xref: /qemu/tcg/sparc64/tcg-target.c.inc (revision b2a3cbb8)
1/*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25/* We only support generating code for 64-bit mode.  */
26#ifndef __arch64__
27#error "unsupported code generation mode"
28#endif
29
30#include "../tcg-pool.c.inc"
31
32#ifdef CONFIG_DEBUG_TCG
33static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
34    "%g0",
35    "%g1",
36    "%g2",
37    "%g3",
38    "%g4",
39    "%g5",
40    "%g6",
41    "%g7",
42    "%o0",
43    "%o1",
44    "%o2",
45    "%o3",
46    "%o4",
47    "%o5",
48    "%o6",
49    "%o7",
50    "%l0",
51    "%l1",
52    "%l2",
53    "%l3",
54    "%l4",
55    "%l5",
56    "%l6",
57    "%l7",
58    "%i0",
59    "%i1",
60    "%i2",
61    "%i3",
62    "%i4",
63    "%i5",
64    "%i6",
65    "%i7",
66};
67#endif
68
69#define TCG_CT_CONST_S11  0x100
70#define TCG_CT_CONST_S13  0x200
71#define TCG_CT_CONST_ZERO 0x400
72
73/*
74 * For softmmu, we need to avoid conflicts with the first 3
75 * argument registers to perform the tlb lookup, and to call
76 * the helper function.
77 */
78#ifdef CONFIG_SOFTMMU
79#define SOFTMMU_RESERVE_REGS MAKE_64BIT_MASK(TCG_REG_O0, 3)
80#else
81#define SOFTMMU_RESERVE_REGS 0
82#endif
83#define ALL_GENERAL_REGS     MAKE_64BIT_MASK(0, 32)
84#define ALL_QLDST_REGS       (ALL_GENERAL_REGS & ~SOFTMMU_RESERVE_REGS)
85
86/* Define some temporary registers.  T2 is used for constant generation.  */
87#define TCG_REG_T1  TCG_REG_G1
88#define TCG_REG_T2  TCG_REG_O7
89
90#ifndef CONFIG_SOFTMMU
91# define TCG_GUEST_BASE_REG TCG_REG_I5
92#endif
93
94#define TCG_REG_TB  TCG_REG_I1
95#define USE_REG_TB  (sizeof(void *) > 4)
96
97static const int tcg_target_reg_alloc_order[] = {
98    TCG_REG_L0,
99    TCG_REG_L1,
100    TCG_REG_L2,
101    TCG_REG_L3,
102    TCG_REG_L4,
103    TCG_REG_L5,
104    TCG_REG_L6,
105    TCG_REG_L7,
106
107    TCG_REG_I0,
108    TCG_REG_I1,
109    TCG_REG_I2,
110    TCG_REG_I3,
111    TCG_REG_I4,
112    TCG_REG_I5,
113
114    TCG_REG_G2,
115    TCG_REG_G3,
116    TCG_REG_G4,
117    TCG_REG_G5,
118
119    TCG_REG_O0,
120    TCG_REG_O1,
121    TCG_REG_O2,
122    TCG_REG_O3,
123    TCG_REG_O4,
124    TCG_REG_O5,
125};
126
127static const int tcg_target_call_iarg_regs[6] = {
128    TCG_REG_O0,
129    TCG_REG_O1,
130    TCG_REG_O2,
131    TCG_REG_O3,
132    TCG_REG_O4,
133    TCG_REG_O5,
134};
135
136static const int tcg_target_call_oarg_regs[] = {
137    TCG_REG_O0,
138    TCG_REG_O1,
139    TCG_REG_O2,
140    TCG_REG_O3,
141};
142
143#define INSN_OP(x)  ((x) << 30)
144#define INSN_OP2(x) ((x) << 22)
145#define INSN_OP3(x) ((x) << 19)
146#define INSN_OPF(x) ((x) << 5)
147#define INSN_RD(x)  ((x) << 25)
148#define INSN_RS1(x) ((x) << 14)
149#define INSN_RS2(x) (x)
150#define INSN_ASI(x) ((x) << 5)
151
152#define INSN_IMM10(x) ((1 << 13) | ((x) & 0x3ff))
153#define INSN_IMM11(x) ((1 << 13) | ((x) & 0x7ff))
154#define INSN_IMM13(x) ((1 << 13) | ((x) & 0x1fff))
155#define INSN_OFF16(x) ((((x) >> 2) & 0x3fff) | ((((x) >> 16) & 3) << 20))
156#define INSN_OFF19(x) (((x) >> 2) & 0x07ffff)
157#define INSN_COND(x) ((x) << 25)
158
159#define COND_N     0x0
160#define COND_E     0x1
161#define COND_LE    0x2
162#define COND_L     0x3
163#define COND_LEU   0x4
164#define COND_CS    0x5
165#define COND_NEG   0x6
166#define COND_VS    0x7
167#define COND_A     0x8
168#define COND_NE    0x9
169#define COND_G     0xa
170#define COND_GE    0xb
171#define COND_GU    0xc
172#define COND_CC    0xd
173#define COND_POS   0xe
174#define COND_VC    0xf
175#define BA         (INSN_OP(0) | INSN_COND(COND_A) | INSN_OP2(0x2))
176
177#define RCOND_Z    1
178#define RCOND_LEZ  2
179#define RCOND_LZ   3
180#define RCOND_NZ   5
181#define RCOND_GZ   6
182#define RCOND_GEZ  7
183
184#define MOVCC_ICC  (1 << 18)
185#define MOVCC_XCC  (1 << 18 | 1 << 12)
186
187#define BPCC_ICC   0
188#define BPCC_XCC   (2 << 20)
189#define BPCC_PT    (1 << 19)
190#define BPCC_PN    0
191#define BPCC_A     (1 << 29)
192
193#define BPR_PT     BPCC_PT
194
195#define ARITH_ADD  (INSN_OP(2) | INSN_OP3(0x00))
196#define ARITH_ADDCC (INSN_OP(2) | INSN_OP3(0x10))
197#define ARITH_AND  (INSN_OP(2) | INSN_OP3(0x01))
198#define ARITH_ANDCC (INSN_OP(2) | INSN_OP3(0x11))
199#define ARITH_ANDN (INSN_OP(2) | INSN_OP3(0x05))
200#define ARITH_OR   (INSN_OP(2) | INSN_OP3(0x02))
201#define ARITH_ORCC (INSN_OP(2) | INSN_OP3(0x12))
202#define ARITH_ORN  (INSN_OP(2) | INSN_OP3(0x06))
203#define ARITH_XOR  (INSN_OP(2) | INSN_OP3(0x03))
204#define ARITH_SUB  (INSN_OP(2) | INSN_OP3(0x04))
205#define ARITH_SUBCC (INSN_OP(2) | INSN_OP3(0x14))
206#define ARITH_ADDC (INSN_OP(2) | INSN_OP3(0x08))
207#define ARITH_SUBC (INSN_OP(2) | INSN_OP3(0x0c))
208#define ARITH_UMUL (INSN_OP(2) | INSN_OP3(0x0a))
209#define ARITH_SMUL (INSN_OP(2) | INSN_OP3(0x0b))
210#define ARITH_UDIV (INSN_OP(2) | INSN_OP3(0x0e))
211#define ARITH_SDIV (INSN_OP(2) | INSN_OP3(0x0f))
212#define ARITH_MULX (INSN_OP(2) | INSN_OP3(0x09))
213#define ARITH_UDIVX (INSN_OP(2) | INSN_OP3(0x0d))
214#define ARITH_SDIVX (INSN_OP(2) | INSN_OP3(0x2d))
215#define ARITH_MOVCC (INSN_OP(2) | INSN_OP3(0x2c))
216#define ARITH_MOVR (INSN_OP(2) | INSN_OP3(0x2f))
217
218#define ARITH_ADDXC (INSN_OP(2) | INSN_OP3(0x36) | INSN_OPF(0x11))
219#define ARITH_UMULXHI (INSN_OP(2) | INSN_OP3(0x36) | INSN_OPF(0x16))
220
221#define SHIFT_SLL  (INSN_OP(2) | INSN_OP3(0x25))
222#define SHIFT_SRL  (INSN_OP(2) | INSN_OP3(0x26))
223#define SHIFT_SRA  (INSN_OP(2) | INSN_OP3(0x27))
224
225#define SHIFT_SLLX (INSN_OP(2) | INSN_OP3(0x25) | (1 << 12))
226#define SHIFT_SRLX (INSN_OP(2) | INSN_OP3(0x26) | (1 << 12))
227#define SHIFT_SRAX (INSN_OP(2) | INSN_OP3(0x27) | (1 << 12))
228
229#define RDY        (INSN_OP(2) | INSN_OP3(0x28) | INSN_RS1(0))
230#define WRY        (INSN_OP(2) | INSN_OP3(0x30) | INSN_RD(0))
231#define JMPL       (INSN_OP(2) | INSN_OP3(0x38))
232#define RETURN     (INSN_OP(2) | INSN_OP3(0x39))
233#define SAVE       (INSN_OP(2) | INSN_OP3(0x3c))
234#define RESTORE    (INSN_OP(2) | INSN_OP3(0x3d))
235#define SETHI      (INSN_OP(0) | INSN_OP2(0x4))
236#define CALL       INSN_OP(1)
237#define LDUB       (INSN_OP(3) | INSN_OP3(0x01))
238#define LDSB       (INSN_OP(3) | INSN_OP3(0x09))
239#define LDUH       (INSN_OP(3) | INSN_OP3(0x02))
240#define LDSH       (INSN_OP(3) | INSN_OP3(0x0a))
241#define LDUW       (INSN_OP(3) | INSN_OP3(0x00))
242#define LDSW       (INSN_OP(3) | INSN_OP3(0x08))
243#define LDX        (INSN_OP(3) | INSN_OP3(0x0b))
244#define STB        (INSN_OP(3) | INSN_OP3(0x05))
245#define STH        (INSN_OP(3) | INSN_OP3(0x06))
246#define STW        (INSN_OP(3) | INSN_OP3(0x04))
247#define STX        (INSN_OP(3) | INSN_OP3(0x0e))
248#define LDUBA      (INSN_OP(3) | INSN_OP3(0x11))
249#define LDSBA      (INSN_OP(3) | INSN_OP3(0x19))
250#define LDUHA      (INSN_OP(3) | INSN_OP3(0x12))
251#define LDSHA      (INSN_OP(3) | INSN_OP3(0x1a))
252#define LDUWA      (INSN_OP(3) | INSN_OP3(0x10))
253#define LDSWA      (INSN_OP(3) | INSN_OP3(0x18))
254#define LDXA       (INSN_OP(3) | INSN_OP3(0x1b))
255#define STBA       (INSN_OP(3) | INSN_OP3(0x15))
256#define STHA       (INSN_OP(3) | INSN_OP3(0x16))
257#define STWA       (INSN_OP(3) | INSN_OP3(0x14))
258#define STXA       (INSN_OP(3) | INSN_OP3(0x1e))
259
260#define MEMBAR     (INSN_OP(2) | INSN_OP3(0x28) | INSN_RS1(15) | (1 << 13))
261
262#define NOP        (SETHI | INSN_RD(TCG_REG_G0) | 0)
263
264#ifndef ASI_PRIMARY_LITTLE
265#define ASI_PRIMARY_LITTLE 0x88
266#endif
267
268#define LDUH_LE    (LDUHA | INSN_ASI(ASI_PRIMARY_LITTLE))
269#define LDSH_LE    (LDSHA | INSN_ASI(ASI_PRIMARY_LITTLE))
270#define LDUW_LE    (LDUWA | INSN_ASI(ASI_PRIMARY_LITTLE))
271#define LDSW_LE    (LDSWA | INSN_ASI(ASI_PRIMARY_LITTLE))
272#define LDX_LE     (LDXA  | INSN_ASI(ASI_PRIMARY_LITTLE))
273
274#define STH_LE     (STHA  | INSN_ASI(ASI_PRIMARY_LITTLE))
275#define STW_LE     (STWA  | INSN_ASI(ASI_PRIMARY_LITTLE))
276#define STX_LE     (STXA  | INSN_ASI(ASI_PRIMARY_LITTLE))
277
278#ifndef use_vis3_instructions
279bool use_vis3_instructions;
280#endif
281
282static bool check_fit_i64(int64_t val, unsigned int bits)
283{
284    return val == sextract64(val, 0, bits);
285}
286
287static bool check_fit_i32(int32_t val, unsigned int bits)
288{
289    return val == sextract32(val, 0, bits);
290}
291
292#define check_fit_tl    check_fit_i64
293#define check_fit_ptr   check_fit_i64
294
295static bool patch_reloc(tcg_insn_unit *src_rw, int type,
296                        intptr_t value, intptr_t addend)
297{
298    const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
299    uint32_t insn = *src_rw;
300    intptr_t pcrel;
301
302    value += addend;
303    pcrel = tcg_ptr_byte_diff((tcg_insn_unit *)value, src_rx);
304
305    switch (type) {
306    case R_SPARC_WDISP16:
307        if (!check_fit_ptr(pcrel >> 2, 16)) {
308            return false;
309        }
310        insn &= ~INSN_OFF16(-1);
311        insn |= INSN_OFF16(pcrel);
312        break;
313    case R_SPARC_WDISP19:
314        if (!check_fit_ptr(pcrel >> 2, 19)) {
315            return false;
316        }
317        insn &= ~INSN_OFF19(-1);
318        insn |= INSN_OFF19(pcrel);
319        break;
320    case R_SPARC_13:
321        if (!check_fit_ptr(value, 13)) {
322            return false;
323        }
324        insn &= ~INSN_IMM13(-1);
325        insn |= INSN_IMM13(value);
326        break;
327    default:
328        g_assert_not_reached();
329    }
330
331    *src_rw = insn;
332    return true;
333}
334
335/* test if a constant matches the constraint */
336static bool tcg_target_const_match(int64_t val, TCGType type, int ct)
337{
338    if (ct & TCG_CT_CONST) {
339        return 1;
340    }
341
342    if (type == TCG_TYPE_I32) {
343        val = (int32_t)val;
344    }
345
346    if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
347        return 1;
348    } else if ((ct & TCG_CT_CONST_S11) && check_fit_tl(val, 11)) {
349        return 1;
350    } else if ((ct & TCG_CT_CONST_S13) && check_fit_tl(val, 13)) {
351        return 1;
352    } else {
353        return 0;
354    }
355}
356
357static void tcg_out_nop(TCGContext *s)
358{
359    tcg_out32(s, NOP);
360}
361
362static void tcg_out_arith(TCGContext *s, TCGReg rd, TCGReg rs1,
363                          TCGReg rs2, int op)
364{
365    tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | INSN_RS2(rs2));
366}
367
368static void tcg_out_arithi(TCGContext *s, TCGReg rd, TCGReg rs1,
369                           int32_t offset, int op)
370{
371    tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | INSN_IMM13(offset));
372}
373
374static void tcg_out_arithc(TCGContext *s, TCGReg rd, TCGReg rs1,
375			   int32_t val2, int val2const, int op)
376{
377    tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1)
378              | (val2const ? INSN_IMM13(val2) : INSN_RS2(val2)));
379}
380
381static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
382{
383    if (ret != arg) {
384        tcg_out_arith(s, ret, arg, TCG_REG_G0, ARITH_OR);
385    }
386    return true;
387}
388
389static void tcg_out_mov_delay(TCGContext *s, TCGReg ret, TCGReg arg)
390{
391    if (ret != arg) {
392        tcg_out_arith(s, ret, arg, TCG_REG_G0, ARITH_OR);
393    } else {
394        tcg_out_nop(s);
395    }
396}
397
398static void tcg_out_sethi(TCGContext *s, TCGReg ret, uint32_t arg)
399{
400    tcg_out32(s, SETHI | INSN_RD(ret) | ((arg & 0xfffffc00) >> 10));
401}
402
403static void tcg_out_movi_imm13(TCGContext *s, TCGReg ret, int32_t arg)
404{
405    tcg_out_arithi(s, ret, TCG_REG_G0, arg, ARITH_OR);
406}
407
408static void tcg_out_movi_imm32(TCGContext *s, TCGReg ret, int32_t arg)
409{
410    if (check_fit_i32(arg, 13)) {
411        /* A 13-bit constant sign-extended to 64-bits.  */
412        tcg_out_movi_imm13(s, ret, arg);
413    } else {
414        /* A 32-bit constant zero-extended to 64 bits.  */
415        tcg_out_sethi(s, ret, arg);
416        if (arg & 0x3ff) {
417            tcg_out_arithi(s, ret, ret, arg & 0x3ff, ARITH_OR);
418        }
419    }
420}
421
422static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret,
423                             tcg_target_long arg, bool in_prologue,
424                             TCGReg scratch)
425{
426    tcg_target_long hi, lo = (int32_t)arg;
427    tcg_target_long test, lsb;
428
429    /* A 32-bit constant, or 32-bit zero-extended to 64-bits.  */
430    if (type == TCG_TYPE_I32 || arg == (uint32_t)arg) {
431        tcg_out_movi_imm32(s, ret, arg);
432        return;
433    }
434
435    /* A 13-bit constant sign-extended to 64-bits.  */
436    if (check_fit_tl(arg, 13)) {
437        tcg_out_movi_imm13(s, ret, arg);
438        return;
439    }
440
441    /* A 13-bit constant relative to the TB.  */
442    if (!in_prologue && USE_REG_TB) {
443        test = tcg_tbrel_diff(s, (void *)arg);
444        if (check_fit_ptr(test, 13)) {
445            tcg_out_arithi(s, ret, TCG_REG_TB, test, ARITH_ADD);
446            return;
447        }
448    }
449
450    /* A 32-bit constant sign-extended to 64-bits.  */
451    if (arg == lo) {
452        tcg_out_sethi(s, ret, ~arg);
453        tcg_out_arithi(s, ret, ret, (arg & 0x3ff) | -0x400, ARITH_XOR);
454        return;
455    }
456
457    /* A 32-bit constant, shifted.  */
458    lsb = ctz64(arg);
459    test = (tcg_target_long)arg >> lsb;
460    if (lsb > 10 && test == extract64(test, 0, 21)) {
461        tcg_out_sethi(s, ret, test << 10);
462        tcg_out_arithi(s, ret, ret, lsb - 10, SHIFT_SLLX);
463        return;
464    } else if (test == (uint32_t)test || test == (int32_t)test) {
465        tcg_out_movi_int(s, TCG_TYPE_I64, ret, test, in_prologue, scratch);
466        tcg_out_arithi(s, ret, ret, lsb, SHIFT_SLLX);
467        return;
468    }
469
470    /* Use the constant pool, if possible. */
471    if (!in_prologue && USE_REG_TB) {
472        new_pool_label(s, arg, R_SPARC_13, s->code_ptr,
473                       tcg_tbrel_diff(s, NULL));
474        tcg_out32(s, LDX | INSN_RD(ret) | INSN_RS1(TCG_REG_TB));
475        return;
476    }
477
478    /* A 64-bit constant decomposed into 2 32-bit pieces.  */
479    if (check_fit_i32(lo, 13)) {
480        hi = (arg - lo) >> 32;
481        tcg_out_movi_imm32(s, ret, hi);
482        tcg_out_arithi(s, ret, ret, 32, SHIFT_SLLX);
483        tcg_out_arithi(s, ret, ret, lo, ARITH_ADD);
484    } else {
485        hi = arg >> 32;
486        tcg_out_movi_imm32(s, ret, hi);
487        tcg_out_movi_imm32(s, scratch, lo);
488        tcg_out_arithi(s, ret, ret, 32, SHIFT_SLLX);
489        tcg_out_arith(s, ret, ret, scratch, ARITH_OR);
490    }
491}
492
493static void tcg_out_movi(TCGContext *s, TCGType type,
494                         TCGReg ret, tcg_target_long arg)
495{
496    tcg_debug_assert(ret != TCG_REG_T2);
497    tcg_out_movi_int(s, type, ret, arg, false, TCG_REG_T2);
498}
499
500static void tcg_out_ldst_rr(TCGContext *s, TCGReg data, TCGReg a1,
501                            TCGReg a2, int op)
502{
503    tcg_out32(s, op | INSN_RD(data) | INSN_RS1(a1) | INSN_RS2(a2));
504}
505
506static void tcg_out_ldst(TCGContext *s, TCGReg ret, TCGReg addr,
507                         intptr_t offset, int op)
508{
509    if (check_fit_ptr(offset, 13)) {
510        tcg_out32(s, op | INSN_RD(ret) | INSN_RS1(addr) |
511                  INSN_IMM13(offset));
512    } else {
513        tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, offset);
514        tcg_out_ldst_rr(s, ret, addr, TCG_REG_T1, op);
515    }
516}
517
518static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
519                       TCGReg arg1, intptr_t arg2)
520{
521    tcg_out_ldst(s, ret, arg1, arg2, (type == TCG_TYPE_I32 ? LDUW : LDX));
522}
523
524static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
525                       TCGReg arg1, intptr_t arg2)
526{
527    tcg_out_ldst(s, arg, arg1, arg2, (type == TCG_TYPE_I32 ? STW : STX));
528}
529
530static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
531                        TCGReg base, intptr_t ofs)
532{
533    if (val == 0) {
534        tcg_out_st(s, type, TCG_REG_G0, base, ofs);
535        return true;
536    }
537    return false;
538}
539
540static void tcg_out_ld_ptr(TCGContext *s, TCGReg ret, const void *arg)
541{
542    intptr_t diff = tcg_tbrel_diff(s, arg);
543    if (USE_REG_TB && check_fit_ptr(diff, 13)) {
544        tcg_out_ld(s, TCG_TYPE_PTR, ret, TCG_REG_TB, diff);
545        return;
546    }
547    tcg_out_movi(s, TCG_TYPE_PTR, ret, (uintptr_t)arg & ~0x3ff);
548    tcg_out_ld(s, TCG_TYPE_PTR, ret, ret, (uintptr_t)arg & 0x3ff);
549}
550
551static void tcg_out_sety(TCGContext *s, TCGReg rs)
552{
553    tcg_out32(s, WRY | INSN_RS1(TCG_REG_G0) | INSN_RS2(rs));
554}
555
556static void tcg_out_div32(TCGContext *s, TCGReg rd, TCGReg rs1,
557                          int32_t val2, int val2const, int uns)
558{
559    /* Load Y with the sign/zero extension of RS1 to 64-bits.  */
560    if (uns) {
561        tcg_out_sety(s, TCG_REG_G0);
562    } else {
563        tcg_out_arithi(s, TCG_REG_T1, rs1, 31, SHIFT_SRA);
564        tcg_out_sety(s, TCG_REG_T1);
565    }
566
567    tcg_out_arithc(s, rd, rs1, val2, val2const,
568                   uns ? ARITH_UDIV : ARITH_SDIV);
569}
570
571static const uint8_t tcg_cond_to_bcond[] = {
572    [TCG_COND_EQ] = COND_E,
573    [TCG_COND_NE] = COND_NE,
574    [TCG_COND_LT] = COND_L,
575    [TCG_COND_GE] = COND_GE,
576    [TCG_COND_LE] = COND_LE,
577    [TCG_COND_GT] = COND_G,
578    [TCG_COND_LTU] = COND_CS,
579    [TCG_COND_GEU] = COND_CC,
580    [TCG_COND_LEU] = COND_LEU,
581    [TCG_COND_GTU] = COND_GU,
582};
583
584static const uint8_t tcg_cond_to_rcond[] = {
585    [TCG_COND_EQ] = RCOND_Z,
586    [TCG_COND_NE] = RCOND_NZ,
587    [TCG_COND_LT] = RCOND_LZ,
588    [TCG_COND_GT] = RCOND_GZ,
589    [TCG_COND_LE] = RCOND_LEZ,
590    [TCG_COND_GE] = RCOND_GEZ
591};
592
593static void tcg_out_bpcc0(TCGContext *s, int scond, int flags, int off19)
594{
595    tcg_out32(s, INSN_OP(0) | INSN_OP2(1) | INSN_COND(scond) | flags | off19);
596}
597
598static void tcg_out_bpcc(TCGContext *s, int scond, int flags, TCGLabel *l)
599{
600    int off19 = 0;
601
602    if (l->has_value) {
603        off19 = INSN_OFF19(tcg_pcrel_diff(s, l->u.value_ptr));
604    } else {
605        tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP19, l, 0);
606    }
607    tcg_out_bpcc0(s, scond, flags, off19);
608}
609
610static void tcg_out_cmp(TCGContext *s, TCGReg c1, int32_t c2, int c2const)
611{
612    tcg_out_arithc(s, TCG_REG_G0, c1, c2, c2const, ARITH_SUBCC);
613}
614
615static void tcg_out_brcond_i32(TCGContext *s, TCGCond cond, TCGReg arg1,
616                               int32_t arg2, int const_arg2, TCGLabel *l)
617{
618    tcg_out_cmp(s, arg1, arg2, const_arg2);
619    tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_ICC | BPCC_PT, l);
620    tcg_out_nop(s);
621}
622
623static void tcg_out_movcc(TCGContext *s, TCGCond cond, int cc, TCGReg ret,
624                          int32_t v1, int v1const)
625{
626    tcg_out32(s, ARITH_MOVCC | cc | INSN_RD(ret)
627              | INSN_RS1(tcg_cond_to_bcond[cond])
628              | (v1const ? INSN_IMM11(v1) : INSN_RS2(v1)));
629}
630
631static void tcg_out_movcond_i32(TCGContext *s, TCGCond cond, TCGReg ret,
632                                TCGReg c1, int32_t c2, int c2const,
633                                int32_t v1, int v1const)
634{
635    tcg_out_cmp(s, c1, c2, c2const);
636    tcg_out_movcc(s, cond, MOVCC_ICC, ret, v1, v1const);
637}
638
639static void tcg_out_brcond_i64(TCGContext *s, TCGCond cond, TCGReg arg1,
640                               int32_t arg2, int const_arg2, TCGLabel *l)
641{
642    /* For 64-bit signed comparisons vs zero, we can avoid the compare.  */
643    if (arg2 == 0 && !is_unsigned_cond(cond)) {
644        int off16 = 0;
645
646        if (l->has_value) {
647            off16 = INSN_OFF16(tcg_pcrel_diff(s, l->u.value_ptr));
648        } else {
649            tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP16, l, 0);
650        }
651        tcg_out32(s, INSN_OP(0) | INSN_OP2(3) | BPR_PT | INSN_RS1(arg1)
652                  | INSN_COND(tcg_cond_to_rcond[cond]) | off16);
653    } else {
654        tcg_out_cmp(s, arg1, arg2, const_arg2);
655        tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_XCC | BPCC_PT, l);
656    }
657    tcg_out_nop(s);
658}
659
660static void tcg_out_movr(TCGContext *s, TCGCond cond, TCGReg ret, TCGReg c1,
661                         int32_t v1, int v1const)
662{
663    tcg_out32(s, ARITH_MOVR | INSN_RD(ret) | INSN_RS1(c1)
664              | (tcg_cond_to_rcond[cond] << 10)
665              | (v1const ? INSN_IMM10(v1) : INSN_RS2(v1)));
666}
667
668static void tcg_out_movcond_i64(TCGContext *s, TCGCond cond, TCGReg ret,
669                                TCGReg c1, int32_t c2, int c2const,
670                                int32_t v1, int v1const)
671{
672    /* For 64-bit signed comparisons vs zero, we can avoid the compare.
673       Note that the immediate range is one bit smaller, so we must check
674       for that as well.  */
675    if (c2 == 0 && !is_unsigned_cond(cond)
676        && (!v1const || check_fit_i32(v1, 10))) {
677        tcg_out_movr(s, cond, ret, c1, v1, v1const);
678    } else {
679        tcg_out_cmp(s, c1, c2, c2const);
680        tcg_out_movcc(s, cond, MOVCC_XCC, ret, v1, v1const);
681    }
682}
683
684static void tcg_out_setcond_i32(TCGContext *s, TCGCond cond, TCGReg ret,
685                                TCGReg c1, int32_t c2, int c2const)
686{
687    /* For 32-bit comparisons, we can play games with ADDC/SUBC.  */
688    switch (cond) {
689    case TCG_COND_LTU:
690    case TCG_COND_GEU:
691        /* The result of the comparison is in the carry bit.  */
692        break;
693
694    case TCG_COND_EQ:
695    case TCG_COND_NE:
696        /* For equality, we can transform to inequality vs zero.  */
697        if (c2 != 0) {
698            tcg_out_arithc(s, TCG_REG_T1, c1, c2, c2const, ARITH_XOR);
699            c2 = TCG_REG_T1;
700        } else {
701            c2 = c1;
702        }
703        c1 = TCG_REG_G0, c2const = 0;
704        cond = (cond == TCG_COND_EQ ? TCG_COND_GEU : TCG_COND_LTU);
705	break;
706
707    case TCG_COND_GTU:
708    case TCG_COND_LEU:
709        /* If we don't need to load a constant into a register, we can
710           swap the operands on GTU/LEU.  There's no benefit to loading
711           the constant into a temporary register.  */
712        if (!c2const || c2 == 0) {
713            TCGReg t = c1;
714            c1 = c2;
715            c2 = t;
716            c2const = 0;
717            cond = tcg_swap_cond(cond);
718            break;
719        }
720        /* FALLTHRU */
721
722    default:
723        tcg_out_cmp(s, c1, c2, c2const);
724        tcg_out_movi_imm13(s, ret, 0);
725        tcg_out_movcc(s, cond, MOVCC_ICC, ret, 1, 1);
726        return;
727    }
728
729    tcg_out_cmp(s, c1, c2, c2const);
730    if (cond == TCG_COND_LTU) {
731        tcg_out_arithi(s, ret, TCG_REG_G0, 0, ARITH_ADDC);
732    } else {
733        tcg_out_arithi(s, ret, TCG_REG_G0, -1, ARITH_SUBC);
734    }
735}
736
737static void tcg_out_setcond_i64(TCGContext *s, TCGCond cond, TCGReg ret,
738                                TCGReg c1, int32_t c2, int c2const)
739{
740    if (use_vis3_instructions) {
741        switch (cond) {
742        case TCG_COND_NE:
743            if (c2 != 0) {
744                break;
745            }
746            c2 = c1, c2const = 0, c1 = TCG_REG_G0;
747            /* FALLTHRU */
748        case TCG_COND_LTU:
749            tcg_out_cmp(s, c1, c2, c2const);
750            tcg_out_arith(s, ret, TCG_REG_G0, TCG_REG_G0, ARITH_ADDXC);
751            return;
752        default:
753            break;
754        }
755    }
756
757    /* For 64-bit signed comparisons vs zero, we can avoid the compare
758       if the input does not overlap the output.  */
759    if (c2 == 0 && !is_unsigned_cond(cond) && c1 != ret) {
760        tcg_out_movi_imm13(s, ret, 0);
761        tcg_out_movr(s, cond, ret, c1, 1, 1);
762    } else {
763        tcg_out_cmp(s, c1, c2, c2const);
764        tcg_out_movi_imm13(s, ret, 0);
765        tcg_out_movcc(s, cond, MOVCC_XCC, ret, 1, 1);
766    }
767}
768
769static void tcg_out_addsub2_i32(TCGContext *s, TCGReg rl, TCGReg rh,
770                                TCGReg al, TCGReg ah, int32_t bl, int blconst,
771                                int32_t bh, int bhconst, int opl, int oph)
772{
773    TCGReg tmp = TCG_REG_T1;
774
775    /* Note that the low parts are fully consumed before tmp is set.  */
776    if (rl != ah && (bhconst || rl != bh)) {
777        tmp = rl;
778    }
779
780    tcg_out_arithc(s, tmp, al, bl, blconst, opl);
781    tcg_out_arithc(s, rh, ah, bh, bhconst, oph);
782    tcg_out_mov(s, TCG_TYPE_I32, rl, tmp);
783}
784
785static void tcg_out_addsub2_i64(TCGContext *s, TCGReg rl, TCGReg rh,
786                                TCGReg al, TCGReg ah, int32_t bl, int blconst,
787                                int32_t bh, int bhconst, bool is_sub)
788{
789    TCGReg tmp = TCG_REG_T1;
790
791    /* Note that the low parts are fully consumed before tmp is set.  */
792    if (rl != ah && (bhconst || rl != bh)) {
793        tmp = rl;
794    }
795
796    tcg_out_arithc(s, tmp, al, bl, blconst, is_sub ? ARITH_SUBCC : ARITH_ADDCC);
797
798    if (use_vis3_instructions && !is_sub) {
799        /* Note that ADDXC doesn't accept immediates.  */
800        if (bhconst && bh != 0) {
801           tcg_out_movi_imm13(s, TCG_REG_T2, bh);
802           bh = TCG_REG_T2;
803        }
804        tcg_out_arith(s, rh, ah, bh, ARITH_ADDXC);
805    } else if (bh == TCG_REG_G0) {
806	/* If we have a zero, we can perform the operation in two insns,
807           with the arithmetic first, and a conditional move into place.  */
808	if (rh == ah) {
809            tcg_out_arithi(s, TCG_REG_T2, ah, 1,
810			   is_sub ? ARITH_SUB : ARITH_ADD);
811            tcg_out_movcc(s, TCG_COND_LTU, MOVCC_XCC, rh, TCG_REG_T2, 0);
812	} else {
813            tcg_out_arithi(s, rh, ah, 1, is_sub ? ARITH_SUB : ARITH_ADD);
814	    tcg_out_movcc(s, TCG_COND_GEU, MOVCC_XCC, rh, ah, 0);
815	}
816    } else {
817        /*
818         * Otherwise adjust BH as if there is carry into T2.
819         * Note that constant BH is constrained to 11 bits for the MOVCC,
820         * so the adjustment fits 12 bits.
821         */
822        if (bhconst) {
823            tcg_out_movi_imm13(s, TCG_REG_T2, bh + (is_sub ? -1 : 1));
824        } else {
825            tcg_out_arithi(s, TCG_REG_T2, bh, 1,
826                           is_sub ? ARITH_SUB : ARITH_ADD);
827        }
828        /* ... smoosh T2 back to original BH if carry is clear ... */
829        tcg_out_movcc(s, TCG_COND_GEU, MOVCC_XCC, TCG_REG_T2, bh, bhconst);
830	/* ... and finally perform the arithmetic with the new operand.  */
831        tcg_out_arith(s, rh, ah, TCG_REG_T2, is_sub ? ARITH_SUB : ARITH_ADD);
832    }
833
834    tcg_out_mov(s, TCG_TYPE_I64, rl, tmp);
835}
836
837static void tcg_out_jmpl_const(TCGContext *s, const tcg_insn_unit *dest,
838                               bool in_prologue, bool tail_call)
839{
840    uintptr_t desti = (uintptr_t)dest;
841
842    /* Be careful not to clobber %o7 for a tail call. */
843    tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_REG_T1,
844                     desti & ~0xfff, in_prologue,
845                     tail_call ? TCG_REG_G2 : TCG_REG_O7);
846    tcg_out_arithi(s, tail_call ? TCG_REG_G0 : TCG_REG_O7,
847                   TCG_REG_T1, desti & 0xfff, JMPL);
848}
849
850static void tcg_out_call_nodelay(TCGContext *s, const tcg_insn_unit *dest,
851                                 bool in_prologue)
852{
853    ptrdiff_t disp = tcg_pcrel_diff(s, dest);
854
855    if (disp == (int32_t)disp) {
856        tcg_out32(s, CALL | (uint32_t)disp >> 2);
857    } else {
858        tcg_out_jmpl_const(s, dest, in_prologue, false);
859    }
860}
861
862static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest)
863{
864    tcg_out_call_nodelay(s, dest, false);
865    tcg_out_nop(s);
866}
867
868static void tcg_out_mb(TCGContext *s, TCGArg a0)
869{
870    /* Note that the TCG memory order constants mirror the Sparc MEMBAR.  */
871    tcg_out32(s, MEMBAR | (a0 & TCG_MO_ALL));
872}
873
874#ifdef CONFIG_SOFTMMU
875static const tcg_insn_unit *qemu_ld_trampoline[(MO_SSIZE | MO_BSWAP) + 1];
876static const tcg_insn_unit *qemu_st_trampoline[(MO_SIZE | MO_BSWAP) + 1];
877
878static void emit_extend(TCGContext *s, TCGReg r, int op)
879{
880    /* Emit zero extend of 8, 16 or 32 bit data as
881     * required by the MO_* value op; do nothing for 64 bit.
882     */
883    switch (op & MO_SIZE) {
884    case MO_8:
885        tcg_out_arithi(s, r, r, 0xff, ARITH_AND);
886        break;
887    case MO_16:
888        tcg_out_arithi(s, r, r, 16, SHIFT_SLL);
889        tcg_out_arithi(s, r, r, 16, SHIFT_SRL);
890        break;
891    case MO_32:
892        tcg_out_arith(s, r, r, 0, SHIFT_SRL);
893        break;
894    case MO_64:
895        break;
896    }
897}
898
899static void build_trampolines(TCGContext *s)
900{
901    static void * const qemu_ld_helpers[] = {
902        [MO_UB]   = helper_ret_ldub_mmu,
903        [MO_SB]   = helper_ret_ldsb_mmu,
904        [MO_LEUW] = helper_le_lduw_mmu,
905        [MO_LESW] = helper_le_ldsw_mmu,
906        [MO_LEUL] = helper_le_ldul_mmu,
907        [MO_LEUQ] = helper_le_ldq_mmu,
908        [MO_BEUW] = helper_be_lduw_mmu,
909        [MO_BESW] = helper_be_ldsw_mmu,
910        [MO_BEUL] = helper_be_ldul_mmu,
911        [MO_BEUQ] = helper_be_ldq_mmu,
912    };
913    static void * const qemu_st_helpers[] = {
914        [MO_UB]   = helper_ret_stb_mmu,
915        [MO_LEUW] = helper_le_stw_mmu,
916        [MO_LEUL] = helper_le_stl_mmu,
917        [MO_LEUQ] = helper_le_stq_mmu,
918        [MO_BEUW] = helper_be_stw_mmu,
919        [MO_BEUL] = helper_be_stl_mmu,
920        [MO_BEUQ] = helper_be_stq_mmu,
921    };
922
923    int i;
924
925    for (i = 0; i < ARRAY_SIZE(qemu_ld_helpers); ++i) {
926        if (qemu_ld_helpers[i] == NULL) {
927            continue;
928        }
929
930        /* May as well align the trampoline.  */
931        while ((uintptr_t)s->code_ptr & 15) {
932            tcg_out_nop(s);
933        }
934        qemu_ld_trampoline[i] = tcg_splitwx_to_rx(s->code_ptr);
935
936        /* Set the retaddr operand.  */
937        tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O3, TCG_REG_O7);
938        /* Tail call.  */
939        tcg_out_jmpl_const(s, qemu_ld_helpers[i], true, true);
940        /* delay slot -- set the env argument */
941        tcg_out_mov_delay(s, TCG_REG_O0, TCG_AREG0);
942    }
943
944    for (i = 0; i < ARRAY_SIZE(qemu_st_helpers); ++i) {
945        if (qemu_st_helpers[i] == NULL) {
946            continue;
947        }
948
949        /* May as well align the trampoline.  */
950        while ((uintptr_t)s->code_ptr & 15) {
951            tcg_out_nop(s);
952        }
953        qemu_st_trampoline[i] = tcg_splitwx_to_rx(s->code_ptr);
954
955        emit_extend(s, TCG_REG_O2, i);
956
957        /* Set the retaddr operand.  */
958        tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O4, TCG_REG_O7);
959
960        /* Tail call.  */
961        tcg_out_jmpl_const(s, qemu_st_helpers[i], true, true);
962        /* delay slot -- set the env argument */
963        tcg_out_mov_delay(s, TCG_REG_O0, TCG_AREG0);
964    }
965}
966#else
967static const tcg_insn_unit *qemu_unalign_ld_trampoline;
968static const tcg_insn_unit *qemu_unalign_st_trampoline;
969
970static void build_trampolines(TCGContext *s)
971{
972    for (int ld = 0; ld < 2; ++ld) {
973        void *helper;
974
975        while ((uintptr_t)s->code_ptr & 15) {
976            tcg_out_nop(s);
977        }
978
979        if (ld) {
980            helper = helper_unaligned_ld;
981            qemu_unalign_ld_trampoline = tcg_splitwx_to_rx(s->code_ptr);
982        } else {
983            helper = helper_unaligned_st;
984            qemu_unalign_st_trampoline = tcg_splitwx_to_rx(s->code_ptr);
985        }
986
987        /* Tail call.  */
988        tcg_out_jmpl_const(s, helper, true, true);
989        /* delay slot -- set the env argument */
990        tcg_out_mov_delay(s, TCG_REG_O0, TCG_AREG0);
991    }
992}
993#endif
994
995/* Generate global QEMU prologue and epilogue code */
996static void tcg_target_qemu_prologue(TCGContext *s)
997{
998    int tmp_buf_size, frame_size;
999
1000    /*
1001     * The TCG temp buffer is at the top of the frame, immediately
1002     * below the frame pointer.  Use the logical (aligned) offset here;
1003     * the stack bias is applied in temp_allocate_frame().
1004     */
1005    tmp_buf_size = CPU_TEMP_BUF_NLONGS * (int)sizeof(long);
1006    tcg_set_frame(s, TCG_REG_I6, -tmp_buf_size, tmp_buf_size);
1007
1008    /*
1009     * TCG_TARGET_CALL_STACK_OFFSET includes the stack bias, but is
1010     * otherwise the minimal frame usable by callees.
1011     */
1012    frame_size = TCG_TARGET_CALL_STACK_OFFSET - TCG_TARGET_STACK_BIAS;
1013    frame_size += TCG_STATIC_CALL_ARGS_SIZE + tmp_buf_size;
1014    frame_size += TCG_TARGET_STACK_ALIGN - 1;
1015    frame_size &= -TCG_TARGET_STACK_ALIGN;
1016    tcg_out32(s, SAVE | INSN_RD(TCG_REG_O6) | INSN_RS1(TCG_REG_O6) |
1017              INSN_IMM13(-frame_size));
1018
1019#ifndef CONFIG_SOFTMMU
1020    if (guest_base != 0) {
1021        tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG,
1022                         guest_base, true, TCG_REG_T1);
1023        tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
1024    }
1025#endif
1026
1027    /* We choose TCG_REG_TB such that no move is required.  */
1028    if (USE_REG_TB) {
1029        QEMU_BUILD_BUG_ON(TCG_REG_TB != TCG_REG_I1);
1030        tcg_regset_set_reg(s->reserved_regs, TCG_REG_TB);
1031    }
1032
1033    tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I1, 0, JMPL);
1034    /* delay slot */
1035    tcg_out_nop(s);
1036
1037    /* Epilogue for goto_ptr.  */
1038    tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
1039    tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
1040    /* delay slot */
1041    tcg_out_movi_imm13(s, TCG_REG_O0, 0);
1042
1043    build_trampolines(s);
1044}
1045
1046static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
1047{
1048    int i;
1049    for (i = 0; i < count; ++i) {
1050        p[i] = NOP;
1051    }
1052}
1053
1054#if defined(CONFIG_SOFTMMU)
1055
1056/* We expect to use a 13-bit negative offset from ENV.  */
1057QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) > 0);
1058QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) < -(1 << 12));
1059
1060/* Perform the TLB load and compare.
1061
1062   Inputs:
1063   ADDRLO and ADDRHI contain the possible two parts of the address.
1064
1065   MEM_INDEX and S_BITS are the memory context and log2 size of the load.
1066
1067   WHICH is the offset into the CPUTLBEntry structure of the slot to read.
1068   This should be offsetof addr_read or addr_write.
1069
1070   The result of the TLB comparison is in %[ix]cc.  The sanitized address
1071   is in the returned register, maybe %o0.  The TLB addend is in %o1.  */
1072
1073static TCGReg tcg_out_tlb_load(TCGContext *s, TCGReg addr, int mem_index,
1074                               MemOp opc, int which)
1075{
1076    int fast_off = TLB_MASK_TABLE_OFS(mem_index);
1077    int mask_off = fast_off + offsetof(CPUTLBDescFast, mask);
1078    int table_off = fast_off + offsetof(CPUTLBDescFast, table);
1079    const TCGReg r0 = TCG_REG_O0;
1080    const TCGReg r1 = TCG_REG_O1;
1081    const TCGReg r2 = TCG_REG_O2;
1082    unsigned s_bits = opc & MO_SIZE;
1083    unsigned a_bits = get_alignment_bits(opc);
1084    tcg_target_long compare_mask;
1085
1086    /* Load tlb_mask[mmu_idx] and tlb_table[mmu_idx].  */
1087    tcg_out_ld(s, TCG_TYPE_PTR, r0, TCG_AREG0, mask_off);
1088    tcg_out_ld(s, TCG_TYPE_PTR, r1, TCG_AREG0, table_off);
1089
1090    /* Extract the page index, shifted into place for tlb index.  */
1091    tcg_out_arithi(s, r2, addr, TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS,
1092                   SHIFT_SRL);
1093    tcg_out_arith(s, r2, r2, r0, ARITH_AND);
1094
1095    /* Add the tlb_table pointer, creating the CPUTLBEntry address into R2.  */
1096    tcg_out_arith(s, r2, r2, r1, ARITH_ADD);
1097
1098    /* Load the tlb comparator and the addend.  */
1099    tcg_out_ld(s, TCG_TYPE_TL, r0, r2, which);
1100    tcg_out_ld(s, TCG_TYPE_PTR, r1, r2, offsetof(CPUTLBEntry, addend));
1101
1102    /* Mask out the page offset, except for the required alignment.
1103       We don't support unaligned accesses.  */
1104    if (a_bits < s_bits) {
1105        a_bits = s_bits;
1106    }
1107    compare_mask = (tcg_target_ulong)TARGET_PAGE_MASK | ((1 << a_bits) - 1);
1108    if (check_fit_tl(compare_mask, 13)) {
1109        tcg_out_arithi(s, r2, addr, compare_mask, ARITH_AND);
1110    } else {
1111        tcg_out_movi(s, TCG_TYPE_TL, r2, compare_mask);
1112        tcg_out_arith(s, r2, addr, r2, ARITH_AND);
1113    }
1114    tcg_out_cmp(s, r0, r2, 0);
1115
1116    /* If the guest address must be zero-extended, do so now.  */
1117    if (TARGET_LONG_BITS == 32) {
1118        tcg_out_arithi(s, r0, addr, 0, SHIFT_SRL);
1119        return r0;
1120    }
1121    return addr;
1122}
1123#endif /* CONFIG_SOFTMMU */
1124
1125static const int qemu_ld_opc[(MO_SSIZE | MO_BSWAP) + 1] = {
1126    [MO_UB]   = LDUB,
1127    [MO_SB]   = LDSB,
1128    [MO_UB | MO_LE] = LDUB,
1129    [MO_SB | MO_LE] = LDSB,
1130
1131    [MO_BEUW] = LDUH,
1132    [MO_BESW] = LDSH,
1133    [MO_BEUL] = LDUW,
1134    [MO_BESL] = LDSW,
1135    [MO_BEUQ] = LDX,
1136    [MO_BESQ] = LDX,
1137
1138    [MO_LEUW] = LDUH_LE,
1139    [MO_LESW] = LDSH_LE,
1140    [MO_LEUL] = LDUW_LE,
1141    [MO_LESL] = LDSW_LE,
1142    [MO_LEUQ] = LDX_LE,
1143    [MO_LESQ] = LDX_LE,
1144};
1145
1146static const int qemu_st_opc[(MO_SIZE | MO_BSWAP) + 1] = {
1147    [MO_UB]   = STB,
1148
1149    [MO_BEUW] = STH,
1150    [MO_BEUL] = STW,
1151    [MO_BEUQ] = STX,
1152
1153    [MO_LEUW] = STH_LE,
1154    [MO_LEUL] = STW_LE,
1155    [MO_LEUQ] = STX_LE,
1156};
1157
1158static void tcg_out_qemu_ld(TCGContext *s, TCGReg data, TCGReg addr,
1159                            MemOpIdx oi, bool is_64)
1160{
1161    MemOp memop = get_memop(oi);
1162    tcg_insn_unit *label_ptr;
1163
1164#ifdef CONFIG_SOFTMMU
1165    unsigned memi = get_mmuidx(oi);
1166    TCGReg addrz;
1167    const tcg_insn_unit *func;
1168
1169    addrz = tcg_out_tlb_load(s, addr, memi, memop,
1170                             offsetof(CPUTLBEntry, addr_read));
1171
1172    /* The fast path is exactly one insn.  Thus we can perform the
1173       entire TLB Hit in the (annulled) delay slot of the branch
1174       over the TLB Miss case.  */
1175
1176    /* beq,a,pt %[xi]cc, label0 */
1177    label_ptr = s->code_ptr;
1178    tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT
1179                  | (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0);
1180    /* delay slot */
1181    tcg_out_ldst_rr(s, data, addrz, TCG_REG_O1,
1182                    qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]);
1183
1184    /* TLB Miss.  */
1185
1186    tcg_out_mov(s, TCG_TYPE_REG, TCG_REG_O1, addrz);
1187
1188    /* We use the helpers to extend SB and SW data, leaving the case
1189       of SL needing explicit extending below.  */
1190    if ((memop & MO_SSIZE) == MO_SL) {
1191        func = qemu_ld_trampoline[memop & (MO_BSWAP | MO_SIZE)];
1192    } else {
1193        func = qemu_ld_trampoline[memop & (MO_BSWAP | MO_SSIZE)];
1194    }
1195    tcg_debug_assert(func != NULL);
1196    tcg_out_call_nodelay(s, func, false);
1197    /* delay slot */
1198    tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_O2, oi);
1199
1200    /* We let the helper sign-extend SB and SW, but leave SL for here.  */
1201    if (is_64 && (memop & MO_SSIZE) == MO_SL) {
1202        tcg_out_arithi(s, data, TCG_REG_O0, 0, SHIFT_SRA);
1203    } else {
1204        tcg_out_mov(s, TCG_TYPE_REG, data, TCG_REG_O0);
1205    }
1206
1207    *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr));
1208#else
1209    TCGReg index = (guest_base ? TCG_GUEST_BASE_REG : TCG_REG_G0);
1210    unsigned a_bits = get_alignment_bits(memop);
1211    unsigned s_bits = memop & MO_SIZE;
1212    unsigned t_bits;
1213
1214    if (TARGET_LONG_BITS == 32) {
1215        tcg_out_arithi(s, TCG_REG_T1, addr, 0, SHIFT_SRL);
1216        addr = TCG_REG_T1;
1217    }
1218
1219    /*
1220     * Normal case: alignment equal to access size.
1221     */
1222    if (a_bits == s_bits) {
1223        tcg_out_ldst_rr(s, data, addr, index,
1224                        qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]);
1225        return;
1226    }
1227
1228    /*
1229     * Test for at least natural alignment, and assume most accesses
1230     * will be aligned -- perform a straight load in the delay slot.
1231     * This is required to preserve atomicity for aligned accesses.
1232     */
1233    t_bits = MAX(a_bits, s_bits);
1234    tcg_debug_assert(t_bits < 13);
1235    tcg_out_arithi(s, TCG_REG_G0, addr, (1u << t_bits) - 1, ARITH_ANDCC);
1236
1237    /* beq,a,pt %icc, label */
1238    label_ptr = s->code_ptr;
1239    tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT | BPCC_ICC, 0);
1240    /* delay slot */
1241    tcg_out_ldst_rr(s, data, addr, index,
1242                    qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]);
1243
1244    if (a_bits >= s_bits) {
1245        /*
1246         * Overalignment: A successful alignment test will perform the memory
1247         * operation in the delay slot, and failure need only invoke the
1248         * handler for SIGBUS.
1249         */
1250        tcg_out_call_nodelay(s, qemu_unalign_ld_trampoline, false);
1251        /* delay slot -- move to low part of argument reg */
1252        tcg_out_mov_delay(s, TCG_REG_O1, addr);
1253    } else {
1254        /* Underalignment: load by pieces of minimum alignment. */
1255        int ld_opc, a_size, s_size, i;
1256
1257        /*
1258         * Force full address into T1 early; avoids problems with
1259         * overlap between @addr and @data.
1260         */
1261        tcg_out_arith(s, TCG_REG_T1, addr, index, ARITH_ADD);
1262
1263        a_size = 1 << a_bits;
1264        s_size = 1 << s_bits;
1265        if ((memop & MO_BSWAP) == MO_BE) {
1266            ld_opc = qemu_ld_opc[a_bits | MO_BE | (memop & MO_SIGN)];
1267            tcg_out_ldst(s, data, TCG_REG_T1, 0, ld_opc);
1268            ld_opc = qemu_ld_opc[a_bits | MO_BE];
1269            for (i = a_size; i < s_size; i += a_size) {
1270                tcg_out_ldst(s, TCG_REG_T2, TCG_REG_T1, i, ld_opc);
1271                tcg_out_arithi(s, data, data, a_size, SHIFT_SLLX);
1272                tcg_out_arith(s, data, data, TCG_REG_T2, ARITH_OR);
1273            }
1274        } else if (a_bits == 0) {
1275            ld_opc = LDUB;
1276            tcg_out_ldst(s, data, TCG_REG_T1, 0, ld_opc);
1277            for (i = a_size; i < s_size; i += a_size) {
1278                if ((memop & MO_SIGN) && i == s_size - a_size) {
1279                    ld_opc = LDSB;
1280                }
1281                tcg_out_ldst(s, TCG_REG_T2, TCG_REG_T1, i, ld_opc);
1282                tcg_out_arithi(s, TCG_REG_T2, TCG_REG_T2, i * 8, SHIFT_SLLX);
1283                tcg_out_arith(s, data, data, TCG_REG_T2, ARITH_OR);
1284            }
1285        } else {
1286            ld_opc = qemu_ld_opc[a_bits | MO_LE];
1287            tcg_out_ldst_rr(s, data, TCG_REG_T1, TCG_REG_G0, ld_opc);
1288            for (i = a_size; i < s_size; i += a_size) {
1289                tcg_out_arithi(s, TCG_REG_T1, TCG_REG_T1, a_size, ARITH_ADD);
1290                if ((memop & MO_SIGN) && i == s_size - a_size) {
1291                    ld_opc = qemu_ld_opc[a_bits | MO_LE | MO_SIGN];
1292                }
1293                tcg_out_ldst_rr(s, TCG_REG_T2, TCG_REG_T1, TCG_REG_G0, ld_opc);
1294                tcg_out_arithi(s, TCG_REG_T2, TCG_REG_T2, i * 8, SHIFT_SLLX);
1295                tcg_out_arith(s, data, data, TCG_REG_T2, ARITH_OR);
1296            }
1297        }
1298    }
1299
1300    *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr));
1301#endif /* CONFIG_SOFTMMU */
1302}
1303
1304static void tcg_out_qemu_st(TCGContext *s, TCGReg data, TCGReg addr,
1305                            MemOpIdx oi)
1306{
1307    MemOp memop = get_memop(oi);
1308    tcg_insn_unit *label_ptr;
1309
1310#ifdef CONFIG_SOFTMMU
1311    unsigned memi = get_mmuidx(oi);
1312    TCGReg addrz;
1313    const tcg_insn_unit *func;
1314
1315    addrz = tcg_out_tlb_load(s, addr, memi, memop,
1316                             offsetof(CPUTLBEntry, addr_write));
1317
1318    /* The fast path is exactly one insn.  Thus we can perform the entire
1319       TLB Hit in the (annulled) delay slot of the branch over TLB Miss.  */
1320    /* beq,a,pt %[xi]cc, label0 */
1321    label_ptr = s->code_ptr;
1322    tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT
1323                  | (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0);
1324    /* delay slot */
1325    tcg_out_ldst_rr(s, data, addrz, TCG_REG_O1,
1326                    qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]);
1327
1328    /* TLB Miss.  */
1329
1330    tcg_out_mov(s, TCG_TYPE_REG, TCG_REG_O1, addrz);
1331    tcg_out_mov(s, TCG_TYPE_REG, TCG_REG_O2, data);
1332
1333    func = qemu_st_trampoline[memop & (MO_BSWAP | MO_SIZE)];
1334    tcg_debug_assert(func != NULL);
1335    tcg_out_call_nodelay(s, func, false);
1336    /* delay slot */
1337    tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_O3, oi);
1338
1339    *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr));
1340#else
1341    TCGReg index = (guest_base ? TCG_GUEST_BASE_REG : TCG_REG_G0);
1342    unsigned a_bits = get_alignment_bits(memop);
1343    unsigned s_bits = memop & MO_SIZE;
1344    unsigned t_bits;
1345
1346    if (TARGET_LONG_BITS == 32) {
1347        tcg_out_arithi(s, TCG_REG_T1, addr, 0, SHIFT_SRL);
1348        addr = TCG_REG_T1;
1349    }
1350
1351    /*
1352     * Normal case: alignment equal to access size.
1353     */
1354    if (a_bits == s_bits) {
1355        tcg_out_ldst_rr(s, data, addr, index,
1356                        qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]);
1357        return;
1358    }
1359
1360    /*
1361     * Test for at least natural alignment, and assume most accesses
1362     * will be aligned -- perform a straight store in the delay slot.
1363     * This is required to preserve atomicity for aligned accesses.
1364     */
1365    t_bits = MAX(a_bits, s_bits);
1366    tcg_debug_assert(t_bits < 13);
1367    tcg_out_arithi(s, TCG_REG_G0, addr, (1u << t_bits) - 1, ARITH_ANDCC);
1368
1369    /* beq,a,pt %icc, label */
1370    label_ptr = s->code_ptr;
1371    tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT | BPCC_ICC, 0);
1372    /* delay slot */
1373    tcg_out_ldst_rr(s, data, addr, index,
1374                    qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]);
1375
1376    if (a_bits >= s_bits) {
1377        /*
1378         * Overalignment: A successful alignment test will perform the memory
1379         * operation in the delay slot, and failure need only invoke the
1380         * handler for SIGBUS.
1381         */
1382        tcg_out_call_nodelay(s, qemu_unalign_st_trampoline, false);
1383        /* delay slot -- move to low part of argument reg */
1384        tcg_out_mov_delay(s, TCG_REG_O1, addr);
1385    } else {
1386        /* Underalignment: store by pieces of minimum alignment. */
1387        int st_opc, a_size, s_size, i;
1388
1389        /*
1390         * Force full address into T1 early; avoids problems with
1391         * overlap between @addr and @data.
1392         */
1393        tcg_out_arith(s, TCG_REG_T1, addr, index, ARITH_ADD);
1394
1395        a_size = 1 << a_bits;
1396        s_size = 1 << s_bits;
1397        if ((memop & MO_BSWAP) == MO_BE) {
1398            st_opc = qemu_st_opc[a_bits | MO_BE];
1399            for (i = 0; i < s_size; i += a_size) {
1400                TCGReg d = data;
1401                int shift = (s_size - a_size - i) * 8;
1402                if (shift) {
1403                    d = TCG_REG_T2;
1404                    tcg_out_arithi(s, d, data, shift, SHIFT_SRLX);
1405                }
1406                tcg_out_ldst(s, d, TCG_REG_T1, i, st_opc);
1407            }
1408        } else if (a_bits == 0) {
1409            tcg_out_ldst(s, data, TCG_REG_T1, 0, STB);
1410            for (i = 1; i < s_size; i++) {
1411                tcg_out_arithi(s, TCG_REG_T2, data, i * 8, SHIFT_SRLX);
1412                tcg_out_ldst(s, TCG_REG_T2, TCG_REG_T1, i, STB);
1413            }
1414        } else {
1415            /* Note that ST*A with immediate asi must use indexed address. */
1416            st_opc = qemu_st_opc[a_bits + MO_LE];
1417            tcg_out_ldst_rr(s, data, TCG_REG_T1, TCG_REG_G0, st_opc);
1418            for (i = a_size; i < s_size; i += a_size) {
1419                tcg_out_arithi(s, TCG_REG_T2, data, i * 8, SHIFT_SRLX);
1420                tcg_out_arithi(s, TCG_REG_T1, TCG_REG_T1, a_size, ARITH_ADD);
1421                tcg_out_ldst_rr(s, TCG_REG_T2, TCG_REG_T1, TCG_REG_G0, st_opc);
1422            }
1423        }
1424    }
1425
1426    *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr));
1427#endif /* CONFIG_SOFTMMU */
1428}
1429
1430static void tcg_out_op(TCGContext *s, TCGOpcode opc,
1431                       const TCGArg args[TCG_MAX_OP_ARGS],
1432                       const int const_args[TCG_MAX_OP_ARGS])
1433{
1434    TCGArg a0, a1, a2;
1435    int c, c2;
1436
1437    /* Hoist the loads of the most common arguments.  */
1438    a0 = args[0];
1439    a1 = args[1];
1440    a2 = args[2];
1441    c2 = const_args[2];
1442
1443    switch (opc) {
1444    case INDEX_op_exit_tb:
1445        if (check_fit_ptr(a0, 13)) {
1446            tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
1447            tcg_out_movi_imm13(s, TCG_REG_O0, a0);
1448            break;
1449        } else if (USE_REG_TB) {
1450            intptr_t tb_diff = tcg_tbrel_diff(s, (void *)a0);
1451            if (check_fit_ptr(tb_diff, 13)) {
1452                tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
1453                /* Note that TCG_REG_TB has been unwound to O1.  */
1454                tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O1, tb_diff, ARITH_ADD);
1455                break;
1456            }
1457        }
1458        tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_I0, a0 & ~0x3ff);
1459        tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
1460        tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O0, a0 & 0x3ff, ARITH_OR);
1461        break;
1462    case INDEX_op_goto_tb:
1463        if (s->tb_jmp_insn_offset) {
1464            /* direct jump method */
1465            if (USE_REG_TB) {
1466                /* make sure the patch is 8-byte aligned.  */
1467                if ((intptr_t)s->code_ptr & 4) {
1468                    tcg_out_nop(s);
1469                }
1470                s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
1471                tcg_out_sethi(s, TCG_REG_T1, 0);
1472                tcg_out_arithi(s, TCG_REG_T1, TCG_REG_T1, 0, ARITH_OR);
1473                tcg_out_arith(s, TCG_REG_G0, TCG_REG_TB, TCG_REG_T1, JMPL);
1474                tcg_out_arith(s, TCG_REG_TB, TCG_REG_TB, TCG_REG_T1, ARITH_ADD);
1475            } else {
1476                s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
1477                tcg_out32(s, CALL);
1478                tcg_out_nop(s);
1479            }
1480        } else {
1481            /* indirect jump method */
1482            tcg_out_ld_ptr(s, TCG_REG_TB, s->tb_jmp_target_addr + a0);
1483            tcg_out_arithi(s, TCG_REG_G0, TCG_REG_TB, 0, JMPL);
1484            tcg_out_nop(s);
1485        }
1486        set_jmp_reset_offset(s, a0);
1487
1488        /* For the unlinked path of goto_tb, we need to reset
1489           TCG_REG_TB to the beginning of this TB.  */
1490        if (USE_REG_TB) {
1491            c = -tcg_current_code_size(s);
1492            if (check_fit_i32(c, 13)) {
1493                tcg_out_arithi(s, TCG_REG_TB, TCG_REG_TB, c, ARITH_ADD);
1494            } else {
1495                tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, c);
1496                tcg_out_arith(s, TCG_REG_TB, TCG_REG_TB,
1497                              TCG_REG_T1, ARITH_ADD);
1498            }
1499        }
1500        break;
1501    case INDEX_op_goto_ptr:
1502        tcg_out_arithi(s, TCG_REG_G0, a0, 0, JMPL);
1503        if (USE_REG_TB) {
1504            tcg_out_mov_delay(s, TCG_REG_TB, a0);
1505        } else {
1506            tcg_out_nop(s);
1507        }
1508        break;
1509    case INDEX_op_br:
1510        tcg_out_bpcc(s, COND_A, BPCC_PT, arg_label(a0));
1511        tcg_out_nop(s);
1512        break;
1513
1514#define OP_32_64(x)                             \
1515        glue(glue(case INDEX_op_, x), _i32):    \
1516        glue(glue(case INDEX_op_, x), _i64)
1517
1518    OP_32_64(ld8u):
1519        tcg_out_ldst(s, a0, a1, a2, LDUB);
1520        break;
1521    OP_32_64(ld8s):
1522        tcg_out_ldst(s, a0, a1, a2, LDSB);
1523        break;
1524    OP_32_64(ld16u):
1525        tcg_out_ldst(s, a0, a1, a2, LDUH);
1526        break;
1527    OP_32_64(ld16s):
1528        tcg_out_ldst(s, a0, a1, a2, LDSH);
1529        break;
1530    case INDEX_op_ld_i32:
1531    case INDEX_op_ld32u_i64:
1532        tcg_out_ldst(s, a0, a1, a2, LDUW);
1533        break;
1534    OP_32_64(st8):
1535        tcg_out_ldst(s, a0, a1, a2, STB);
1536        break;
1537    OP_32_64(st16):
1538        tcg_out_ldst(s, a0, a1, a2, STH);
1539        break;
1540    case INDEX_op_st_i32:
1541    case INDEX_op_st32_i64:
1542        tcg_out_ldst(s, a0, a1, a2, STW);
1543        break;
1544    OP_32_64(add):
1545        c = ARITH_ADD;
1546        goto gen_arith;
1547    OP_32_64(sub):
1548        c = ARITH_SUB;
1549        goto gen_arith;
1550    OP_32_64(and):
1551        c = ARITH_AND;
1552        goto gen_arith;
1553    OP_32_64(andc):
1554        c = ARITH_ANDN;
1555        goto gen_arith;
1556    OP_32_64(or):
1557        c = ARITH_OR;
1558        goto gen_arith;
1559    OP_32_64(orc):
1560        c = ARITH_ORN;
1561        goto gen_arith;
1562    OP_32_64(xor):
1563        c = ARITH_XOR;
1564        goto gen_arith;
1565    case INDEX_op_shl_i32:
1566        c = SHIFT_SLL;
1567    do_shift32:
1568        /* Limit immediate shift count lest we create an illegal insn.  */
1569        tcg_out_arithc(s, a0, a1, a2 & 31, c2, c);
1570        break;
1571    case INDEX_op_shr_i32:
1572        c = SHIFT_SRL;
1573        goto do_shift32;
1574    case INDEX_op_sar_i32:
1575        c = SHIFT_SRA;
1576        goto do_shift32;
1577    case INDEX_op_mul_i32:
1578        c = ARITH_UMUL;
1579        goto gen_arith;
1580
1581    OP_32_64(neg):
1582	c = ARITH_SUB;
1583	goto gen_arith1;
1584    OP_32_64(not):
1585	c = ARITH_ORN;
1586	goto gen_arith1;
1587
1588    case INDEX_op_div_i32:
1589        tcg_out_div32(s, a0, a1, a2, c2, 0);
1590        break;
1591    case INDEX_op_divu_i32:
1592        tcg_out_div32(s, a0, a1, a2, c2, 1);
1593        break;
1594
1595    case INDEX_op_brcond_i32:
1596        tcg_out_brcond_i32(s, a2, a0, a1, const_args[1], arg_label(args[3]));
1597        break;
1598    case INDEX_op_setcond_i32:
1599        tcg_out_setcond_i32(s, args[3], a0, a1, a2, c2);
1600        break;
1601    case INDEX_op_movcond_i32:
1602        tcg_out_movcond_i32(s, args[5], a0, a1, a2, c2, args[3], const_args[3]);
1603        break;
1604
1605    case INDEX_op_add2_i32:
1606        tcg_out_addsub2_i32(s, args[0], args[1], args[2], args[3],
1607                            args[4], const_args[4], args[5], const_args[5],
1608                            ARITH_ADDCC, ARITH_ADDC);
1609        break;
1610    case INDEX_op_sub2_i32:
1611        tcg_out_addsub2_i32(s, args[0], args[1], args[2], args[3],
1612                            args[4], const_args[4], args[5], const_args[5],
1613                            ARITH_SUBCC, ARITH_SUBC);
1614        break;
1615    case INDEX_op_mulu2_i32:
1616        c = ARITH_UMUL;
1617        goto do_mul2;
1618    case INDEX_op_muls2_i32:
1619        c = ARITH_SMUL;
1620    do_mul2:
1621        /* The 32-bit multiply insns produce a full 64-bit result. */
1622        tcg_out_arithc(s, a0, a2, args[3], const_args[3], c);
1623        tcg_out_arithi(s, a1, a0, 32, SHIFT_SRLX);
1624        break;
1625
1626    case INDEX_op_qemu_ld_i32:
1627        tcg_out_qemu_ld(s, a0, a1, a2, false);
1628        break;
1629    case INDEX_op_qemu_ld_i64:
1630        tcg_out_qemu_ld(s, a0, a1, a2, true);
1631        break;
1632    case INDEX_op_qemu_st_i32:
1633    case INDEX_op_qemu_st_i64:
1634        tcg_out_qemu_st(s, a0, a1, a2);
1635        break;
1636
1637    case INDEX_op_ld32s_i64:
1638        tcg_out_ldst(s, a0, a1, a2, LDSW);
1639        break;
1640    case INDEX_op_ld_i64:
1641        tcg_out_ldst(s, a0, a1, a2, LDX);
1642        break;
1643    case INDEX_op_st_i64:
1644        tcg_out_ldst(s, a0, a1, a2, STX);
1645        break;
1646    case INDEX_op_shl_i64:
1647        c = SHIFT_SLLX;
1648    do_shift64:
1649        /* Limit immediate shift count lest we create an illegal insn.  */
1650        tcg_out_arithc(s, a0, a1, a2 & 63, c2, c);
1651        break;
1652    case INDEX_op_shr_i64:
1653        c = SHIFT_SRLX;
1654        goto do_shift64;
1655    case INDEX_op_sar_i64:
1656        c = SHIFT_SRAX;
1657        goto do_shift64;
1658    case INDEX_op_mul_i64:
1659        c = ARITH_MULX;
1660        goto gen_arith;
1661    case INDEX_op_div_i64:
1662        c = ARITH_SDIVX;
1663        goto gen_arith;
1664    case INDEX_op_divu_i64:
1665        c = ARITH_UDIVX;
1666        goto gen_arith;
1667    case INDEX_op_ext_i32_i64:
1668    case INDEX_op_ext32s_i64:
1669        tcg_out_arithi(s, a0, a1, 0, SHIFT_SRA);
1670        break;
1671    case INDEX_op_extu_i32_i64:
1672    case INDEX_op_ext32u_i64:
1673        tcg_out_arithi(s, a0, a1, 0, SHIFT_SRL);
1674        break;
1675    case INDEX_op_extrl_i64_i32:
1676        tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
1677        break;
1678    case INDEX_op_extrh_i64_i32:
1679        tcg_out_arithi(s, a0, a1, 32, SHIFT_SRLX);
1680        break;
1681
1682    case INDEX_op_brcond_i64:
1683        tcg_out_brcond_i64(s, a2, a0, a1, const_args[1], arg_label(args[3]));
1684        break;
1685    case INDEX_op_setcond_i64:
1686        tcg_out_setcond_i64(s, args[3], a0, a1, a2, c2);
1687        break;
1688    case INDEX_op_movcond_i64:
1689        tcg_out_movcond_i64(s, args[5], a0, a1, a2, c2, args[3], const_args[3]);
1690        break;
1691    case INDEX_op_add2_i64:
1692        tcg_out_addsub2_i64(s, args[0], args[1], args[2], args[3], args[4],
1693                            const_args[4], args[5], const_args[5], false);
1694        break;
1695    case INDEX_op_sub2_i64:
1696        tcg_out_addsub2_i64(s, args[0], args[1], args[2], args[3], args[4],
1697                            const_args[4], args[5], const_args[5], true);
1698        break;
1699    case INDEX_op_muluh_i64:
1700        tcg_out_arith(s, args[0], args[1], args[2], ARITH_UMULXHI);
1701        break;
1702
1703    gen_arith:
1704        tcg_out_arithc(s, a0, a1, a2, c2, c);
1705        break;
1706
1707    gen_arith1:
1708	tcg_out_arithc(s, a0, TCG_REG_G0, a1, const_args[1], c);
1709	break;
1710
1711    case INDEX_op_mb:
1712        tcg_out_mb(s, a0);
1713        break;
1714
1715    case INDEX_op_mov_i32:  /* Always emitted via tcg_out_mov.  */
1716    case INDEX_op_mov_i64:
1717    case INDEX_op_call:     /* Always emitted via tcg_out_call.  */
1718    default:
1719        tcg_abort();
1720    }
1721}
1722
1723static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op)
1724{
1725    switch (op) {
1726    case INDEX_op_goto_ptr:
1727        return C_O0_I1(r);
1728
1729    case INDEX_op_ld8u_i32:
1730    case INDEX_op_ld8u_i64:
1731    case INDEX_op_ld8s_i32:
1732    case INDEX_op_ld8s_i64:
1733    case INDEX_op_ld16u_i32:
1734    case INDEX_op_ld16u_i64:
1735    case INDEX_op_ld16s_i32:
1736    case INDEX_op_ld16s_i64:
1737    case INDEX_op_ld_i32:
1738    case INDEX_op_ld32u_i64:
1739    case INDEX_op_ld32s_i64:
1740    case INDEX_op_ld_i64:
1741    case INDEX_op_neg_i32:
1742    case INDEX_op_neg_i64:
1743    case INDEX_op_not_i32:
1744    case INDEX_op_not_i64:
1745    case INDEX_op_ext32s_i64:
1746    case INDEX_op_ext32u_i64:
1747    case INDEX_op_ext_i32_i64:
1748    case INDEX_op_extu_i32_i64:
1749    case INDEX_op_extrl_i64_i32:
1750    case INDEX_op_extrh_i64_i32:
1751        return C_O1_I1(r, r);
1752
1753    case INDEX_op_st8_i32:
1754    case INDEX_op_st8_i64:
1755    case INDEX_op_st16_i32:
1756    case INDEX_op_st16_i64:
1757    case INDEX_op_st_i32:
1758    case INDEX_op_st32_i64:
1759    case INDEX_op_st_i64:
1760        return C_O0_I2(rZ, r);
1761
1762    case INDEX_op_add_i32:
1763    case INDEX_op_add_i64:
1764    case INDEX_op_mul_i32:
1765    case INDEX_op_mul_i64:
1766    case INDEX_op_div_i32:
1767    case INDEX_op_div_i64:
1768    case INDEX_op_divu_i32:
1769    case INDEX_op_divu_i64:
1770    case INDEX_op_sub_i32:
1771    case INDEX_op_sub_i64:
1772    case INDEX_op_and_i32:
1773    case INDEX_op_and_i64:
1774    case INDEX_op_andc_i32:
1775    case INDEX_op_andc_i64:
1776    case INDEX_op_or_i32:
1777    case INDEX_op_or_i64:
1778    case INDEX_op_orc_i32:
1779    case INDEX_op_orc_i64:
1780    case INDEX_op_xor_i32:
1781    case INDEX_op_xor_i64:
1782    case INDEX_op_shl_i32:
1783    case INDEX_op_shl_i64:
1784    case INDEX_op_shr_i32:
1785    case INDEX_op_shr_i64:
1786    case INDEX_op_sar_i32:
1787    case INDEX_op_sar_i64:
1788    case INDEX_op_setcond_i32:
1789    case INDEX_op_setcond_i64:
1790        return C_O1_I2(r, rZ, rJ);
1791
1792    case INDEX_op_brcond_i32:
1793    case INDEX_op_brcond_i64:
1794        return C_O0_I2(rZ, rJ);
1795    case INDEX_op_movcond_i32:
1796    case INDEX_op_movcond_i64:
1797        return C_O1_I4(r, rZ, rJ, rI, 0);
1798    case INDEX_op_add2_i32:
1799    case INDEX_op_add2_i64:
1800    case INDEX_op_sub2_i32:
1801    case INDEX_op_sub2_i64:
1802        return C_O2_I4(r, r, rZ, rZ, rJ, rJ);
1803    case INDEX_op_mulu2_i32:
1804    case INDEX_op_muls2_i32:
1805        return C_O2_I2(r, r, rZ, rJ);
1806    case INDEX_op_muluh_i64:
1807        return C_O1_I2(r, r, r);
1808
1809    case INDEX_op_qemu_ld_i32:
1810    case INDEX_op_qemu_ld_i64:
1811        return C_O1_I1(r, s);
1812    case INDEX_op_qemu_st_i32:
1813    case INDEX_op_qemu_st_i64:
1814        return C_O0_I2(sZ, s);
1815
1816    default:
1817        g_assert_not_reached();
1818    }
1819}
1820
1821static void tcg_target_init(TCGContext *s)
1822{
1823    /*
1824     * Only probe for the platform and capabilities if we haven't already
1825     * determined maximum values at compile time.
1826     */
1827#ifndef use_vis3_instructions
1828    {
1829        unsigned long hwcap = qemu_getauxval(AT_HWCAP);
1830        use_vis3_instructions = (hwcap & HWCAP_SPARC_VIS3) != 0;
1831    }
1832#endif
1833
1834    tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
1835    tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS;
1836
1837    tcg_target_call_clobber_regs = 0;
1838    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G1);
1839    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G2);
1840    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G3);
1841    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G4);
1842    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G5);
1843    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G6);
1844    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G7);
1845    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O0);
1846    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O1);
1847    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O2);
1848    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O3);
1849    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O4);
1850    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O5);
1851    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O6);
1852    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O7);
1853
1854    s->reserved_regs = 0;
1855    tcg_regset_set_reg(s->reserved_regs, TCG_REG_G0); /* zero */
1856    tcg_regset_set_reg(s->reserved_regs, TCG_REG_G6); /* reserved for os */
1857    tcg_regset_set_reg(s->reserved_regs, TCG_REG_G7); /* thread pointer */
1858    tcg_regset_set_reg(s->reserved_regs, TCG_REG_I6); /* frame pointer */
1859    tcg_regset_set_reg(s->reserved_regs, TCG_REG_I7); /* return address */
1860    tcg_regset_set_reg(s->reserved_regs, TCG_REG_O6); /* stack pointer */
1861    tcg_regset_set_reg(s->reserved_regs, TCG_REG_T1); /* for internal use */
1862    tcg_regset_set_reg(s->reserved_regs, TCG_REG_T2); /* for internal use */
1863}
1864
1865#define ELF_HOST_MACHINE  EM_SPARCV9
1866
1867typedef struct {
1868    DebugFrameHeader h;
1869    uint8_t fde_def_cfa[4];
1870    uint8_t fde_win_save;
1871    uint8_t fde_ret_save[3];
1872} DebugFrame;
1873
1874static const DebugFrame debug_frame = {
1875    .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
1876    .h.cie.id = -1,
1877    .h.cie.version = 1,
1878    .h.cie.code_align = 1,
1879    .h.cie.data_align = -sizeof(void *) & 0x7f,
1880    .h.cie.return_column = 15,            /* o7 */
1881
1882    /* Total FDE size does not include the "len" member.  */
1883    .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
1884
1885    .fde_def_cfa = {
1886        12, 30,                         /* DW_CFA_def_cfa i6, 2047 */
1887        (2047 & 0x7f) | 0x80, (2047 >> 7)
1888    },
1889    .fde_win_save = 0x2d,               /* DW_CFA_GNU_window_save */
1890    .fde_ret_save = { 9, 15, 31 },      /* DW_CFA_register o7, i7 */
1891};
1892
1893void tcg_register_jit(const void *buf, size_t buf_size)
1894{
1895    tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
1896}
1897
1898void tb_target_set_jmp_target(uintptr_t tc_ptr, uintptr_t jmp_rx,
1899                              uintptr_t jmp_rw, uintptr_t addr)
1900{
1901    intptr_t tb_disp = addr - tc_ptr;
1902    intptr_t br_disp = addr - jmp_rx;
1903    tcg_insn_unit i1, i2;
1904
1905    /* We can reach the entire address space for ILP32.
1906       For LP64, the code_gen_buffer can't be larger than 2GB.  */
1907    tcg_debug_assert(tb_disp == (int32_t)tb_disp);
1908    tcg_debug_assert(br_disp == (int32_t)br_disp);
1909
1910    if (!USE_REG_TB) {
1911        qatomic_set((uint32_t *)jmp_rw,
1912		    deposit32(CALL, 0, 30, br_disp >> 2));
1913        flush_idcache_range(jmp_rx, jmp_rw, 4);
1914        return;
1915    }
1916
1917    /* This does not exercise the range of the branch, but we do
1918       still need to be able to load the new value of TCG_REG_TB.
1919       But this does still happen quite often.  */
1920    if (check_fit_ptr(tb_disp, 13)) {
1921        /* ba,pt %icc, addr */
1922        i1 = (INSN_OP(0) | INSN_OP2(1) | INSN_COND(COND_A)
1923              | BPCC_ICC | BPCC_PT | INSN_OFF19(br_disp));
1924        i2 = (ARITH_ADD | INSN_RD(TCG_REG_TB) | INSN_RS1(TCG_REG_TB)
1925              | INSN_IMM13(tb_disp));
1926    } else if (tb_disp >= 0) {
1927        i1 = SETHI | INSN_RD(TCG_REG_T1) | ((tb_disp & 0xfffffc00) >> 10);
1928        i2 = (ARITH_OR | INSN_RD(TCG_REG_T1) | INSN_RS1(TCG_REG_T1)
1929              | INSN_IMM13(tb_disp & 0x3ff));
1930    } else {
1931        i1 = SETHI | INSN_RD(TCG_REG_T1) | ((~tb_disp & 0xfffffc00) >> 10);
1932        i2 = (ARITH_XOR | INSN_RD(TCG_REG_T1) | INSN_RS1(TCG_REG_T1)
1933              | INSN_IMM13((tb_disp & 0x3ff) | -0x400));
1934    }
1935
1936    qatomic_set((uint64_t *)jmp_rw, deposit64(i2, 32, 32, i1));
1937    flush_idcache_range(jmp_rx, jmp_rw, 8);
1938}
1939