829      * Leave the initial context initialized to the first region.
830      * This will be the context into which we generate the prologue.
831      * It is also the only context for CONFIG_USER_ONLY.
832      */
833     tcg_region_initial_alloc__locked(&tcg_init_ctx);
834 }
835 
836 void tcg_region_prologue_set(TCGContext *s)
837 {
838     /* Deduct the prologue from the first region.  */
839     g_assert(region.start_aligned == s->code_gen_buffer);
840     region.after_prologue = s->code_ptr;
841 
842     /* Recompute boundaries of the first region. */
843     tcg_region_assign(s, 0);
844 
845     /* Register the balance of the buffer with gdb. */
846     tcg_register_jit(tcg_splitwx_to_rx(region.after_prologue),
847                      region.start_aligned + region.total_size -
848                      region.after_prologue);
849 }
850 
851 /*
852  * Returns the size (in bytes) of all translated code (i.e. from all regions)
853  * currently in the cache.
854  * See also: tcg_code_capacity()
855  * Do not confuse with tcg_current_code_size(); that one applies to a single
856  * TCG context.
857  */
858 size_t tcg_code_size(void)
859 {
860     unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs);
861     unsigned int i;
862     size_t total;
863 
864     qemu_mutex_lock(&region.lock);
865     total = region.agg_size_full;
866     for (i = 0; i < n_ctxs; i++) {
867         const TCGContext *s = qatomic_read(&tcg_ctxs[i]);
868         size_t size;
869 
870         size = qatomic_read(&s->code_gen_ptr) - s->code_gen_buffer;
871         g_assert(size <= s->code_gen_buffer_size);
872         total += size;
873     }
874     qemu_mutex_unlock(&region.lock);
875     return total;
876 }
877 
878 /*
879  * Returns the code capacity (in bytes) of the entire cache, i.e. including all
880  * regions.
881  * See also: tcg_code_size()
882  */
883 size_t tcg_code_capacity(void)
884 {
885     size_t guard_size, capacity;
886 
887     /* no need for synchronization; these variables are set at init time */
888     guard_size = region.stride - region.size;
889     capacity = region.total_size;
890     capacity -= (region.n - 1) * guard_size;
891     capacity -= region.n * TCG_HIGHWATER;
892 
893     return capacity;
894 }
895