xref: /qemu/tcg/tcg.c (revision abff1abf)
1 /*
2  * Tiny Code Generator for QEMU
3  *
4  * Copyright (c) 2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 /* define it to use liveness analysis (better code) */
26 #define USE_TCG_OPTIMIZATIONS
27 
28 #include "qemu/osdep.h"
29 
30 /* Define to jump the ELF file used to communicate with GDB.  */
31 #undef DEBUG_JIT
32 
33 #include "qemu/error-report.h"
34 #include "qemu/cutils.h"
35 #include "qemu/host-utils.h"
36 #include "qemu/qemu-print.h"
37 #include "qemu/timer.h"
38 
39 /* Note: the long term plan is to reduce the dependencies on the QEMU
40    CPU definitions. Currently they are used for qemu_ld/st
41    instructions */
42 #define NO_CPU_IO_DEFS
43 #include "cpu.h"
44 
45 #include "exec/exec-all.h"
46 
47 #if !defined(CONFIG_USER_ONLY)
48 #include "hw/boards.h"
49 #endif
50 
51 #include "tcg/tcg-op.h"
52 
53 #if UINTPTR_MAX == UINT32_MAX
54 # define ELF_CLASS  ELFCLASS32
55 #else
56 # define ELF_CLASS  ELFCLASS64
57 #endif
58 #ifdef HOST_WORDS_BIGENDIAN
59 # define ELF_DATA   ELFDATA2MSB
60 #else
61 # define ELF_DATA   ELFDATA2LSB
62 #endif
63 
64 #include "elf.h"
65 #include "exec/log.h"
66 #include "sysemu/sysemu.h"
67 
68 /* Forward declarations for functions declared in tcg-target.c.inc and
69    used here. */
70 static void tcg_target_init(TCGContext *s);
71 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode);
72 static void tcg_target_qemu_prologue(TCGContext *s);
73 static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
74                         intptr_t value, intptr_t addend);
75 
76 /* The CIE and FDE header definitions will be common to all hosts.  */
77 typedef struct {
78     uint32_t len __attribute__((aligned((sizeof(void *)))));
79     uint32_t id;
80     uint8_t version;
81     char augmentation[1];
82     uint8_t code_align;
83     uint8_t data_align;
84     uint8_t return_column;
85 } DebugFrameCIE;
86 
87 typedef struct QEMU_PACKED {
88     uint32_t len __attribute__((aligned((sizeof(void *)))));
89     uint32_t cie_offset;
90     uintptr_t func_start;
91     uintptr_t func_len;
92 } DebugFrameFDEHeader;
93 
94 typedef struct QEMU_PACKED {
95     DebugFrameCIE cie;
96     DebugFrameFDEHeader fde;
97 } DebugFrameHeader;
98 
99 static void tcg_register_jit_int(void *buf, size_t size,
100                                  const void *debug_frame,
101                                  size_t debug_frame_size)
102     __attribute__((unused));
103 
104 /* Forward declarations for functions declared and used in tcg-target.c.inc. */
105 static const char *target_parse_constraint(TCGArgConstraint *ct,
106                                            const char *ct_str, TCGType type);
107 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1,
108                        intptr_t arg2);
109 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg);
110 static void tcg_out_movi(TCGContext *s, TCGType type,
111                          TCGReg ret, tcg_target_long arg);
112 static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args,
113                        const int *const_args);
114 #if TCG_TARGET_MAYBE_vec
115 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
116                             TCGReg dst, TCGReg src);
117 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
118                              TCGReg dst, TCGReg base, intptr_t offset);
119 static void tcg_out_dupi_vec(TCGContext *s, TCGType type,
120                              TCGReg dst, tcg_target_long arg);
121 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl,
122                            unsigned vece, const TCGArg *args,
123                            const int *const_args);
124 #else
125 static inline bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
126                                    TCGReg dst, TCGReg src)
127 {
128     g_assert_not_reached();
129 }
130 static inline bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
131                                     TCGReg dst, TCGReg base, intptr_t offset)
132 {
133     g_assert_not_reached();
134 }
135 static inline void tcg_out_dupi_vec(TCGContext *s, TCGType type,
136                                     TCGReg dst, tcg_target_long arg)
137 {
138     g_assert_not_reached();
139 }
140 static inline void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl,
141                                   unsigned vece, const TCGArg *args,
142                                   const int *const_args)
143 {
144     g_assert_not_reached();
145 }
146 #endif
147 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1,
148                        intptr_t arg2);
149 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
150                         TCGReg base, intptr_t ofs);
151 static void tcg_out_call(TCGContext *s, tcg_insn_unit *target);
152 static int tcg_target_const_match(tcg_target_long val, TCGType type,
153                                   const TCGArgConstraint *arg_ct);
154 #ifdef TCG_TARGET_NEED_LDST_LABELS
155 static int tcg_out_ldst_finalize(TCGContext *s);
156 #endif
157 
158 #define TCG_HIGHWATER 1024
159 
160 static TCGContext **tcg_ctxs;
161 static unsigned int n_tcg_ctxs;
162 TCGv_env cpu_env = 0;
163 
164 struct tcg_region_tree {
165     QemuMutex lock;
166     GTree *tree;
167     /* padding to avoid false sharing is computed at run-time */
168 };
169 
170 /*
171  * We divide code_gen_buffer into equally-sized "regions" that TCG threads
172  * dynamically allocate from as demand dictates. Given appropriate region
173  * sizing, this minimizes flushes even when some TCG threads generate a lot
174  * more code than others.
175  */
176 struct tcg_region_state {
177     QemuMutex lock;
178 
179     /* fields set at init time */
180     void *start;
181     void *start_aligned;
182     void *end;
183     size_t n;
184     size_t size; /* size of one region */
185     size_t stride; /* .size + guard size */
186 
187     /* fields protected by the lock */
188     size_t current; /* current region index */
189     size_t agg_size_full; /* aggregate size of full regions */
190 };
191 
192 static struct tcg_region_state region;
193 /*
194  * This is an array of struct tcg_region_tree's, with padding.
195  * We use void * to simplify the computation of region_trees[i]; each
196  * struct is found every tree_size bytes.
197  */
198 static void *region_trees;
199 static size_t tree_size;
200 static TCGRegSet tcg_target_available_regs[TCG_TYPE_COUNT];
201 static TCGRegSet tcg_target_call_clobber_regs;
202 
203 #if TCG_TARGET_INSN_UNIT_SIZE == 1
204 static __attribute__((unused)) inline void tcg_out8(TCGContext *s, uint8_t v)
205 {
206     *s->code_ptr++ = v;
207 }
208 
209 static __attribute__((unused)) inline void tcg_patch8(tcg_insn_unit *p,
210                                                       uint8_t v)
211 {
212     *p = v;
213 }
214 #endif
215 
216 #if TCG_TARGET_INSN_UNIT_SIZE <= 2
217 static __attribute__((unused)) inline void tcg_out16(TCGContext *s, uint16_t v)
218 {
219     if (TCG_TARGET_INSN_UNIT_SIZE == 2) {
220         *s->code_ptr++ = v;
221     } else {
222         tcg_insn_unit *p = s->code_ptr;
223         memcpy(p, &v, sizeof(v));
224         s->code_ptr = p + (2 / TCG_TARGET_INSN_UNIT_SIZE);
225     }
226 }
227 
228 static __attribute__((unused)) inline void tcg_patch16(tcg_insn_unit *p,
229                                                        uint16_t v)
230 {
231     if (TCG_TARGET_INSN_UNIT_SIZE == 2) {
232         *p = v;
233     } else {
234         memcpy(p, &v, sizeof(v));
235     }
236 }
237 #endif
238 
239 #if TCG_TARGET_INSN_UNIT_SIZE <= 4
240 static __attribute__((unused)) inline void tcg_out32(TCGContext *s, uint32_t v)
241 {
242     if (TCG_TARGET_INSN_UNIT_SIZE == 4) {
243         *s->code_ptr++ = v;
244     } else {
245         tcg_insn_unit *p = s->code_ptr;
246         memcpy(p, &v, sizeof(v));
247         s->code_ptr = p + (4 / TCG_TARGET_INSN_UNIT_SIZE);
248     }
249 }
250 
251 static __attribute__((unused)) inline void tcg_patch32(tcg_insn_unit *p,
252                                                        uint32_t v)
253 {
254     if (TCG_TARGET_INSN_UNIT_SIZE == 4) {
255         *p = v;
256     } else {
257         memcpy(p, &v, sizeof(v));
258     }
259 }
260 #endif
261 
262 #if TCG_TARGET_INSN_UNIT_SIZE <= 8
263 static __attribute__((unused)) inline void tcg_out64(TCGContext *s, uint64_t v)
264 {
265     if (TCG_TARGET_INSN_UNIT_SIZE == 8) {
266         *s->code_ptr++ = v;
267     } else {
268         tcg_insn_unit *p = s->code_ptr;
269         memcpy(p, &v, sizeof(v));
270         s->code_ptr = p + (8 / TCG_TARGET_INSN_UNIT_SIZE);
271     }
272 }
273 
274 static __attribute__((unused)) inline void tcg_patch64(tcg_insn_unit *p,
275                                                        uint64_t v)
276 {
277     if (TCG_TARGET_INSN_UNIT_SIZE == 8) {
278         *p = v;
279     } else {
280         memcpy(p, &v, sizeof(v));
281     }
282 }
283 #endif
284 
285 /* label relocation processing */
286 
287 static void tcg_out_reloc(TCGContext *s, tcg_insn_unit *code_ptr, int type,
288                           TCGLabel *l, intptr_t addend)
289 {
290     TCGRelocation *r = tcg_malloc(sizeof(TCGRelocation));
291 
292     r->type = type;
293     r->ptr = code_ptr;
294     r->addend = addend;
295     QSIMPLEQ_INSERT_TAIL(&l->relocs, r, next);
296 }
297 
298 static void tcg_out_label(TCGContext *s, TCGLabel *l, tcg_insn_unit *ptr)
299 {
300     tcg_debug_assert(!l->has_value);
301     l->has_value = 1;
302     l->u.value_ptr = ptr;
303 }
304 
305 TCGLabel *gen_new_label(void)
306 {
307     TCGContext *s = tcg_ctx;
308     TCGLabel *l = tcg_malloc(sizeof(TCGLabel));
309 
310     memset(l, 0, sizeof(TCGLabel));
311     l->id = s->nb_labels++;
312     QSIMPLEQ_INIT(&l->relocs);
313 
314     QSIMPLEQ_INSERT_TAIL(&s->labels, l, next);
315 
316     return l;
317 }
318 
319 static bool tcg_resolve_relocs(TCGContext *s)
320 {
321     TCGLabel *l;
322 
323     QSIMPLEQ_FOREACH(l, &s->labels, next) {
324         TCGRelocation *r;
325         uintptr_t value = l->u.value;
326 
327         QSIMPLEQ_FOREACH(r, &l->relocs, next) {
328             if (!patch_reloc(r->ptr, r->type, value, r->addend)) {
329                 return false;
330             }
331         }
332     }
333     return true;
334 }
335 
336 static void set_jmp_reset_offset(TCGContext *s, int which)
337 {
338     size_t off = tcg_current_code_size(s);
339     s->tb_jmp_reset_offset[which] = off;
340     /* Make sure that we didn't overflow the stored offset.  */
341     assert(s->tb_jmp_reset_offset[which] == off);
342 }
343 
344 #include "tcg-target.c.inc"
345 
346 /* compare a pointer @ptr and a tb_tc @s */
347 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s)
348 {
349     if (ptr >= s->ptr + s->size) {
350         return 1;
351     } else if (ptr < s->ptr) {
352         return -1;
353     }
354     return 0;
355 }
356 
357 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp)
358 {
359     const struct tb_tc *a = ap;
360     const struct tb_tc *b = bp;
361 
362     /*
363      * When both sizes are set, we know this isn't a lookup.
364      * This is the most likely case: every TB must be inserted; lookups
365      * are a lot less frequent.
366      */
367     if (likely(a->size && b->size)) {
368         if (a->ptr > b->ptr) {
369             return 1;
370         } else if (a->ptr < b->ptr) {
371             return -1;
372         }
373         /* a->ptr == b->ptr should happen only on deletions */
374         g_assert(a->size == b->size);
375         return 0;
376     }
377     /*
378      * All lookups have either .size field set to 0.
379      * From the glib sources we see that @ap is always the lookup key. However
380      * the docs provide no guarantee, so we just mark this case as likely.
381      */
382     if (likely(a->size == 0)) {
383         return ptr_cmp_tb_tc(a->ptr, b);
384     }
385     return ptr_cmp_tb_tc(b->ptr, a);
386 }
387 
388 static void tcg_region_trees_init(void)
389 {
390     size_t i;
391 
392     tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize);
393     region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size);
394     for (i = 0; i < region.n; i++) {
395         struct tcg_region_tree *rt = region_trees + i * tree_size;
396 
397         qemu_mutex_init(&rt->lock);
398         rt->tree = g_tree_new(tb_tc_cmp);
399     }
400 }
401 
402 static struct tcg_region_tree *tc_ptr_to_region_tree(void *p)
403 {
404     size_t region_idx;
405 
406     if (p < region.start_aligned) {
407         region_idx = 0;
408     } else {
409         ptrdiff_t offset = p - region.start_aligned;
410 
411         if (offset > region.stride * (region.n - 1)) {
412             region_idx = region.n - 1;
413         } else {
414             region_idx = offset / region.stride;
415         }
416     }
417     return region_trees + region_idx * tree_size;
418 }
419 
420 void tcg_tb_insert(TranslationBlock *tb)
421 {
422     struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
423 
424     qemu_mutex_lock(&rt->lock);
425     g_tree_insert(rt->tree, &tb->tc, tb);
426     qemu_mutex_unlock(&rt->lock);
427 }
428 
429 void tcg_tb_remove(TranslationBlock *tb)
430 {
431     struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
432 
433     qemu_mutex_lock(&rt->lock);
434     g_tree_remove(rt->tree, &tb->tc);
435     qemu_mutex_unlock(&rt->lock);
436 }
437 
438 /*
439  * Find the TB 'tb' such that
440  * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size
441  * Return NULL if not found.
442  */
443 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr)
444 {
445     struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr);
446     TranslationBlock *tb;
447     struct tb_tc s = { .ptr = (void *)tc_ptr };
448 
449     qemu_mutex_lock(&rt->lock);
450     tb = g_tree_lookup(rt->tree, &s);
451     qemu_mutex_unlock(&rt->lock);
452     return tb;
453 }
454 
455 static void tcg_region_tree_lock_all(void)
456 {
457     size_t i;
458 
459     for (i = 0; i < region.n; i++) {
460         struct tcg_region_tree *rt = region_trees + i * tree_size;
461 
462         qemu_mutex_lock(&rt->lock);
463     }
464 }
465 
466 static void tcg_region_tree_unlock_all(void)
467 {
468     size_t i;
469 
470     for (i = 0; i < region.n; i++) {
471         struct tcg_region_tree *rt = region_trees + i * tree_size;
472 
473         qemu_mutex_unlock(&rt->lock);
474     }
475 }
476 
477 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data)
478 {
479     size_t i;
480 
481     tcg_region_tree_lock_all();
482     for (i = 0; i < region.n; i++) {
483         struct tcg_region_tree *rt = region_trees + i * tree_size;
484 
485         g_tree_foreach(rt->tree, func, user_data);
486     }
487     tcg_region_tree_unlock_all();
488 }
489 
490 size_t tcg_nb_tbs(void)
491 {
492     size_t nb_tbs = 0;
493     size_t i;
494 
495     tcg_region_tree_lock_all();
496     for (i = 0; i < region.n; i++) {
497         struct tcg_region_tree *rt = region_trees + i * tree_size;
498 
499         nb_tbs += g_tree_nnodes(rt->tree);
500     }
501     tcg_region_tree_unlock_all();
502     return nb_tbs;
503 }
504 
505 static gboolean tcg_region_tree_traverse(gpointer k, gpointer v, gpointer data)
506 {
507     TranslationBlock *tb = v;
508 
509     tb_destroy(tb);
510     return FALSE;
511 }
512 
513 static void tcg_region_tree_reset_all(void)
514 {
515     size_t i;
516 
517     tcg_region_tree_lock_all();
518     for (i = 0; i < region.n; i++) {
519         struct tcg_region_tree *rt = region_trees + i * tree_size;
520 
521         g_tree_foreach(rt->tree, tcg_region_tree_traverse, NULL);
522         /* Increment the refcount first so that destroy acts as a reset */
523         g_tree_ref(rt->tree);
524         g_tree_destroy(rt->tree);
525     }
526     tcg_region_tree_unlock_all();
527 }
528 
529 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend)
530 {
531     void *start, *end;
532 
533     start = region.start_aligned + curr_region * region.stride;
534     end = start + region.size;
535 
536     if (curr_region == 0) {
537         start = region.start;
538     }
539     if (curr_region == region.n - 1) {
540         end = region.end;
541     }
542 
543     *pstart = start;
544     *pend = end;
545 }
546 
547 static void tcg_region_assign(TCGContext *s, size_t curr_region)
548 {
549     void *start, *end;
550 
551     tcg_region_bounds(curr_region, &start, &end);
552 
553     s->code_gen_buffer = start;
554     s->code_gen_ptr = start;
555     s->code_gen_buffer_size = end - start;
556     s->code_gen_highwater = end - TCG_HIGHWATER;
557 }
558 
559 static bool tcg_region_alloc__locked(TCGContext *s)
560 {
561     if (region.current == region.n) {
562         return true;
563     }
564     tcg_region_assign(s, region.current);
565     region.current++;
566     return false;
567 }
568 
569 /*
570  * Request a new region once the one in use has filled up.
571  * Returns true on error.
572  */
573 static bool tcg_region_alloc(TCGContext *s)
574 {
575     bool err;
576     /* read the region size now; alloc__locked will overwrite it on success */
577     size_t size_full = s->code_gen_buffer_size;
578 
579     qemu_mutex_lock(&region.lock);
580     err = tcg_region_alloc__locked(s);
581     if (!err) {
582         region.agg_size_full += size_full - TCG_HIGHWATER;
583     }
584     qemu_mutex_unlock(&region.lock);
585     return err;
586 }
587 
588 /*
589  * Perform a context's first region allocation.
590  * This function does _not_ increment region.agg_size_full.
591  */
592 static inline bool tcg_region_initial_alloc__locked(TCGContext *s)
593 {
594     return tcg_region_alloc__locked(s);
595 }
596 
597 /* Call from a safe-work context */
598 void tcg_region_reset_all(void)
599 {
600     unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
601     unsigned int i;
602 
603     qemu_mutex_lock(&region.lock);
604     region.current = 0;
605     region.agg_size_full = 0;
606 
607     for (i = 0; i < n_ctxs; i++) {
608         TCGContext *s = atomic_read(&tcg_ctxs[i]);
609         bool err = tcg_region_initial_alloc__locked(s);
610 
611         g_assert(!err);
612     }
613     qemu_mutex_unlock(&region.lock);
614 
615     tcg_region_tree_reset_all();
616 }
617 
618 #ifdef CONFIG_USER_ONLY
619 static size_t tcg_n_regions(void)
620 {
621     return 1;
622 }
623 #else
624 /*
625  * It is likely that some vCPUs will translate more code than others, so we
626  * first try to set more regions than max_cpus, with those regions being of
627  * reasonable size. If that's not possible we make do by evenly dividing
628  * the code_gen_buffer among the vCPUs.
629  */
630 static size_t tcg_n_regions(void)
631 {
632     size_t i;
633 
634     /* Use a single region if all we have is one vCPU thread */
635 #if !defined(CONFIG_USER_ONLY)
636     MachineState *ms = MACHINE(qdev_get_machine());
637     unsigned int max_cpus = ms->smp.max_cpus;
638 #endif
639     if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) {
640         return 1;
641     }
642 
643     /* Try to have more regions than max_cpus, with each region being >= 2 MB */
644     for (i = 8; i > 0; i--) {
645         size_t regions_per_thread = i;
646         size_t region_size;
647 
648         region_size = tcg_init_ctx.code_gen_buffer_size;
649         region_size /= max_cpus * regions_per_thread;
650 
651         if (region_size >= 2 * 1024u * 1024) {
652             return max_cpus * regions_per_thread;
653         }
654     }
655     /* If we can't, then just allocate one region per vCPU thread */
656     return max_cpus;
657 }
658 #endif
659 
660 /*
661  * Initializes region partitioning.
662  *
663  * Called at init time from the parent thread (i.e. the one calling
664  * tcg_context_init), after the target's TCG globals have been set.
665  *
666  * Region partitioning works by splitting code_gen_buffer into separate regions,
667  * and then assigning regions to TCG threads so that the threads can translate
668  * code in parallel without synchronization.
669  *
670  * In softmmu the number of TCG threads is bounded by max_cpus, so we use at
671  * least max_cpus regions in MTTCG. In !MTTCG we use a single region.
672  * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...])
673  * must have been parsed before calling this function, since it calls
674  * qemu_tcg_mttcg_enabled().
675  *
676  * In user-mode we use a single region.  Having multiple regions in user-mode
677  * is not supported, because the number of vCPU threads (recall that each thread
678  * spawned by the guest corresponds to a vCPU thread) is only bounded by the
679  * OS, and usually this number is huge (tens of thousands is not uncommon).
680  * Thus, given this large bound on the number of vCPU threads and the fact
681  * that code_gen_buffer is allocated at compile-time, we cannot guarantee
682  * that the availability of at least one region per vCPU thread.
683  *
684  * However, this user-mode limitation is unlikely to be a significant problem
685  * in practice. Multi-threaded guests share most if not all of their translated
686  * code, which makes parallel code generation less appealing than in softmmu.
687  */
688 void tcg_region_init(void)
689 {
690     void *buf = tcg_init_ctx.code_gen_buffer;
691     void *aligned;
692     size_t size = tcg_init_ctx.code_gen_buffer_size;
693     size_t page_size = qemu_real_host_page_size;
694     size_t region_size;
695     size_t n_regions;
696     size_t i;
697 
698     n_regions = tcg_n_regions();
699 
700     /* The first region will be 'aligned - buf' bytes larger than the others */
701     aligned = QEMU_ALIGN_PTR_UP(buf, page_size);
702     g_assert(aligned < tcg_init_ctx.code_gen_buffer + size);
703     /*
704      * Make region_size a multiple of page_size, using aligned as the start.
705      * As a result of this we might end up with a few extra pages at the end of
706      * the buffer; we will assign those to the last region.
707      */
708     region_size = (size - (aligned - buf)) / n_regions;
709     region_size = QEMU_ALIGN_DOWN(region_size, page_size);
710 
711     /* A region must have at least 2 pages; one code, one guard */
712     g_assert(region_size >= 2 * page_size);
713 
714     /* init the region struct */
715     qemu_mutex_init(&region.lock);
716     region.n = n_regions;
717     region.size = region_size - page_size;
718     region.stride = region_size;
719     region.start = buf;
720     region.start_aligned = aligned;
721     /* page-align the end, since its last page will be a guard page */
722     region.end = QEMU_ALIGN_PTR_DOWN(buf + size, page_size);
723     /* account for that last guard page */
724     region.end -= page_size;
725 
726     /* set guard pages */
727     for (i = 0; i < region.n; i++) {
728         void *start, *end;
729         int rc;
730 
731         tcg_region_bounds(i, &start, &end);
732         rc = qemu_mprotect_none(end, page_size);
733         g_assert(!rc);
734     }
735 
736     tcg_region_trees_init();
737 
738     /* In user-mode we support only one ctx, so do the initial allocation now */
739 #ifdef CONFIG_USER_ONLY
740     {
741         bool err = tcg_region_initial_alloc__locked(tcg_ctx);
742 
743         g_assert(!err);
744     }
745 #endif
746 }
747 
748 static void alloc_tcg_plugin_context(TCGContext *s)
749 {
750 #ifdef CONFIG_PLUGIN
751     s->plugin_tb = g_new0(struct qemu_plugin_tb, 1);
752     s->plugin_tb->insns =
753         g_ptr_array_new_with_free_func(qemu_plugin_insn_cleanup_fn);
754 #endif
755 }
756 
757 /*
758  * All TCG threads except the parent (i.e. the one that called tcg_context_init
759  * and registered the target's TCG globals) must register with this function
760  * before initiating translation.
761  *
762  * In user-mode we just point tcg_ctx to tcg_init_ctx. See the documentation
763  * of tcg_region_init() for the reasoning behind this.
764  *
765  * In softmmu each caller registers its context in tcg_ctxs[]. Note that in
766  * softmmu tcg_ctxs[] does not track tcg_ctx_init, since the initial context
767  * is not used anymore for translation once this function is called.
768  *
769  * Not tracking tcg_init_ctx in tcg_ctxs[] in softmmu keeps code that iterates
770  * over the array (e.g. tcg_code_size() the same for both softmmu and user-mode.
771  */
772 #ifdef CONFIG_USER_ONLY
773 void tcg_register_thread(void)
774 {
775     tcg_ctx = &tcg_init_ctx;
776 }
777 #else
778 void tcg_register_thread(void)
779 {
780     MachineState *ms = MACHINE(qdev_get_machine());
781     TCGContext *s = g_malloc(sizeof(*s));
782     unsigned int i, n;
783     bool err;
784 
785     *s = tcg_init_ctx;
786 
787     /* Relink mem_base.  */
788     for (i = 0, n = tcg_init_ctx.nb_globals; i < n; ++i) {
789         if (tcg_init_ctx.temps[i].mem_base) {
790             ptrdiff_t b = tcg_init_ctx.temps[i].mem_base - tcg_init_ctx.temps;
791             tcg_debug_assert(b >= 0 && b < n);
792             s->temps[i].mem_base = &s->temps[b];
793         }
794     }
795 
796     /* Claim an entry in tcg_ctxs */
797     n = atomic_fetch_inc(&n_tcg_ctxs);
798     g_assert(n < ms->smp.max_cpus);
799     atomic_set(&tcg_ctxs[n], s);
800 
801     if (n > 0) {
802         alloc_tcg_plugin_context(s);
803     }
804 
805     tcg_ctx = s;
806     qemu_mutex_lock(&region.lock);
807     err = tcg_region_initial_alloc__locked(tcg_ctx);
808     g_assert(!err);
809     qemu_mutex_unlock(&region.lock);
810 }
811 #endif /* !CONFIG_USER_ONLY */
812 
813 /*
814  * Returns the size (in bytes) of all translated code (i.e. from all regions)
815  * currently in the cache.
816  * See also: tcg_code_capacity()
817  * Do not confuse with tcg_current_code_size(); that one applies to a single
818  * TCG context.
819  */
820 size_t tcg_code_size(void)
821 {
822     unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
823     unsigned int i;
824     size_t total;
825 
826     qemu_mutex_lock(&region.lock);
827     total = region.agg_size_full;
828     for (i = 0; i < n_ctxs; i++) {
829         const TCGContext *s = atomic_read(&tcg_ctxs[i]);
830         size_t size;
831 
832         size = atomic_read(&s->code_gen_ptr) - s->code_gen_buffer;
833         g_assert(size <= s->code_gen_buffer_size);
834         total += size;
835     }
836     qemu_mutex_unlock(&region.lock);
837     return total;
838 }
839 
840 /*
841  * Returns the code capacity (in bytes) of the entire cache, i.e. including all
842  * regions.
843  * See also: tcg_code_size()
844  */
845 size_t tcg_code_capacity(void)
846 {
847     size_t guard_size, capacity;
848 
849     /* no need for synchronization; these variables are set at init time */
850     guard_size = region.stride - region.size;
851     capacity = region.end + guard_size - region.start;
852     capacity -= region.n * (guard_size + TCG_HIGHWATER);
853     return capacity;
854 }
855 
856 size_t tcg_tb_phys_invalidate_count(void)
857 {
858     unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
859     unsigned int i;
860     size_t total = 0;
861 
862     for (i = 0; i < n_ctxs; i++) {
863         const TCGContext *s = atomic_read(&tcg_ctxs[i]);
864 
865         total += atomic_read(&s->tb_phys_invalidate_count);
866     }
867     return total;
868 }
869 
870 /* pool based memory allocation */
871 void *tcg_malloc_internal(TCGContext *s, int size)
872 {
873     TCGPool *p;
874     int pool_size;
875 
876     if (size > TCG_POOL_CHUNK_SIZE) {
877         /* big malloc: insert a new pool (XXX: could optimize) */
878         p = g_malloc(sizeof(TCGPool) + size);
879         p->size = size;
880         p->next = s->pool_first_large;
881         s->pool_first_large = p;
882         return p->data;
883     } else {
884         p = s->pool_current;
885         if (!p) {
886             p = s->pool_first;
887             if (!p)
888                 goto new_pool;
889         } else {
890             if (!p->next) {
891             new_pool:
892                 pool_size = TCG_POOL_CHUNK_SIZE;
893                 p = g_malloc(sizeof(TCGPool) + pool_size);
894                 p->size = pool_size;
895                 p->next = NULL;
896                 if (s->pool_current)
897                     s->pool_current->next = p;
898                 else
899                     s->pool_first = p;
900             } else {
901                 p = p->next;
902             }
903         }
904     }
905     s->pool_current = p;
906     s->pool_cur = p->data + size;
907     s->pool_end = p->data + p->size;
908     return p->data;
909 }
910 
911 void tcg_pool_reset(TCGContext *s)
912 {
913     TCGPool *p, *t;
914     for (p = s->pool_first_large; p; p = t) {
915         t = p->next;
916         g_free(p);
917     }
918     s->pool_first_large = NULL;
919     s->pool_cur = s->pool_end = NULL;
920     s->pool_current = NULL;
921 }
922 
923 typedef struct TCGHelperInfo {
924     void *func;
925     const char *name;
926     unsigned flags;
927     unsigned sizemask;
928 } TCGHelperInfo;
929 
930 #include "exec/helper-proto.h"
931 
932 static const TCGHelperInfo all_helpers[] = {
933 #include "exec/helper-tcg.h"
934 };
935 static GHashTable *helper_table;
936 
937 static int indirect_reg_alloc_order[ARRAY_SIZE(tcg_target_reg_alloc_order)];
938 static void process_op_defs(TCGContext *s);
939 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type,
940                                             TCGReg reg, const char *name);
941 
942 void tcg_context_init(TCGContext *s)
943 {
944     int op, total_args, n, i;
945     TCGOpDef *def;
946     TCGArgConstraint *args_ct;
947     int *sorted_args;
948     TCGTemp *ts;
949 
950     memset(s, 0, sizeof(*s));
951     s->nb_globals = 0;
952 
953     /* Count total number of arguments and allocate the corresponding
954        space */
955     total_args = 0;
956     for(op = 0; op < NB_OPS; op++) {
957         def = &tcg_op_defs[op];
958         n = def->nb_iargs + def->nb_oargs;
959         total_args += n;
960     }
961 
962     args_ct = g_malloc(sizeof(TCGArgConstraint) * total_args);
963     sorted_args = g_malloc(sizeof(int) * total_args);
964 
965     for(op = 0; op < NB_OPS; op++) {
966         def = &tcg_op_defs[op];
967         def->args_ct = args_ct;
968         def->sorted_args = sorted_args;
969         n = def->nb_iargs + def->nb_oargs;
970         sorted_args += n;
971         args_ct += n;
972     }
973 
974     /* Register helpers.  */
975     /* Use g_direct_hash/equal for direct pointer comparisons on func.  */
976     helper_table = g_hash_table_new(NULL, NULL);
977 
978     for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) {
979         g_hash_table_insert(helper_table, (gpointer)all_helpers[i].func,
980                             (gpointer)&all_helpers[i]);
981     }
982 
983     tcg_target_init(s);
984     process_op_defs(s);
985 
986     /* Reverse the order of the saved registers, assuming they're all at
987        the start of tcg_target_reg_alloc_order.  */
988     for (n = 0; n < ARRAY_SIZE(tcg_target_reg_alloc_order); ++n) {
989         int r = tcg_target_reg_alloc_order[n];
990         if (tcg_regset_test_reg(tcg_target_call_clobber_regs, r)) {
991             break;
992         }
993     }
994     for (i = 0; i < n; ++i) {
995         indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[n - 1 - i];
996     }
997     for (; i < ARRAY_SIZE(tcg_target_reg_alloc_order); ++i) {
998         indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[i];
999     }
1000 
1001     alloc_tcg_plugin_context(s);
1002 
1003     tcg_ctx = s;
1004     /*
1005      * In user-mode we simply share the init context among threads, since we
1006      * use a single region. See the documentation tcg_region_init() for the
1007      * reasoning behind this.
1008      * In softmmu we will have at most max_cpus TCG threads.
1009      */
1010 #ifdef CONFIG_USER_ONLY
1011     tcg_ctxs = &tcg_ctx;
1012     n_tcg_ctxs = 1;
1013 #else
1014     MachineState *ms = MACHINE(qdev_get_machine());
1015     unsigned int max_cpus = ms->smp.max_cpus;
1016     tcg_ctxs = g_new(TCGContext *, max_cpus);
1017 #endif
1018 
1019     tcg_debug_assert(!tcg_regset_test_reg(s->reserved_regs, TCG_AREG0));
1020     ts = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, TCG_AREG0, "env");
1021     cpu_env = temp_tcgv_ptr(ts);
1022 }
1023 
1024 /*
1025  * Allocate TBs right before their corresponding translated code, making
1026  * sure that TBs and code are on different cache lines.
1027  */
1028 TranslationBlock *tcg_tb_alloc(TCGContext *s)
1029 {
1030     uintptr_t align = qemu_icache_linesize;
1031     TranslationBlock *tb;
1032     void *next;
1033 
1034  retry:
1035     tb = (void *)ROUND_UP((uintptr_t)s->code_gen_ptr, align);
1036     next = (void *)ROUND_UP((uintptr_t)(tb + 1), align);
1037 
1038     if (unlikely(next > s->code_gen_highwater)) {
1039         if (tcg_region_alloc(s)) {
1040             return NULL;
1041         }
1042         goto retry;
1043     }
1044     atomic_set(&s->code_gen_ptr, next);
1045     s->data_gen_ptr = NULL;
1046     return tb;
1047 }
1048 
1049 void tcg_prologue_init(TCGContext *s)
1050 {
1051     size_t prologue_size, total_size;
1052     void *buf0, *buf1;
1053 
1054     /* Put the prologue at the beginning of code_gen_buffer.  */
1055     buf0 = s->code_gen_buffer;
1056     total_size = s->code_gen_buffer_size;
1057     s->code_ptr = buf0;
1058     s->code_buf = buf0;
1059     s->data_gen_ptr = NULL;
1060     s->code_gen_prologue = buf0;
1061 
1062     /* Compute a high-water mark, at which we voluntarily flush the buffer
1063        and start over.  The size here is arbitrary, significantly larger
1064        than we expect the code generation for any one opcode to require.  */
1065     s->code_gen_highwater = s->code_gen_buffer + (total_size - TCG_HIGHWATER);
1066 
1067 #ifdef TCG_TARGET_NEED_POOL_LABELS
1068     s->pool_labels = NULL;
1069 #endif
1070 
1071     /* Generate the prologue.  */
1072     tcg_target_qemu_prologue(s);
1073 
1074 #ifdef TCG_TARGET_NEED_POOL_LABELS
1075     /* Allow the prologue to put e.g. guest_base into a pool entry.  */
1076     {
1077         int result = tcg_out_pool_finalize(s);
1078         tcg_debug_assert(result == 0);
1079     }
1080 #endif
1081 
1082     buf1 = s->code_ptr;
1083     flush_icache_range((uintptr_t)buf0, (uintptr_t)buf1);
1084 
1085     /* Deduct the prologue from the buffer.  */
1086     prologue_size = tcg_current_code_size(s);
1087     s->code_gen_ptr = buf1;
1088     s->code_gen_buffer = buf1;
1089     s->code_buf = buf1;
1090     total_size -= prologue_size;
1091     s->code_gen_buffer_size = total_size;
1092 
1093     tcg_register_jit(s->code_gen_buffer, total_size);
1094 
1095 #ifdef DEBUG_DISAS
1096     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1097         FILE *logfile = qemu_log_lock();
1098         qemu_log("PROLOGUE: [size=%zu]\n", prologue_size);
1099         if (s->data_gen_ptr) {
1100             size_t code_size = s->data_gen_ptr - buf0;
1101             size_t data_size = prologue_size - code_size;
1102             size_t i;
1103 
1104             log_disas(buf0, code_size, NULL);
1105 
1106             for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1107                 if (sizeof(tcg_target_ulong) == 8) {
1108                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
1109                              (uintptr_t)s->data_gen_ptr + i,
1110                              *(uint64_t *)(s->data_gen_ptr + i));
1111                 } else {
1112                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
1113                              (uintptr_t)s->data_gen_ptr + i,
1114                              *(uint32_t *)(s->data_gen_ptr + i));
1115                 }
1116             }
1117         } else {
1118             log_disas(buf0, prologue_size, NULL);
1119         }
1120         qemu_log("\n");
1121         qemu_log_flush();
1122         qemu_log_unlock(logfile);
1123     }
1124 #endif
1125 
1126     /* Assert that goto_ptr is implemented completely.  */
1127     if (TCG_TARGET_HAS_goto_ptr) {
1128         tcg_debug_assert(s->code_gen_epilogue != NULL);
1129     }
1130 }
1131 
1132 void tcg_func_start(TCGContext *s)
1133 {
1134     tcg_pool_reset(s);
1135     s->nb_temps = s->nb_globals;
1136 
1137     /* No temps have been previously allocated for size or locality.  */
1138     memset(s->free_temps, 0, sizeof(s->free_temps));
1139 
1140     s->nb_ops = 0;
1141     s->nb_labels = 0;
1142     s->current_frame_offset = s->frame_start;
1143 
1144 #ifdef CONFIG_DEBUG_TCG
1145     s->goto_tb_issue_mask = 0;
1146 #endif
1147 
1148     QTAILQ_INIT(&s->ops);
1149     QTAILQ_INIT(&s->free_ops);
1150     QSIMPLEQ_INIT(&s->labels);
1151 }
1152 
1153 static inline TCGTemp *tcg_temp_alloc(TCGContext *s)
1154 {
1155     int n = s->nb_temps++;
1156     tcg_debug_assert(n < TCG_MAX_TEMPS);
1157     return memset(&s->temps[n], 0, sizeof(TCGTemp));
1158 }
1159 
1160 static inline TCGTemp *tcg_global_alloc(TCGContext *s)
1161 {
1162     TCGTemp *ts;
1163 
1164     tcg_debug_assert(s->nb_globals == s->nb_temps);
1165     s->nb_globals++;
1166     ts = tcg_temp_alloc(s);
1167     ts->temp_global = 1;
1168 
1169     return ts;
1170 }
1171 
1172 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type,
1173                                             TCGReg reg, const char *name)
1174 {
1175     TCGTemp *ts;
1176 
1177     if (TCG_TARGET_REG_BITS == 32 && type != TCG_TYPE_I32) {
1178         tcg_abort();
1179     }
1180 
1181     ts = tcg_global_alloc(s);
1182     ts->base_type = type;
1183     ts->type = type;
1184     ts->fixed_reg = 1;
1185     ts->reg = reg;
1186     ts->name = name;
1187     tcg_regset_set_reg(s->reserved_regs, reg);
1188 
1189     return ts;
1190 }
1191 
1192 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size)
1193 {
1194     s->frame_start = start;
1195     s->frame_end = start + size;
1196     s->frame_temp
1197         = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, reg, "_frame");
1198 }
1199 
1200 TCGTemp *tcg_global_mem_new_internal(TCGType type, TCGv_ptr base,
1201                                      intptr_t offset, const char *name)
1202 {
1203     TCGContext *s = tcg_ctx;
1204     TCGTemp *base_ts = tcgv_ptr_temp(base);
1205     TCGTemp *ts = tcg_global_alloc(s);
1206     int indirect_reg = 0, bigendian = 0;
1207 #ifdef HOST_WORDS_BIGENDIAN
1208     bigendian = 1;
1209 #endif
1210 
1211     if (!base_ts->fixed_reg) {
1212         /* We do not support double-indirect registers.  */
1213         tcg_debug_assert(!base_ts->indirect_reg);
1214         base_ts->indirect_base = 1;
1215         s->nb_indirects += (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64
1216                             ? 2 : 1);
1217         indirect_reg = 1;
1218     }
1219 
1220     if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) {
1221         TCGTemp *ts2 = tcg_global_alloc(s);
1222         char buf[64];
1223 
1224         ts->base_type = TCG_TYPE_I64;
1225         ts->type = TCG_TYPE_I32;
1226         ts->indirect_reg = indirect_reg;
1227         ts->mem_allocated = 1;
1228         ts->mem_base = base_ts;
1229         ts->mem_offset = offset + bigendian * 4;
1230         pstrcpy(buf, sizeof(buf), name);
1231         pstrcat(buf, sizeof(buf), "_0");
1232         ts->name = strdup(buf);
1233 
1234         tcg_debug_assert(ts2 == ts + 1);
1235         ts2->base_type = TCG_TYPE_I64;
1236         ts2->type = TCG_TYPE_I32;
1237         ts2->indirect_reg = indirect_reg;
1238         ts2->mem_allocated = 1;
1239         ts2->mem_base = base_ts;
1240         ts2->mem_offset = offset + (1 - bigendian) * 4;
1241         pstrcpy(buf, sizeof(buf), name);
1242         pstrcat(buf, sizeof(buf), "_1");
1243         ts2->name = strdup(buf);
1244     } else {
1245         ts->base_type = type;
1246         ts->type = type;
1247         ts->indirect_reg = indirect_reg;
1248         ts->mem_allocated = 1;
1249         ts->mem_base = base_ts;
1250         ts->mem_offset = offset;
1251         ts->name = name;
1252     }
1253     return ts;
1254 }
1255 
1256 TCGTemp *tcg_temp_new_internal(TCGType type, bool temp_local)
1257 {
1258     TCGContext *s = tcg_ctx;
1259     TCGTemp *ts;
1260     int idx, k;
1261 
1262     k = type + (temp_local ? TCG_TYPE_COUNT : 0);
1263     idx = find_first_bit(s->free_temps[k].l, TCG_MAX_TEMPS);
1264     if (idx < TCG_MAX_TEMPS) {
1265         /* There is already an available temp with the right type.  */
1266         clear_bit(idx, s->free_temps[k].l);
1267 
1268         ts = &s->temps[idx];
1269         ts->temp_allocated = 1;
1270         tcg_debug_assert(ts->base_type == type);
1271         tcg_debug_assert(ts->temp_local == temp_local);
1272     } else {
1273         ts = tcg_temp_alloc(s);
1274         if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) {
1275             TCGTemp *ts2 = tcg_temp_alloc(s);
1276 
1277             ts->base_type = type;
1278             ts->type = TCG_TYPE_I32;
1279             ts->temp_allocated = 1;
1280             ts->temp_local = temp_local;
1281 
1282             tcg_debug_assert(ts2 == ts + 1);
1283             ts2->base_type = TCG_TYPE_I64;
1284             ts2->type = TCG_TYPE_I32;
1285             ts2->temp_allocated = 1;
1286             ts2->temp_local = temp_local;
1287         } else {
1288             ts->base_type = type;
1289             ts->type = type;
1290             ts->temp_allocated = 1;
1291             ts->temp_local = temp_local;
1292         }
1293     }
1294 
1295 #if defined(CONFIG_DEBUG_TCG)
1296     s->temps_in_use++;
1297 #endif
1298     return ts;
1299 }
1300 
1301 TCGv_vec tcg_temp_new_vec(TCGType type)
1302 {
1303     TCGTemp *t;
1304 
1305 #ifdef CONFIG_DEBUG_TCG
1306     switch (type) {
1307     case TCG_TYPE_V64:
1308         assert(TCG_TARGET_HAS_v64);
1309         break;
1310     case TCG_TYPE_V128:
1311         assert(TCG_TARGET_HAS_v128);
1312         break;
1313     case TCG_TYPE_V256:
1314         assert(TCG_TARGET_HAS_v256);
1315         break;
1316     default:
1317         g_assert_not_reached();
1318     }
1319 #endif
1320 
1321     t = tcg_temp_new_internal(type, 0);
1322     return temp_tcgv_vec(t);
1323 }
1324 
1325 /* Create a new temp of the same type as an existing temp.  */
1326 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match)
1327 {
1328     TCGTemp *t = tcgv_vec_temp(match);
1329 
1330     tcg_debug_assert(t->temp_allocated != 0);
1331 
1332     t = tcg_temp_new_internal(t->base_type, 0);
1333     return temp_tcgv_vec(t);
1334 }
1335 
1336 void tcg_temp_free_internal(TCGTemp *ts)
1337 {
1338     TCGContext *s = tcg_ctx;
1339     int k, idx;
1340 
1341 #if defined(CONFIG_DEBUG_TCG)
1342     s->temps_in_use--;
1343     if (s->temps_in_use < 0) {
1344         fprintf(stderr, "More temporaries freed than allocated!\n");
1345     }
1346 #endif
1347 
1348     tcg_debug_assert(ts->temp_global == 0);
1349     tcg_debug_assert(ts->temp_allocated != 0);
1350     ts->temp_allocated = 0;
1351 
1352     idx = temp_idx(ts);
1353     k = ts->base_type + (ts->temp_local ? TCG_TYPE_COUNT : 0);
1354     set_bit(idx, s->free_temps[k].l);
1355 }
1356 
1357 TCGv_i32 tcg_const_i32(int32_t val)
1358 {
1359     TCGv_i32 t0;
1360     t0 = tcg_temp_new_i32();
1361     tcg_gen_movi_i32(t0, val);
1362     return t0;
1363 }
1364 
1365 TCGv_i64 tcg_const_i64(int64_t val)
1366 {
1367     TCGv_i64 t0;
1368     t0 = tcg_temp_new_i64();
1369     tcg_gen_movi_i64(t0, val);
1370     return t0;
1371 }
1372 
1373 TCGv_i32 tcg_const_local_i32(int32_t val)
1374 {
1375     TCGv_i32 t0;
1376     t0 = tcg_temp_local_new_i32();
1377     tcg_gen_movi_i32(t0, val);
1378     return t0;
1379 }
1380 
1381 TCGv_i64 tcg_const_local_i64(int64_t val)
1382 {
1383     TCGv_i64 t0;
1384     t0 = tcg_temp_local_new_i64();
1385     tcg_gen_movi_i64(t0, val);
1386     return t0;
1387 }
1388 
1389 #if defined(CONFIG_DEBUG_TCG)
1390 void tcg_clear_temp_count(void)
1391 {
1392     TCGContext *s = tcg_ctx;
1393     s->temps_in_use = 0;
1394 }
1395 
1396 int tcg_check_temp_count(void)
1397 {
1398     TCGContext *s = tcg_ctx;
1399     if (s->temps_in_use) {
1400         /* Clear the count so that we don't give another
1401          * warning immediately next time around.
1402          */
1403         s->temps_in_use = 0;
1404         return 1;
1405     }
1406     return 0;
1407 }
1408 #endif
1409 
1410 /* Return true if OP may appear in the opcode stream.
1411    Test the runtime variable that controls each opcode.  */
1412 bool tcg_op_supported(TCGOpcode op)
1413 {
1414     const bool have_vec
1415         = TCG_TARGET_HAS_v64 | TCG_TARGET_HAS_v128 | TCG_TARGET_HAS_v256;
1416 
1417     switch (op) {
1418     case INDEX_op_discard:
1419     case INDEX_op_set_label:
1420     case INDEX_op_call:
1421     case INDEX_op_br:
1422     case INDEX_op_mb:
1423     case INDEX_op_insn_start:
1424     case INDEX_op_exit_tb:
1425     case INDEX_op_goto_tb:
1426     case INDEX_op_qemu_ld_i32:
1427     case INDEX_op_qemu_st_i32:
1428     case INDEX_op_qemu_ld_i64:
1429     case INDEX_op_qemu_st_i64:
1430         return true;
1431 
1432     case INDEX_op_goto_ptr:
1433         return TCG_TARGET_HAS_goto_ptr;
1434 
1435     case INDEX_op_mov_i32:
1436     case INDEX_op_movi_i32:
1437     case INDEX_op_setcond_i32:
1438     case INDEX_op_brcond_i32:
1439     case INDEX_op_ld8u_i32:
1440     case INDEX_op_ld8s_i32:
1441     case INDEX_op_ld16u_i32:
1442     case INDEX_op_ld16s_i32:
1443     case INDEX_op_ld_i32:
1444     case INDEX_op_st8_i32:
1445     case INDEX_op_st16_i32:
1446     case INDEX_op_st_i32:
1447     case INDEX_op_add_i32:
1448     case INDEX_op_sub_i32:
1449     case INDEX_op_mul_i32:
1450     case INDEX_op_and_i32:
1451     case INDEX_op_or_i32:
1452     case INDEX_op_xor_i32:
1453     case INDEX_op_shl_i32:
1454     case INDEX_op_shr_i32:
1455     case INDEX_op_sar_i32:
1456         return true;
1457 
1458     case INDEX_op_movcond_i32:
1459         return TCG_TARGET_HAS_movcond_i32;
1460     case INDEX_op_div_i32:
1461     case INDEX_op_divu_i32:
1462         return TCG_TARGET_HAS_div_i32;
1463     case INDEX_op_rem_i32:
1464     case INDEX_op_remu_i32:
1465         return TCG_TARGET_HAS_rem_i32;
1466     case INDEX_op_div2_i32:
1467     case INDEX_op_divu2_i32:
1468         return TCG_TARGET_HAS_div2_i32;
1469     case INDEX_op_rotl_i32:
1470     case INDEX_op_rotr_i32:
1471         return TCG_TARGET_HAS_rot_i32;
1472     case INDEX_op_deposit_i32:
1473         return TCG_TARGET_HAS_deposit_i32;
1474     case INDEX_op_extract_i32:
1475         return TCG_TARGET_HAS_extract_i32;
1476     case INDEX_op_sextract_i32:
1477         return TCG_TARGET_HAS_sextract_i32;
1478     case INDEX_op_extract2_i32:
1479         return TCG_TARGET_HAS_extract2_i32;
1480     case INDEX_op_add2_i32:
1481         return TCG_TARGET_HAS_add2_i32;
1482     case INDEX_op_sub2_i32:
1483         return TCG_TARGET_HAS_sub2_i32;
1484     case INDEX_op_mulu2_i32:
1485         return TCG_TARGET_HAS_mulu2_i32;
1486     case INDEX_op_muls2_i32:
1487         return TCG_TARGET_HAS_muls2_i32;
1488     case INDEX_op_muluh_i32:
1489         return TCG_TARGET_HAS_muluh_i32;
1490     case INDEX_op_mulsh_i32:
1491         return TCG_TARGET_HAS_mulsh_i32;
1492     case INDEX_op_ext8s_i32:
1493         return TCG_TARGET_HAS_ext8s_i32;
1494     case INDEX_op_ext16s_i32:
1495         return TCG_TARGET_HAS_ext16s_i32;
1496     case INDEX_op_ext8u_i32:
1497         return TCG_TARGET_HAS_ext8u_i32;
1498     case INDEX_op_ext16u_i32:
1499         return TCG_TARGET_HAS_ext16u_i32;
1500     case INDEX_op_bswap16_i32:
1501         return TCG_TARGET_HAS_bswap16_i32;
1502     case INDEX_op_bswap32_i32:
1503         return TCG_TARGET_HAS_bswap32_i32;
1504     case INDEX_op_not_i32:
1505         return TCG_TARGET_HAS_not_i32;
1506     case INDEX_op_neg_i32:
1507         return TCG_TARGET_HAS_neg_i32;
1508     case INDEX_op_andc_i32:
1509         return TCG_TARGET_HAS_andc_i32;
1510     case INDEX_op_orc_i32:
1511         return TCG_TARGET_HAS_orc_i32;
1512     case INDEX_op_eqv_i32:
1513         return TCG_TARGET_HAS_eqv_i32;
1514     case INDEX_op_nand_i32:
1515         return TCG_TARGET_HAS_nand_i32;
1516     case INDEX_op_nor_i32:
1517         return TCG_TARGET_HAS_nor_i32;
1518     case INDEX_op_clz_i32:
1519         return TCG_TARGET_HAS_clz_i32;
1520     case INDEX_op_ctz_i32:
1521         return TCG_TARGET_HAS_ctz_i32;
1522     case INDEX_op_ctpop_i32:
1523         return TCG_TARGET_HAS_ctpop_i32;
1524 
1525     case INDEX_op_brcond2_i32:
1526     case INDEX_op_setcond2_i32:
1527         return TCG_TARGET_REG_BITS == 32;
1528 
1529     case INDEX_op_mov_i64:
1530     case INDEX_op_movi_i64:
1531     case INDEX_op_setcond_i64:
1532     case INDEX_op_brcond_i64:
1533     case INDEX_op_ld8u_i64:
1534     case INDEX_op_ld8s_i64:
1535     case INDEX_op_ld16u_i64:
1536     case INDEX_op_ld16s_i64:
1537     case INDEX_op_ld32u_i64:
1538     case INDEX_op_ld32s_i64:
1539     case INDEX_op_ld_i64:
1540     case INDEX_op_st8_i64:
1541     case INDEX_op_st16_i64:
1542     case INDEX_op_st32_i64:
1543     case INDEX_op_st_i64:
1544     case INDEX_op_add_i64:
1545     case INDEX_op_sub_i64:
1546     case INDEX_op_mul_i64:
1547     case INDEX_op_and_i64:
1548     case INDEX_op_or_i64:
1549     case INDEX_op_xor_i64:
1550     case INDEX_op_shl_i64:
1551     case INDEX_op_shr_i64:
1552     case INDEX_op_sar_i64:
1553     case INDEX_op_ext_i32_i64:
1554     case INDEX_op_extu_i32_i64:
1555         return TCG_TARGET_REG_BITS == 64;
1556 
1557     case INDEX_op_movcond_i64:
1558         return TCG_TARGET_HAS_movcond_i64;
1559     case INDEX_op_div_i64:
1560     case INDEX_op_divu_i64:
1561         return TCG_TARGET_HAS_div_i64;
1562     case INDEX_op_rem_i64:
1563     case INDEX_op_remu_i64:
1564         return TCG_TARGET_HAS_rem_i64;
1565     case INDEX_op_div2_i64:
1566     case INDEX_op_divu2_i64:
1567         return TCG_TARGET_HAS_div2_i64;
1568     case INDEX_op_rotl_i64:
1569     case INDEX_op_rotr_i64:
1570         return TCG_TARGET_HAS_rot_i64;
1571     case INDEX_op_deposit_i64:
1572         return TCG_TARGET_HAS_deposit_i64;
1573     case INDEX_op_extract_i64:
1574         return TCG_TARGET_HAS_extract_i64;
1575     case INDEX_op_sextract_i64:
1576         return TCG_TARGET_HAS_sextract_i64;
1577     case INDEX_op_extract2_i64:
1578         return TCG_TARGET_HAS_extract2_i64;
1579     case INDEX_op_extrl_i64_i32:
1580         return TCG_TARGET_HAS_extrl_i64_i32;
1581     case INDEX_op_extrh_i64_i32:
1582         return TCG_TARGET_HAS_extrh_i64_i32;
1583     case INDEX_op_ext8s_i64:
1584         return TCG_TARGET_HAS_ext8s_i64;
1585     case INDEX_op_ext16s_i64:
1586         return TCG_TARGET_HAS_ext16s_i64;
1587     case INDEX_op_ext32s_i64:
1588         return TCG_TARGET_HAS_ext32s_i64;
1589     case INDEX_op_ext8u_i64:
1590         return TCG_TARGET_HAS_ext8u_i64;
1591     case INDEX_op_ext16u_i64:
1592         return TCG_TARGET_HAS_ext16u_i64;
1593     case INDEX_op_ext32u_i64:
1594         return TCG_TARGET_HAS_ext32u_i64;
1595     case INDEX_op_bswap16_i64:
1596         return TCG_TARGET_HAS_bswap16_i64;
1597     case INDEX_op_bswap32_i64:
1598         return TCG_TARGET_HAS_bswap32_i64;
1599     case INDEX_op_bswap64_i64:
1600         return TCG_TARGET_HAS_bswap64_i64;
1601     case INDEX_op_not_i64:
1602         return TCG_TARGET_HAS_not_i64;
1603     case INDEX_op_neg_i64:
1604         return TCG_TARGET_HAS_neg_i64;
1605     case INDEX_op_andc_i64:
1606         return TCG_TARGET_HAS_andc_i64;
1607     case INDEX_op_orc_i64:
1608         return TCG_TARGET_HAS_orc_i64;
1609     case INDEX_op_eqv_i64:
1610         return TCG_TARGET_HAS_eqv_i64;
1611     case INDEX_op_nand_i64:
1612         return TCG_TARGET_HAS_nand_i64;
1613     case INDEX_op_nor_i64:
1614         return TCG_TARGET_HAS_nor_i64;
1615     case INDEX_op_clz_i64:
1616         return TCG_TARGET_HAS_clz_i64;
1617     case INDEX_op_ctz_i64:
1618         return TCG_TARGET_HAS_ctz_i64;
1619     case INDEX_op_ctpop_i64:
1620         return TCG_TARGET_HAS_ctpop_i64;
1621     case INDEX_op_add2_i64:
1622         return TCG_TARGET_HAS_add2_i64;
1623     case INDEX_op_sub2_i64:
1624         return TCG_TARGET_HAS_sub2_i64;
1625     case INDEX_op_mulu2_i64:
1626         return TCG_TARGET_HAS_mulu2_i64;
1627     case INDEX_op_muls2_i64:
1628         return TCG_TARGET_HAS_muls2_i64;
1629     case INDEX_op_muluh_i64:
1630         return TCG_TARGET_HAS_muluh_i64;
1631     case INDEX_op_mulsh_i64:
1632         return TCG_TARGET_HAS_mulsh_i64;
1633 
1634     case INDEX_op_mov_vec:
1635     case INDEX_op_dup_vec:
1636     case INDEX_op_dupi_vec:
1637     case INDEX_op_dupm_vec:
1638     case INDEX_op_ld_vec:
1639     case INDEX_op_st_vec:
1640     case INDEX_op_add_vec:
1641     case INDEX_op_sub_vec:
1642     case INDEX_op_and_vec:
1643     case INDEX_op_or_vec:
1644     case INDEX_op_xor_vec:
1645     case INDEX_op_cmp_vec:
1646         return have_vec;
1647     case INDEX_op_dup2_vec:
1648         return have_vec && TCG_TARGET_REG_BITS == 32;
1649     case INDEX_op_not_vec:
1650         return have_vec && TCG_TARGET_HAS_not_vec;
1651     case INDEX_op_neg_vec:
1652         return have_vec && TCG_TARGET_HAS_neg_vec;
1653     case INDEX_op_abs_vec:
1654         return have_vec && TCG_TARGET_HAS_abs_vec;
1655     case INDEX_op_andc_vec:
1656         return have_vec && TCG_TARGET_HAS_andc_vec;
1657     case INDEX_op_orc_vec:
1658         return have_vec && TCG_TARGET_HAS_orc_vec;
1659     case INDEX_op_mul_vec:
1660         return have_vec && TCG_TARGET_HAS_mul_vec;
1661     case INDEX_op_shli_vec:
1662     case INDEX_op_shri_vec:
1663     case INDEX_op_sari_vec:
1664         return have_vec && TCG_TARGET_HAS_shi_vec;
1665     case INDEX_op_shls_vec:
1666     case INDEX_op_shrs_vec:
1667     case INDEX_op_sars_vec:
1668         return have_vec && TCG_TARGET_HAS_shs_vec;
1669     case INDEX_op_shlv_vec:
1670     case INDEX_op_shrv_vec:
1671     case INDEX_op_sarv_vec:
1672         return have_vec && TCG_TARGET_HAS_shv_vec;
1673     case INDEX_op_rotli_vec:
1674         return have_vec && TCG_TARGET_HAS_roti_vec;
1675     case INDEX_op_rotls_vec:
1676         return have_vec && TCG_TARGET_HAS_rots_vec;
1677     case INDEX_op_rotlv_vec:
1678     case INDEX_op_rotrv_vec:
1679         return have_vec && TCG_TARGET_HAS_rotv_vec;
1680     case INDEX_op_ssadd_vec:
1681     case INDEX_op_usadd_vec:
1682     case INDEX_op_sssub_vec:
1683     case INDEX_op_ussub_vec:
1684         return have_vec && TCG_TARGET_HAS_sat_vec;
1685     case INDEX_op_smin_vec:
1686     case INDEX_op_umin_vec:
1687     case INDEX_op_smax_vec:
1688     case INDEX_op_umax_vec:
1689         return have_vec && TCG_TARGET_HAS_minmax_vec;
1690     case INDEX_op_bitsel_vec:
1691         return have_vec && TCG_TARGET_HAS_bitsel_vec;
1692     case INDEX_op_cmpsel_vec:
1693         return have_vec && TCG_TARGET_HAS_cmpsel_vec;
1694 
1695     default:
1696         tcg_debug_assert(op > INDEX_op_last_generic && op < NB_OPS);
1697         return true;
1698     }
1699 }
1700 
1701 /* Note: we convert the 64 bit args to 32 bit and do some alignment
1702    and endian swap. Maybe it would be better to do the alignment
1703    and endian swap in tcg_reg_alloc_call(). */
1704 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args)
1705 {
1706     int i, real_args, nb_rets, pi;
1707     unsigned sizemask, flags;
1708     TCGHelperInfo *info;
1709     TCGOp *op;
1710 
1711     info = g_hash_table_lookup(helper_table, (gpointer)func);
1712     flags = info->flags;
1713     sizemask = info->sizemask;
1714 
1715 #ifdef CONFIG_PLUGIN
1716     /* detect non-plugin helpers */
1717     if (tcg_ctx->plugin_insn && unlikely(strncmp(info->name, "plugin_", 7))) {
1718         tcg_ctx->plugin_insn->calls_helpers = true;
1719     }
1720 #endif
1721 
1722 #if defined(__sparc__) && !defined(__arch64__) \
1723     && !defined(CONFIG_TCG_INTERPRETER)
1724     /* We have 64-bit values in one register, but need to pass as two
1725        separate parameters.  Split them.  */
1726     int orig_sizemask = sizemask;
1727     int orig_nargs = nargs;
1728     TCGv_i64 retl, reth;
1729     TCGTemp *split_args[MAX_OPC_PARAM];
1730 
1731     retl = NULL;
1732     reth = NULL;
1733     if (sizemask != 0) {
1734         for (i = real_args = 0; i < nargs; ++i) {
1735             int is_64bit = sizemask & (1 << (i+1)*2);
1736             if (is_64bit) {
1737                 TCGv_i64 orig = temp_tcgv_i64(args[i]);
1738                 TCGv_i32 h = tcg_temp_new_i32();
1739                 TCGv_i32 l = tcg_temp_new_i32();
1740                 tcg_gen_extr_i64_i32(l, h, orig);
1741                 split_args[real_args++] = tcgv_i32_temp(h);
1742                 split_args[real_args++] = tcgv_i32_temp(l);
1743             } else {
1744                 split_args[real_args++] = args[i];
1745             }
1746         }
1747         nargs = real_args;
1748         args = split_args;
1749         sizemask = 0;
1750     }
1751 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64
1752     for (i = 0; i < nargs; ++i) {
1753         int is_64bit = sizemask & (1 << (i+1)*2);
1754         int is_signed = sizemask & (2 << (i+1)*2);
1755         if (!is_64bit) {
1756             TCGv_i64 temp = tcg_temp_new_i64();
1757             TCGv_i64 orig = temp_tcgv_i64(args[i]);
1758             if (is_signed) {
1759                 tcg_gen_ext32s_i64(temp, orig);
1760             } else {
1761                 tcg_gen_ext32u_i64(temp, orig);
1762             }
1763             args[i] = tcgv_i64_temp(temp);
1764         }
1765     }
1766 #endif /* TCG_TARGET_EXTEND_ARGS */
1767 
1768     op = tcg_emit_op(INDEX_op_call);
1769 
1770     pi = 0;
1771     if (ret != NULL) {
1772 #if defined(__sparc__) && !defined(__arch64__) \
1773     && !defined(CONFIG_TCG_INTERPRETER)
1774         if (orig_sizemask & 1) {
1775             /* The 32-bit ABI is going to return the 64-bit value in
1776                the %o0/%o1 register pair.  Prepare for this by using
1777                two return temporaries, and reassemble below.  */
1778             retl = tcg_temp_new_i64();
1779             reth = tcg_temp_new_i64();
1780             op->args[pi++] = tcgv_i64_arg(reth);
1781             op->args[pi++] = tcgv_i64_arg(retl);
1782             nb_rets = 2;
1783         } else {
1784             op->args[pi++] = temp_arg(ret);
1785             nb_rets = 1;
1786         }
1787 #else
1788         if (TCG_TARGET_REG_BITS < 64 && (sizemask & 1)) {
1789 #ifdef HOST_WORDS_BIGENDIAN
1790             op->args[pi++] = temp_arg(ret + 1);
1791             op->args[pi++] = temp_arg(ret);
1792 #else
1793             op->args[pi++] = temp_arg(ret);
1794             op->args[pi++] = temp_arg(ret + 1);
1795 #endif
1796             nb_rets = 2;
1797         } else {
1798             op->args[pi++] = temp_arg(ret);
1799             nb_rets = 1;
1800         }
1801 #endif
1802     } else {
1803         nb_rets = 0;
1804     }
1805     TCGOP_CALLO(op) = nb_rets;
1806 
1807     real_args = 0;
1808     for (i = 0; i < nargs; i++) {
1809         int is_64bit = sizemask & (1 << (i+1)*2);
1810         if (TCG_TARGET_REG_BITS < 64 && is_64bit) {
1811 #ifdef TCG_TARGET_CALL_ALIGN_ARGS
1812             /* some targets want aligned 64 bit args */
1813             if (real_args & 1) {
1814                 op->args[pi++] = TCG_CALL_DUMMY_ARG;
1815                 real_args++;
1816             }
1817 #endif
1818            /* If stack grows up, then we will be placing successive
1819               arguments at lower addresses, which means we need to
1820               reverse the order compared to how we would normally
1821               treat either big or little-endian.  For those arguments
1822               that will wind up in registers, this still works for
1823               HPPA (the only current STACK_GROWSUP target) since the
1824               argument registers are *also* allocated in decreasing
1825               order.  If another such target is added, this logic may
1826               have to get more complicated to differentiate between
1827               stack arguments and register arguments.  */
1828 #if defined(HOST_WORDS_BIGENDIAN) != defined(TCG_TARGET_STACK_GROWSUP)
1829             op->args[pi++] = temp_arg(args[i] + 1);
1830             op->args[pi++] = temp_arg(args[i]);
1831 #else
1832             op->args[pi++] = temp_arg(args[i]);
1833             op->args[pi++] = temp_arg(args[i] + 1);
1834 #endif
1835             real_args += 2;
1836             continue;
1837         }
1838 
1839         op->args[pi++] = temp_arg(args[i]);
1840         real_args++;
1841     }
1842     op->args[pi++] = (uintptr_t)func;
1843     op->args[pi++] = flags;
1844     TCGOP_CALLI(op) = real_args;
1845 
1846     /* Make sure the fields didn't overflow.  */
1847     tcg_debug_assert(TCGOP_CALLI(op) == real_args);
1848     tcg_debug_assert(pi <= ARRAY_SIZE(op->args));
1849 
1850 #if defined(__sparc__) && !defined(__arch64__) \
1851     && !defined(CONFIG_TCG_INTERPRETER)
1852     /* Free all of the parts we allocated above.  */
1853     for (i = real_args = 0; i < orig_nargs; ++i) {
1854         int is_64bit = orig_sizemask & (1 << (i+1)*2);
1855         if (is_64bit) {
1856             tcg_temp_free_internal(args[real_args++]);
1857             tcg_temp_free_internal(args[real_args++]);
1858         } else {
1859             real_args++;
1860         }
1861     }
1862     if (orig_sizemask & 1) {
1863         /* The 32-bit ABI returned two 32-bit pieces.  Re-assemble them.
1864            Note that describing these as TCGv_i64 eliminates an unnecessary
1865            zero-extension that tcg_gen_concat_i32_i64 would create.  */
1866         tcg_gen_concat32_i64(temp_tcgv_i64(ret), retl, reth);
1867         tcg_temp_free_i64(retl);
1868         tcg_temp_free_i64(reth);
1869     }
1870 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64
1871     for (i = 0; i < nargs; ++i) {
1872         int is_64bit = sizemask & (1 << (i+1)*2);
1873         if (!is_64bit) {
1874             tcg_temp_free_internal(args[i]);
1875         }
1876     }
1877 #endif /* TCG_TARGET_EXTEND_ARGS */
1878 }
1879 
1880 static void tcg_reg_alloc_start(TCGContext *s)
1881 {
1882     int i, n;
1883     TCGTemp *ts;
1884 
1885     for (i = 0, n = s->nb_globals; i < n; i++) {
1886         ts = &s->temps[i];
1887         ts->val_type = (ts->fixed_reg ? TEMP_VAL_REG : TEMP_VAL_MEM);
1888     }
1889     for (n = s->nb_temps; i < n; i++) {
1890         ts = &s->temps[i];
1891         ts->val_type = (ts->temp_local ? TEMP_VAL_MEM : TEMP_VAL_DEAD);
1892         ts->mem_allocated = 0;
1893         ts->fixed_reg = 0;
1894     }
1895 
1896     memset(s->reg_to_temp, 0, sizeof(s->reg_to_temp));
1897 }
1898 
1899 static char *tcg_get_arg_str_ptr(TCGContext *s, char *buf, int buf_size,
1900                                  TCGTemp *ts)
1901 {
1902     int idx = temp_idx(ts);
1903 
1904     if (ts->temp_global) {
1905         pstrcpy(buf, buf_size, ts->name);
1906     } else if (ts->temp_local) {
1907         snprintf(buf, buf_size, "loc%d", idx - s->nb_globals);
1908     } else {
1909         snprintf(buf, buf_size, "tmp%d", idx - s->nb_globals);
1910     }
1911     return buf;
1912 }
1913 
1914 static char *tcg_get_arg_str(TCGContext *s, char *buf,
1915                              int buf_size, TCGArg arg)
1916 {
1917     return tcg_get_arg_str_ptr(s, buf, buf_size, arg_temp(arg));
1918 }
1919 
1920 /* Find helper name.  */
1921 static inline const char *tcg_find_helper(TCGContext *s, uintptr_t val)
1922 {
1923     const char *ret = NULL;
1924     if (helper_table) {
1925         TCGHelperInfo *info = g_hash_table_lookup(helper_table, (gpointer)val);
1926         if (info) {
1927             ret = info->name;
1928         }
1929     }
1930     return ret;
1931 }
1932 
1933 static const char * const cond_name[] =
1934 {
1935     [TCG_COND_NEVER] = "never",
1936     [TCG_COND_ALWAYS] = "always",
1937     [TCG_COND_EQ] = "eq",
1938     [TCG_COND_NE] = "ne",
1939     [TCG_COND_LT] = "lt",
1940     [TCG_COND_GE] = "ge",
1941     [TCG_COND_LE] = "le",
1942     [TCG_COND_GT] = "gt",
1943     [TCG_COND_LTU] = "ltu",
1944     [TCG_COND_GEU] = "geu",
1945     [TCG_COND_LEU] = "leu",
1946     [TCG_COND_GTU] = "gtu"
1947 };
1948 
1949 static const char * const ldst_name[] =
1950 {
1951     [MO_UB]   = "ub",
1952     [MO_SB]   = "sb",
1953     [MO_LEUW] = "leuw",
1954     [MO_LESW] = "lesw",
1955     [MO_LEUL] = "leul",
1956     [MO_LESL] = "lesl",
1957     [MO_LEQ]  = "leq",
1958     [MO_BEUW] = "beuw",
1959     [MO_BESW] = "besw",
1960     [MO_BEUL] = "beul",
1961     [MO_BESL] = "besl",
1962     [MO_BEQ]  = "beq",
1963 };
1964 
1965 static const char * const alignment_name[(MO_AMASK >> MO_ASHIFT) + 1] = {
1966 #ifdef TARGET_ALIGNED_ONLY
1967     [MO_UNALN >> MO_ASHIFT]    = "un+",
1968     [MO_ALIGN >> MO_ASHIFT]    = "",
1969 #else
1970     [MO_UNALN >> MO_ASHIFT]    = "",
1971     [MO_ALIGN >> MO_ASHIFT]    = "al+",
1972 #endif
1973     [MO_ALIGN_2 >> MO_ASHIFT]  = "al2+",
1974     [MO_ALIGN_4 >> MO_ASHIFT]  = "al4+",
1975     [MO_ALIGN_8 >> MO_ASHIFT]  = "al8+",
1976     [MO_ALIGN_16 >> MO_ASHIFT] = "al16+",
1977     [MO_ALIGN_32 >> MO_ASHIFT] = "al32+",
1978     [MO_ALIGN_64 >> MO_ASHIFT] = "al64+",
1979 };
1980 
1981 static inline bool tcg_regset_single(TCGRegSet d)
1982 {
1983     return (d & (d - 1)) == 0;
1984 }
1985 
1986 static inline TCGReg tcg_regset_first(TCGRegSet d)
1987 {
1988     if (TCG_TARGET_NB_REGS <= 32) {
1989         return ctz32(d);
1990     } else {
1991         return ctz64(d);
1992     }
1993 }
1994 
1995 static void tcg_dump_ops(TCGContext *s, bool have_prefs)
1996 {
1997     char buf[128];
1998     TCGOp *op;
1999 
2000     QTAILQ_FOREACH(op, &s->ops, link) {
2001         int i, k, nb_oargs, nb_iargs, nb_cargs;
2002         const TCGOpDef *def;
2003         TCGOpcode c;
2004         int col = 0;
2005 
2006         c = op->opc;
2007         def = &tcg_op_defs[c];
2008 
2009         if (c == INDEX_op_insn_start) {
2010             nb_oargs = 0;
2011             col += qemu_log("\n ----");
2012 
2013             for (i = 0; i < TARGET_INSN_START_WORDS; ++i) {
2014                 target_ulong a;
2015 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
2016                 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]);
2017 #else
2018                 a = op->args[i];
2019 #endif
2020                 col += qemu_log(" " TARGET_FMT_lx, a);
2021             }
2022         } else if (c == INDEX_op_call) {
2023             /* variable number of arguments */
2024             nb_oargs = TCGOP_CALLO(op);
2025             nb_iargs = TCGOP_CALLI(op);
2026             nb_cargs = def->nb_cargs;
2027 
2028             /* function name, flags, out args */
2029             col += qemu_log(" %s %s,$0x%" TCG_PRIlx ",$%d", def->name,
2030                             tcg_find_helper(s, op->args[nb_oargs + nb_iargs]),
2031                             op->args[nb_oargs + nb_iargs + 1], nb_oargs);
2032             for (i = 0; i < nb_oargs; i++) {
2033                 col += qemu_log(",%s", tcg_get_arg_str(s, buf, sizeof(buf),
2034                                                        op->args[i]));
2035             }
2036             for (i = 0; i < nb_iargs; i++) {
2037                 TCGArg arg = op->args[nb_oargs + i];
2038                 const char *t = "<dummy>";
2039                 if (arg != TCG_CALL_DUMMY_ARG) {
2040                     t = tcg_get_arg_str(s, buf, sizeof(buf), arg);
2041                 }
2042                 col += qemu_log(",%s", t);
2043             }
2044         } else {
2045             col += qemu_log(" %s ", def->name);
2046 
2047             nb_oargs = def->nb_oargs;
2048             nb_iargs = def->nb_iargs;
2049             nb_cargs = def->nb_cargs;
2050 
2051             if (def->flags & TCG_OPF_VECTOR) {
2052                 col += qemu_log("v%d,e%d,", 64 << TCGOP_VECL(op),
2053                                 8 << TCGOP_VECE(op));
2054             }
2055 
2056             k = 0;
2057             for (i = 0; i < nb_oargs; i++) {
2058                 if (k != 0) {
2059                     col += qemu_log(",");
2060                 }
2061                 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf),
2062                                                       op->args[k++]));
2063             }
2064             for (i = 0; i < nb_iargs; i++) {
2065                 if (k != 0) {
2066                     col += qemu_log(",");
2067                 }
2068                 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf),
2069                                                       op->args[k++]));
2070             }
2071             switch (c) {
2072             case INDEX_op_brcond_i32:
2073             case INDEX_op_setcond_i32:
2074             case INDEX_op_movcond_i32:
2075             case INDEX_op_brcond2_i32:
2076             case INDEX_op_setcond2_i32:
2077             case INDEX_op_brcond_i64:
2078             case INDEX_op_setcond_i64:
2079             case INDEX_op_movcond_i64:
2080             case INDEX_op_cmp_vec:
2081             case INDEX_op_cmpsel_vec:
2082                 if (op->args[k] < ARRAY_SIZE(cond_name)
2083                     && cond_name[op->args[k]]) {
2084                     col += qemu_log(",%s", cond_name[op->args[k++]]);
2085                 } else {
2086                     col += qemu_log(",$0x%" TCG_PRIlx, op->args[k++]);
2087                 }
2088                 i = 1;
2089                 break;
2090             case INDEX_op_qemu_ld_i32:
2091             case INDEX_op_qemu_st_i32:
2092             case INDEX_op_qemu_ld_i64:
2093             case INDEX_op_qemu_st_i64:
2094                 {
2095                     TCGMemOpIdx oi = op->args[k++];
2096                     MemOp op = get_memop(oi);
2097                     unsigned ix = get_mmuidx(oi);
2098 
2099                     if (op & ~(MO_AMASK | MO_BSWAP | MO_SSIZE)) {
2100                         col += qemu_log(",$0x%x,%u", op, ix);
2101                     } else {
2102                         const char *s_al, *s_op;
2103                         s_al = alignment_name[(op & MO_AMASK) >> MO_ASHIFT];
2104                         s_op = ldst_name[op & (MO_BSWAP | MO_SSIZE)];
2105                         col += qemu_log(",%s%s,%u", s_al, s_op, ix);
2106                     }
2107                     i = 1;
2108                 }
2109                 break;
2110             default:
2111                 i = 0;
2112                 break;
2113             }
2114             switch (c) {
2115             case INDEX_op_set_label:
2116             case INDEX_op_br:
2117             case INDEX_op_brcond_i32:
2118             case INDEX_op_brcond_i64:
2119             case INDEX_op_brcond2_i32:
2120                 col += qemu_log("%s$L%d", k ? "," : "",
2121                                 arg_label(op->args[k])->id);
2122                 i++, k++;
2123                 break;
2124             default:
2125                 break;
2126             }
2127             for (; i < nb_cargs; i++, k++) {
2128                 col += qemu_log("%s$0x%" TCG_PRIlx, k ? "," : "", op->args[k]);
2129             }
2130         }
2131 
2132         if (have_prefs || op->life) {
2133 
2134             QemuLogFile *logfile;
2135 
2136             rcu_read_lock();
2137             logfile = atomic_rcu_read(&qemu_logfile);
2138             if (logfile) {
2139                 for (; col < 40; ++col) {
2140                     putc(' ', logfile->fd);
2141                 }
2142             }
2143             rcu_read_unlock();
2144         }
2145 
2146         if (op->life) {
2147             unsigned life = op->life;
2148 
2149             if (life & (SYNC_ARG * 3)) {
2150                 qemu_log("  sync:");
2151                 for (i = 0; i < 2; ++i) {
2152                     if (life & (SYNC_ARG << i)) {
2153                         qemu_log(" %d", i);
2154                     }
2155                 }
2156             }
2157             life /= DEAD_ARG;
2158             if (life) {
2159                 qemu_log("  dead:");
2160                 for (i = 0; life; ++i, life >>= 1) {
2161                     if (life & 1) {
2162                         qemu_log(" %d", i);
2163                     }
2164                 }
2165             }
2166         }
2167 
2168         if (have_prefs) {
2169             for (i = 0; i < nb_oargs; ++i) {
2170                 TCGRegSet set = op->output_pref[i];
2171 
2172                 if (i == 0) {
2173                     qemu_log("  pref=");
2174                 } else {
2175                     qemu_log(",");
2176                 }
2177                 if (set == 0) {
2178                     qemu_log("none");
2179                 } else if (set == MAKE_64BIT_MASK(0, TCG_TARGET_NB_REGS)) {
2180                     qemu_log("all");
2181 #ifdef CONFIG_DEBUG_TCG
2182                 } else if (tcg_regset_single(set)) {
2183                     TCGReg reg = tcg_regset_first(set);
2184                     qemu_log("%s", tcg_target_reg_names[reg]);
2185 #endif
2186                 } else if (TCG_TARGET_NB_REGS <= 32) {
2187                     qemu_log("%#x", (uint32_t)set);
2188                 } else {
2189                     qemu_log("%#" PRIx64, (uint64_t)set);
2190                 }
2191             }
2192         }
2193 
2194         qemu_log("\n");
2195     }
2196 }
2197 
2198 /* we give more priority to constraints with less registers */
2199 static int get_constraint_priority(const TCGOpDef *def, int k)
2200 {
2201     const TCGArgConstraint *arg_ct;
2202 
2203     int i, n;
2204     arg_ct = &def->args_ct[k];
2205     if (arg_ct->ct & TCG_CT_ALIAS) {
2206         /* an alias is equivalent to a single register */
2207         n = 1;
2208     } else {
2209         if (!(arg_ct->ct & TCG_CT_REG))
2210             return 0;
2211         n = 0;
2212         for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
2213             if (tcg_regset_test_reg(arg_ct->u.regs, i))
2214                 n++;
2215         }
2216     }
2217     return TCG_TARGET_NB_REGS - n + 1;
2218 }
2219 
2220 /* sort from highest priority to lowest */
2221 static void sort_constraints(TCGOpDef *def, int start, int n)
2222 {
2223     int i, j, p1, p2, tmp;
2224 
2225     for(i = 0; i < n; i++)
2226         def->sorted_args[start + i] = start + i;
2227     if (n <= 1)
2228         return;
2229     for(i = 0; i < n - 1; i++) {
2230         for(j = i + 1; j < n; j++) {
2231             p1 = get_constraint_priority(def, def->sorted_args[start + i]);
2232             p2 = get_constraint_priority(def, def->sorted_args[start + j]);
2233             if (p1 < p2) {
2234                 tmp = def->sorted_args[start + i];
2235                 def->sorted_args[start + i] = def->sorted_args[start + j];
2236                 def->sorted_args[start + j] = tmp;
2237             }
2238         }
2239     }
2240 }
2241 
2242 static void process_op_defs(TCGContext *s)
2243 {
2244     TCGOpcode op;
2245 
2246     for (op = 0; op < NB_OPS; op++) {
2247         TCGOpDef *def = &tcg_op_defs[op];
2248         const TCGTargetOpDef *tdefs;
2249         TCGType type;
2250         int i, nb_args;
2251 
2252         if (def->flags & TCG_OPF_NOT_PRESENT) {
2253             continue;
2254         }
2255 
2256         nb_args = def->nb_iargs + def->nb_oargs;
2257         if (nb_args == 0) {
2258             continue;
2259         }
2260 
2261         tdefs = tcg_target_op_def(op);
2262         /* Missing TCGTargetOpDef entry. */
2263         tcg_debug_assert(tdefs != NULL);
2264 
2265         type = (def->flags & TCG_OPF_64BIT ? TCG_TYPE_I64 : TCG_TYPE_I32);
2266         for (i = 0; i < nb_args; i++) {
2267             const char *ct_str = tdefs->args_ct_str[i];
2268             /* Incomplete TCGTargetOpDef entry. */
2269             tcg_debug_assert(ct_str != NULL);
2270 
2271             def->args_ct[i].u.regs = 0;
2272             def->args_ct[i].ct = 0;
2273             while (*ct_str != '\0') {
2274                 switch(*ct_str) {
2275                 case '0' ... '9':
2276                     {
2277                         int oarg = *ct_str - '0';
2278                         tcg_debug_assert(ct_str == tdefs->args_ct_str[i]);
2279                         tcg_debug_assert(oarg < def->nb_oargs);
2280                         tcg_debug_assert(def->args_ct[oarg].ct & TCG_CT_REG);
2281                         /* TCG_CT_ALIAS is for the output arguments.
2282                            The input is tagged with TCG_CT_IALIAS. */
2283                         def->args_ct[i] = def->args_ct[oarg];
2284                         def->args_ct[oarg].ct |= TCG_CT_ALIAS;
2285                         def->args_ct[oarg].alias_index = i;
2286                         def->args_ct[i].ct |= TCG_CT_IALIAS;
2287                         def->args_ct[i].alias_index = oarg;
2288                     }
2289                     ct_str++;
2290                     break;
2291                 case '&':
2292                     def->args_ct[i].ct |= TCG_CT_NEWREG;
2293                     ct_str++;
2294                     break;
2295                 case 'i':
2296                     def->args_ct[i].ct |= TCG_CT_CONST;
2297                     ct_str++;
2298                     break;
2299                 default:
2300                     ct_str = target_parse_constraint(&def->args_ct[i],
2301                                                      ct_str, type);
2302                     /* Typo in TCGTargetOpDef constraint. */
2303                     tcg_debug_assert(ct_str != NULL);
2304                 }
2305             }
2306         }
2307 
2308         /* TCGTargetOpDef entry with too much information? */
2309         tcg_debug_assert(i == TCG_MAX_OP_ARGS || tdefs->args_ct_str[i] == NULL);
2310 
2311         /* sort the constraints (XXX: this is just an heuristic) */
2312         sort_constraints(def, 0, def->nb_oargs);
2313         sort_constraints(def, def->nb_oargs, def->nb_iargs);
2314     }
2315 }
2316 
2317 void tcg_op_remove(TCGContext *s, TCGOp *op)
2318 {
2319     TCGLabel *label;
2320 
2321     switch (op->opc) {
2322     case INDEX_op_br:
2323         label = arg_label(op->args[0]);
2324         label->refs--;
2325         break;
2326     case INDEX_op_brcond_i32:
2327     case INDEX_op_brcond_i64:
2328         label = arg_label(op->args[3]);
2329         label->refs--;
2330         break;
2331     case INDEX_op_brcond2_i32:
2332         label = arg_label(op->args[5]);
2333         label->refs--;
2334         break;
2335     default:
2336         break;
2337     }
2338 
2339     QTAILQ_REMOVE(&s->ops, op, link);
2340     QTAILQ_INSERT_TAIL(&s->free_ops, op, link);
2341     s->nb_ops--;
2342 
2343 #ifdef CONFIG_PROFILER
2344     atomic_set(&s->prof.del_op_count, s->prof.del_op_count + 1);
2345 #endif
2346 }
2347 
2348 static TCGOp *tcg_op_alloc(TCGOpcode opc)
2349 {
2350     TCGContext *s = tcg_ctx;
2351     TCGOp *op;
2352 
2353     if (likely(QTAILQ_EMPTY(&s->free_ops))) {
2354         op = tcg_malloc(sizeof(TCGOp));
2355     } else {
2356         op = QTAILQ_FIRST(&s->free_ops);
2357         QTAILQ_REMOVE(&s->free_ops, op, link);
2358     }
2359     memset(op, 0, offsetof(TCGOp, link));
2360     op->opc = opc;
2361     s->nb_ops++;
2362 
2363     return op;
2364 }
2365 
2366 TCGOp *tcg_emit_op(TCGOpcode opc)
2367 {
2368     TCGOp *op = tcg_op_alloc(opc);
2369     QTAILQ_INSERT_TAIL(&tcg_ctx->ops, op, link);
2370     return op;
2371 }
2372 
2373 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op, TCGOpcode opc)
2374 {
2375     TCGOp *new_op = tcg_op_alloc(opc);
2376     QTAILQ_INSERT_BEFORE(old_op, new_op, link);
2377     return new_op;
2378 }
2379 
2380 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *old_op, TCGOpcode opc)
2381 {
2382     TCGOp *new_op = tcg_op_alloc(opc);
2383     QTAILQ_INSERT_AFTER(&s->ops, old_op, new_op, link);
2384     return new_op;
2385 }
2386 
2387 /* Reachable analysis : remove unreachable code.  */
2388 static void reachable_code_pass(TCGContext *s)
2389 {
2390     TCGOp *op, *op_next;
2391     bool dead = false;
2392 
2393     QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) {
2394         bool remove = dead;
2395         TCGLabel *label;
2396         int call_flags;
2397 
2398         switch (op->opc) {
2399         case INDEX_op_set_label:
2400             label = arg_label(op->args[0]);
2401             if (label->refs == 0) {
2402                 /*
2403                  * While there is an occasional backward branch, virtually
2404                  * all branches generated by the translators are forward.
2405                  * Which means that generally we will have already removed
2406                  * all references to the label that will be, and there is
2407                  * little to be gained by iterating.
2408                  */
2409                 remove = true;
2410             } else {
2411                 /* Once we see a label, insns become live again.  */
2412                 dead = false;
2413                 remove = false;
2414 
2415                 /*
2416                  * Optimization can fold conditional branches to unconditional.
2417                  * If we find a label with one reference which is preceded by
2418                  * an unconditional branch to it, remove both.  This needed to
2419                  * wait until the dead code in between them was removed.
2420                  */
2421                 if (label->refs == 1) {
2422                     TCGOp *op_prev = QTAILQ_PREV(op, link);
2423                     if (op_prev->opc == INDEX_op_br &&
2424                         label == arg_label(op_prev->args[0])) {
2425                         tcg_op_remove(s, op_prev);
2426                         remove = true;
2427                     }
2428                 }
2429             }
2430             break;
2431 
2432         case INDEX_op_br:
2433         case INDEX_op_exit_tb:
2434         case INDEX_op_goto_ptr:
2435             /* Unconditional branches; everything following is dead.  */
2436             dead = true;
2437             break;
2438 
2439         case INDEX_op_call:
2440             /* Notice noreturn helper calls, raising exceptions.  */
2441             call_flags = op->args[TCGOP_CALLO(op) + TCGOP_CALLI(op) + 1];
2442             if (call_flags & TCG_CALL_NO_RETURN) {
2443                 dead = true;
2444             }
2445             break;
2446 
2447         case INDEX_op_insn_start:
2448             /* Never remove -- we need to keep these for unwind.  */
2449             remove = false;
2450             break;
2451 
2452         default:
2453             break;
2454         }
2455 
2456         if (remove) {
2457             tcg_op_remove(s, op);
2458         }
2459     }
2460 }
2461 
2462 #define TS_DEAD  1
2463 #define TS_MEM   2
2464 
2465 #define IS_DEAD_ARG(n)   (arg_life & (DEAD_ARG << (n)))
2466 #define NEED_SYNC_ARG(n) (arg_life & (SYNC_ARG << (n)))
2467 
2468 /* For liveness_pass_1, the register preferences for a given temp.  */
2469 static inline TCGRegSet *la_temp_pref(TCGTemp *ts)
2470 {
2471     return ts->state_ptr;
2472 }
2473 
2474 /* For liveness_pass_1, reset the preferences for a given temp to the
2475  * maximal regset for its type.
2476  */
2477 static inline void la_reset_pref(TCGTemp *ts)
2478 {
2479     *la_temp_pref(ts)
2480         = (ts->state == TS_DEAD ? 0 : tcg_target_available_regs[ts->type]);
2481 }
2482 
2483 /* liveness analysis: end of function: all temps are dead, and globals
2484    should be in memory. */
2485 static void la_func_end(TCGContext *s, int ng, int nt)
2486 {
2487     int i;
2488 
2489     for (i = 0; i < ng; ++i) {
2490         s->temps[i].state = TS_DEAD | TS_MEM;
2491         la_reset_pref(&s->temps[i]);
2492     }
2493     for (i = ng; i < nt; ++i) {
2494         s->temps[i].state = TS_DEAD;
2495         la_reset_pref(&s->temps[i]);
2496     }
2497 }
2498 
2499 /* liveness analysis: end of basic block: all temps are dead, globals
2500    and local temps should be in memory. */
2501 static void la_bb_end(TCGContext *s, int ng, int nt)
2502 {
2503     int i;
2504 
2505     for (i = 0; i < ng; ++i) {
2506         s->temps[i].state = TS_DEAD | TS_MEM;
2507         la_reset_pref(&s->temps[i]);
2508     }
2509     for (i = ng; i < nt; ++i) {
2510         s->temps[i].state = (s->temps[i].temp_local
2511                              ? TS_DEAD | TS_MEM
2512                              : TS_DEAD);
2513         la_reset_pref(&s->temps[i]);
2514     }
2515 }
2516 
2517 /* liveness analysis: sync globals back to memory.  */
2518 static void la_global_sync(TCGContext *s, int ng)
2519 {
2520     int i;
2521 
2522     for (i = 0; i < ng; ++i) {
2523         int state = s->temps[i].state;
2524         s->temps[i].state = state | TS_MEM;
2525         if (state == TS_DEAD) {
2526             /* If the global was previously dead, reset prefs.  */
2527             la_reset_pref(&s->temps[i]);
2528         }
2529     }
2530 }
2531 
2532 /* liveness analysis: sync globals back to memory and kill.  */
2533 static void la_global_kill(TCGContext *s, int ng)
2534 {
2535     int i;
2536 
2537     for (i = 0; i < ng; i++) {
2538         s->temps[i].state = TS_DEAD | TS_MEM;
2539         la_reset_pref(&s->temps[i]);
2540     }
2541 }
2542 
2543 /* liveness analysis: note live globals crossing calls.  */
2544 static void la_cross_call(TCGContext *s, int nt)
2545 {
2546     TCGRegSet mask = ~tcg_target_call_clobber_regs;
2547     int i;
2548 
2549     for (i = 0; i < nt; i++) {
2550         TCGTemp *ts = &s->temps[i];
2551         if (!(ts->state & TS_DEAD)) {
2552             TCGRegSet *pset = la_temp_pref(ts);
2553             TCGRegSet set = *pset;
2554 
2555             set &= mask;
2556             /* If the combination is not possible, restart.  */
2557             if (set == 0) {
2558                 set = tcg_target_available_regs[ts->type] & mask;
2559             }
2560             *pset = set;
2561         }
2562     }
2563 }
2564 
2565 /* Liveness analysis : update the opc_arg_life array to tell if a
2566    given input arguments is dead. Instructions updating dead
2567    temporaries are removed. */
2568 static void liveness_pass_1(TCGContext *s)
2569 {
2570     int nb_globals = s->nb_globals;
2571     int nb_temps = s->nb_temps;
2572     TCGOp *op, *op_prev;
2573     TCGRegSet *prefs;
2574     int i;
2575 
2576     prefs = tcg_malloc(sizeof(TCGRegSet) * nb_temps);
2577     for (i = 0; i < nb_temps; ++i) {
2578         s->temps[i].state_ptr = prefs + i;
2579     }
2580 
2581     /* ??? Should be redundant with the exit_tb that ends the TB.  */
2582     la_func_end(s, nb_globals, nb_temps);
2583 
2584     QTAILQ_FOREACH_REVERSE_SAFE(op, &s->ops, link, op_prev) {
2585         int nb_iargs, nb_oargs;
2586         TCGOpcode opc_new, opc_new2;
2587         bool have_opc_new2;
2588         TCGLifeData arg_life = 0;
2589         TCGTemp *ts;
2590         TCGOpcode opc = op->opc;
2591         const TCGOpDef *def = &tcg_op_defs[opc];
2592 
2593         switch (opc) {
2594         case INDEX_op_call:
2595             {
2596                 int call_flags;
2597                 int nb_call_regs;
2598 
2599                 nb_oargs = TCGOP_CALLO(op);
2600                 nb_iargs = TCGOP_CALLI(op);
2601                 call_flags = op->args[nb_oargs + nb_iargs + 1];
2602 
2603                 /* pure functions can be removed if their result is unused */
2604                 if (call_flags & TCG_CALL_NO_SIDE_EFFECTS) {
2605                     for (i = 0; i < nb_oargs; i++) {
2606                         ts = arg_temp(op->args[i]);
2607                         if (ts->state != TS_DEAD) {
2608                             goto do_not_remove_call;
2609                         }
2610                     }
2611                     goto do_remove;
2612                 }
2613             do_not_remove_call:
2614 
2615                 /* Output args are dead.  */
2616                 for (i = 0; i < nb_oargs; i++) {
2617                     ts = arg_temp(op->args[i]);
2618                     if (ts->state & TS_DEAD) {
2619                         arg_life |= DEAD_ARG << i;
2620                     }
2621                     if (ts->state & TS_MEM) {
2622                         arg_life |= SYNC_ARG << i;
2623                     }
2624                     ts->state = TS_DEAD;
2625                     la_reset_pref(ts);
2626 
2627                     /* Not used -- it will be tcg_target_call_oarg_regs[i].  */
2628                     op->output_pref[i] = 0;
2629                 }
2630 
2631                 if (!(call_flags & (TCG_CALL_NO_WRITE_GLOBALS |
2632                                     TCG_CALL_NO_READ_GLOBALS))) {
2633                     la_global_kill(s, nb_globals);
2634                 } else if (!(call_flags & TCG_CALL_NO_READ_GLOBALS)) {
2635                     la_global_sync(s, nb_globals);
2636                 }
2637 
2638                 /* Record arguments that die in this helper.  */
2639                 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2640                     ts = arg_temp(op->args[i]);
2641                     if (ts && ts->state & TS_DEAD) {
2642                         arg_life |= DEAD_ARG << i;
2643                     }
2644                 }
2645 
2646                 /* For all live registers, remove call-clobbered prefs.  */
2647                 la_cross_call(s, nb_temps);
2648 
2649                 nb_call_regs = ARRAY_SIZE(tcg_target_call_iarg_regs);
2650 
2651                 /* Input arguments are live for preceding opcodes.  */
2652                 for (i = 0; i < nb_iargs; i++) {
2653                     ts = arg_temp(op->args[i + nb_oargs]);
2654                     if (ts && ts->state & TS_DEAD) {
2655                         /* For those arguments that die, and will be allocated
2656                          * in registers, clear the register set for that arg,
2657                          * to be filled in below.  For args that will be on
2658                          * the stack, reset to any available reg.
2659                          */
2660                         *la_temp_pref(ts)
2661                             = (i < nb_call_regs ? 0 :
2662                                tcg_target_available_regs[ts->type]);
2663                         ts->state &= ~TS_DEAD;
2664                     }
2665                 }
2666 
2667                 /* For each input argument, add its input register to prefs.
2668                    If a temp is used once, this produces a single set bit.  */
2669                 for (i = 0; i < MIN(nb_call_regs, nb_iargs); i++) {
2670                     ts = arg_temp(op->args[i + nb_oargs]);
2671                     if (ts) {
2672                         tcg_regset_set_reg(*la_temp_pref(ts),
2673                                            tcg_target_call_iarg_regs[i]);
2674                     }
2675                 }
2676             }
2677             break;
2678         case INDEX_op_insn_start:
2679             break;
2680         case INDEX_op_discard:
2681             /* mark the temporary as dead */
2682             ts = arg_temp(op->args[0]);
2683             ts->state = TS_DEAD;
2684             la_reset_pref(ts);
2685             break;
2686 
2687         case INDEX_op_add2_i32:
2688             opc_new = INDEX_op_add_i32;
2689             goto do_addsub2;
2690         case INDEX_op_sub2_i32:
2691             opc_new = INDEX_op_sub_i32;
2692             goto do_addsub2;
2693         case INDEX_op_add2_i64:
2694             opc_new = INDEX_op_add_i64;
2695             goto do_addsub2;
2696         case INDEX_op_sub2_i64:
2697             opc_new = INDEX_op_sub_i64;
2698         do_addsub2:
2699             nb_iargs = 4;
2700             nb_oargs = 2;
2701             /* Test if the high part of the operation is dead, but not
2702                the low part.  The result can be optimized to a simple
2703                add or sub.  This happens often for x86_64 guest when the
2704                cpu mode is set to 32 bit.  */
2705             if (arg_temp(op->args[1])->state == TS_DEAD) {
2706                 if (arg_temp(op->args[0])->state == TS_DEAD) {
2707                     goto do_remove;
2708                 }
2709                 /* Replace the opcode and adjust the args in place,
2710                    leaving 3 unused args at the end.  */
2711                 op->opc = opc = opc_new;
2712                 op->args[1] = op->args[2];
2713                 op->args[2] = op->args[4];
2714                 /* Fall through and mark the single-word operation live.  */
2715                 nb_iargs = 2;
2716                 nb_oargs = 1;
2717             }
2718             goto do_not_remove;
2719 
2720         case INDEX_op_mulu2_i32:
2721             opc_new = INDEX_op_mul_i32;
2722             opc_new2 = INDEX_op_muluh_i32;
2723             have_opc_new2 = TCG_TARGET_HAS_muluh_i32;
2724             goto do_mul2;
2725         case INDEX_op_muls2_i32:
2726             opc_new = INDEX_op_mul_i32;
2727             opc_new2 = INDEX_op_mulsh_i32;
2728             have_opc_new2 = TCG_TARGET_HAS_mulsh_i32;
2729             goto do_mul2;
2730         case INDEX_op_mulu2_i64:
2731             opc_new = INDEX_op_mul_i64;
2732             opc_new2 = INDEX_op_muluh_i64;
2733             have_opc_new2 = TCG_TARGET_HAS_muluh_i64;
2734             goto do_mul2;
2735         case INDEX_op_muls2_i64:
2736             opc_new = INDEX_op_mul_i64;
2737             opc_new2 = INDEX_op_mulsh_i64;
2738             have_opc_new2 = TCG_TARGET_HAS_mulsh_i64;
2739             goto do_mul2;
2740         do_mul2:
2741             nb_iargs = 2;
2742             nb_oargs = 2;
2743             if (arg_temp(op->args[1])->state == TS_DEAD) {
2744                 if (arg_temp(op->args[0])->state == TS_DEAD) {
2745                     /* Both parts of the operation are dead.  */
2746                     goto do_remove;
2747                 }
2748                 /* The high part of the operation is dead; generate the low. */
2749                 op->opc = opc = opc_new;
2750                 op->args[1] = op->args[2];
2751                 op->args[2] = op->args[3];
2752             } else if (arg_temp(op->args[0])->state == TS_DEAD && have_opc_new2) {
2753                 /* The low part of the operation is dead; generate the high. */
2754                 op->opc = opc = opc_new2;
2755                 op->args[0] = op->args[1];
2756                 op->args[1] = op->args[2];
2757                 op->args[2] = op->args[3];
2758             } else {
2759                 goto do_not_remove;
2760             }
2761             /* Mark the single-word operation live.  */
2762             nb_oargs = 1;
2763             goto do_not_remove;
2764 
2765         default:
2766             /* XXX: optimize by hardcoding common cases (e.g. triadic ops) */
2767             nb_iargs = def->nb_iargs;
2768             nb_oargs = def->nb_oargs;
2769 
2770             /* Test if the operation can be removed because all
2771                its outputs are dead. We assume that nb_oargs == 0
2772                implies side effects */
2773             if (!(def->flags & TCG_OPF_SIDE_EFFECTS) && nb_oargs != 0) {
2774                 for (i = 0; i < nb_oargs; i++) {
2775                     if (arg_temp(op->args[i])->state != TS_DEAD) {
2776                         goto do_not_remove;
2777                     }
2778                 }
2779                 goto do_remove;
2780             }
2781             goto do_not_remove;
2782 
2783         do_remove:
2784             tcg_op_remove(s, op);
2785             break;
2786 
2787         do_not_remove:
2788             for (i = 0; i < nb_oargs; i++) {
2789                 ts = arg_temp(op->args[i]);
2790 
2791                 /* Remember the preference of the uses that followed.  */
2792                 op->output_pref[i] = *la_temp_pref(ts);
2793 
2794                 /* Output args are dead.  */
2795                 if (ts->state & TS_DEAD) {
2796                     arg_life |= DEAD_ARG << i;
2797                 }
2798                 if (ts->state & TS_MEM) {
2799                     arg_life |= SYNC_ARG << i;
2800                 }
2801                 ts->state = TS_DEAD;
2802                 la_reset_pref(ts);
2803             }
2804 
2805             /* If end of basic block, update.  */
2806             if (def->flags & TCG_OPF_BB_EXIT) {
2807                 la_func_end(s, nb_globals, nb_temps);
2808             } else if (def->flags & TCG_OPF_BB_END) {
2809                 la_bb_end(s, nb_globals, nb_temps);
2810             } else if (def->flags & TCG_OPF_SIDE_EFFECTS) {
2811                 la_global_sync(s, nb_globals);
2812                 if (def->flags & TCG_OPF_CALL_CLOBBER) {
2813                     la_cross_call(s, nb_temps);
2814                 }
2815             }
2816 
2817             /* Record arguments that die in this opcode.  */
2818             for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2819                 ts = arg_temp(op->args[i]);
2820                 if (ts->state & TS_DEAD) {
2821                     arg_life |= DEAD_ARG << i;
2822                 }
2823             }
2824 
2825             /* Input arguments are live for preceding opcodes.  */
2826             for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2827                 ts = arg_temp(op->args[i]);
2828                 if (ts->state & TS_DEAD) {
2829                     /* For operands that were dead, initially allow
2830                        all regs for the type.  */
2831                     *la_temp_pref(ts) = tcg_target_available_regs[ts->type];
2832                     ts->state &= ~TS_DEAD;
2833                 }
2834             }
2835 
2836             /* Incorporate constraints for this operand.  */
2837             switch (opc) {
2838             case INDEX_op_mov_i32:
2839             case INDEX_op_mov_i64:
2840                 /* Note that these are TCG_OPF_NOT_PRESENT and do not
2841                    have proper constraints.  That said, special case
2842                    moves to propagate preferences backward.  */
2843                 if (IS_DEAD_ARG(1)) {
2844                     *la_temp_pref(arg_temp(op->args[0]))
2845                         = *la_temp_pref(arg_temp(op->args[1]));
2846                 }
2847                 break;
2848 
2849             default:
2850                 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2851                     const TCGArgConstraint *ct = &def->args_ct[i];
2852                     TCGRegSet set, *pset;
2853 
2854                     ts = arg_temp(op->args[i]);
2855                     pset = la_temp_pref(ts);
2856                     set = *pset;
2857 
2858                     set &= ct->u.regs;
2859                     if (ct->ct & TCG_CT_IALIAS) {
2860                         set &= op->output_pref[ct->alias_index];
2861                     }
2862                     /* If the combination is not possible, restart.  */
2863                     if (set == 0) {
2864                         set = ct->u.regs;
2865                     }
2866                     *pset = set;
2867                 }
2868                 break;
2869             }
2870             break;
2871         }
2872         op->life = arg_life;
2873     }
2874 }
2875 
2876 /* Liveness analysis: Convert indirect regs to direct temporaries.  */
2877 static bool liveness_pass_2(TCGContext *s)
2878 {
2879     int nb_globals = s->nb_globals;
2880     int nb_temps, i;
2881     bool changes = false;
2882     TCGOp *op, *op_next;
2883 
2884     /* Create a temporary for each indirect global.  */
2885     for (i = 0; i < nb_globals; ++i) {
2886         TCGTemp *its = &s->temps[i];
2887         if (its->indirect_reg) {
2888             TCGTemp *dts = tcg_temp_alloc(s);
2889             dts->type = its->type;
2890             dts->base_type = its->base_type;
2891             its->state_ptr = dts;
2892         } else {
2893             its->state_ptr = NULL;
2894         }
2895         /* All globals begin dead.  */
2896         its->state = TS_DEAD;
2897     }
2898     for (nb_temps = s->nb_temps; i < nb_temps; ++i) {
2899         TCGTemp *its = &s->temps[i];
2900         its->state_ptr = NULL;
2901         its->state = TS_DEAD;
2902     }
2903 
2904     QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) {
2905         TCGOpcode opc = op->opc;
2906         const TCGOpDef *def = &tcg_op_defs[opc];
2907         TCGLifeData arg_life = op->life;
2908         int nb_iargs, nb_oargs, call_flags;
2909         TCGTemp *arg_ts, *dir_ts;
2910 
2911         if (opc == INDEX_op_call) {
2912             nb_oargs = TCGOP_CALLO(op);
2913             nb_iargs = TCGOP_CALLI(op);
2914             call_flags = op->args[nb_oargs + nb_iargs + 1];
2915         } else {
2916             nb_iargs = def->nb_iargs;
2917             nb_oargs = def->nb_oargs;
2918 
2919             /* Set flags similar to how calls require.  */
2920             if (def->flags & TCG_OPF_BB_END) {
2921                 /* Like writing globals: save_globals */
2922                 call_flags = 0;
2923             } else if (def->flags & TCG_OPF_SIDE_EFFECTS) {
2924                 /* Like reading globals: sync_globals */
2925                 call_flags = TCG_CALL_NO_WRITE_GLOBALS;
2926             } else {
2927                 /* No effect on globals.  */
2928                 call_flags = (TCG_CALL_NO_READ_GLOBALS |
2929                               TCG_CALL_NO_WRITE_GLOBALS);
2930             }
2931         }
2932 
2933         /* Make sure that input arguments are available.  */
2934         for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2935             arg_ts = arg_temp(op->args[i]);
2936             if (arg_ts) {
2937                 dir_ts = arg_ts->state_ptr;
2938                 if (dir_ts && arg_ts->state == TS_DEAD) {
2939                     TCGOpcode lopc = (arg_ts->type == TCG_TYPE_I32
2940                                       ? INDEX_op_ld_i32
2941                                       : INDEX_op_ld_i64);
2942                     TCGOp *lop = tcg_op_insert_before(s, op, lopc);
2943 
2944                     lop->args[0] = temp_arg(dir_ts);
2945                     lop->args[1] = temp_arg(arg_ts->mem_base);
2946                     lop->args[2] = arg_ts->mem_offset;
2947 
2948                     /* Loaded, but synced with memory.  */
2949                     arg_ts->state = TS_MEM;
2950                 }
2951             }
2952         }
2953 
2954         /* Perform input replacement, and mark inputs that became dead.
2955            No action is required except keeping temp_state up to date
2956            so that we reload when needed.  */
2957         for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2958             arg_ts = arg_temp(op->args[i]);
2959             if (arg_ts) {
2960                 dir_ts = arg_ts->state_ptr;
2961                 if (dir_ts) {
2962                     op->args[i] = temp_arg(dir_ts);
2963                     changes = true;
2964                     if (IS_DEAD_ARG(i)) {
2965                         arg_ts->state = TS_DEAD;
2966                     }
2967                 }
2968             }
2969         }
2970 
2971         /* Liveness analysis should ensure that the following are
2972            all correct, for call sites and basic block end points.  */
2973         if (call_flags & TCG_CALL_NO_READ_GLOBALS) {
2974             /* Nothing to do */
2975         } else if (call_flags & TCG_CALL_NO_WRITE_GLOBALS) {
2976             for (i = 0; i < nb_globals; ++i) {
2977                 /* Liveness should see that globals are synced back,
2978                    that is, either TS_DEAD or TS_MEM.  */
2979                 arg_ts = &s->temps[i];
2980                 tcg_debug_assert(arg_ts->state_ptr == 0
2981                                  || arg_ts->state != 0);
2982             }
2983         } else {
2984             for (i = 0; i < nb_globals; ++i) {
2985                 /* Liveness should see that globals are saved back,
2986                    that is, TS_DEAD, waiting to be reloaded.  */
2987                 arg_ts = &s->temps[i];
2988                 tcg_debug_assert(arg_ts->state_ptr == 0
2989                                  || arg_ts->state == TS_DEAD);
2990             }
2991         }
2992 
2993         /* Outputs become available.  */
2994         if (opc == INDEX_op_mov_i32 || opc == INDEX_op_mov_i64) {
2995             arg_ts = arg_temp(op->args[0]);
2996             dir_ts = arg_ts->state_ptr;
2997             if (dir_ts) {
2998                 op->args[0] = temp_arg(dir_ts);
2999                 changes = true;
3000 
3001                 /* The output is now live and modified.  */
3002                 arg_ts->state = 0;
3003 
3004                 if (NEED_SYNC_ARG(0)) {
3005                     TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32
3006                                       ? INDEX_op_st_i32
3007                                       : INDEX_op_st_i64);
3008                     TCGOp *sop = tcg_op_insert_after(s, op, sopc);
3009                     TCGTemp *out_ts = dir_ts;
3010 
3011                     if (IS_DEAD_ARG(0)) {
3012                         out_ts = arg_temp(op->args[1]);
3013                         arg_ts->state = TS_DEAD;
3014                         tcg_op_remove(s, op);
3015                     } else {
3016                         arg_ts->state = TS_MEM;
3017                     }
3018 
3019                     sop->args[0] = temp_arg(out_ts);
3020                     sop->args[1] = temp_arg(arg_ts->mem_base);
3021                     sop->args[2] = arg_ts->mem_offset;
3022                 } else {
3023                     tcg_debug_assert(!IS_DEAD_ARG(0));
3024                 }
3025             }
3026         } else {
3027             for (i = 0; i < nb_oargs; i++) {
3028                 arg_ts = arg_temp(op->args[i]);
3029                 dir_ts = arg_ts->state_ptr;
3030                 if (!dir_ts) {
3031                     continue;
3032                 }
3033                 op->args[i] = temp_arg(dir_ts);
3034                 changes = true;
3035 
3036                 /* The output is now live and modified.  */
3037                 arg_ts->state = 0;
3038 
3039                 /* Sync outputs upon their last write.  */
3040                 if (NEED_SYNC_ARG(i)) {
3041                     TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32
3042                                       ? INDEX_op_st_i32
3043                                       : INDEX_op_st_i64);
3044                     TCGOp *sop = tcg_op_insert_after(s, op, sopc);
3045 
3046                     sop->args[0] = temp_arg(dir_ts);
3047                     sop->args[1] = temp_arg(arg_ts->mem_base);
3048                     sop->args[2] = arg_ts->mem_offset;
3049 
3050                     arg_ts->state = TS_MEM;
3051                 }
3052                 /* Drop outputs that are dead.  */
3053                 if (IS_DEAD_ARG(i)) {
3054                     arg_ts->state = TS_DEAD;
3055                 }
3056             }
3057         }
3058     }
3059 
3060     return changes;
3061 }
3062 
3063 #ifdef CONFIG_DEBUG_TCG
3064 static void dump_regs(TCGContext *s)
3065 {
3066     TCGTemp *ts;
3067     int i;
3068     char buf[64];
3069 
3070     for(i = 0; i < s->nb_temps; i++) {
3071         ts = &s->temps[i];
3072         printf("  %10s: ", tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts));
3073         switch(ts->val_type) {
3074         case TEMP_VAL_REG:
3075             printf("%s", tcg_target_reg_names[ts->reg]);
3076             break;
3077         case TEMP_VAL_MEM:
3078             printf("%d(%s)", (int)ts->mem_offset,
3079                    tcg_target_reg_names[ts->mem_base->reg]);
3080             break;
3081         case TEMP_VAL_CONST:
3082             printf("$0x%" TCG_PRIlx, ts->val);
3083             break;
3084         case TEMP_VAL_DEAD:
3085             printf("D");
3086             break;
3087         default:
3088             printf("???");
3089             break;
3090         }
3091         printf("\n");
3092     }
3093 
3094     for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
3095         if (s->reg_to_temp[i] != NULL) {
3096             printf("%s: %s\n",
3097                    tcg_target_reg_names[i],
3098                    tcg_get_arg_str_ptr(s, buf, sizeof(buf), s->reg_to_temp[i]));
3099         }
3100     }
3101 }
3102 
3103 static void check_regs(TCGContext *s)
3104 {
3105     int reg;
3106     int k;
3107     TCGTemp *ts;
3108     char buf[64];
3109 
3110     for (reg = 0; reg < TCG_TARGET_NB_REGS; reg++) {
3111         ts = s->reg_to_temp[reg];
3112         if (ts != NULL) {
3113             if (ts->val_type != TEMP_VAL_REG || ts->reg != reg) {
3114                 printf("Inconsistency for register %s:\n",
3115                        tcg_target_reg_names[reg]);
3116                 goto fail;
3117             }
3118         }
3119     }
3120     for (k = 0; k < s->nb_temps; k++) {
3121         ts = &s->temps[k];
3122         if (ts->val_type == TEMP_VAL_REG && !ts->fixed_reg
3123             && s->reg_to_temp[ts->reg] != ts) {
3124             printf("Inconsistency for temp %s:\n",
3125                    tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts));
3126         fail:
3127             printf("reg state:\n");
3128             dump_regs(s);
3129             tcg_abort();
3130         }
3131     }
3132 }
3133 #endif
3134 
3135 static void temp_allocate_frame(TCGContext *s, TCGTemp *ts)
3136 {
3137 #if !(defined(__sparc__) && TCG_TARGET_REG_BITS == 64)
3138     /* Sparc64 stack is accessed with offset of 2047 */
3139     s->current_frame_offset = (s->current_frame_offset +
3140                                (tcg_target_long)sizeof(tcg_target_long) - 1) &
3141         ~(sizeof(tcg_target_long) - 1);
3142 #endif
3143     if (s->current_frame_offset + (tcg_target_long)sizeof(tcg_target_long) >
3144         s->frame_end) {
3145         tcg_abort();
3146     }
3147     ts->mem_offset = s->current_frame_offset;
3148     ts->mem_base = s->frame_temp;
3149     ts->mem_allocated = 1;
3150     s->current_frame_offset += sizeof(tcg_target_long);
3151 }
3152 
3153 static void temp_load(TCGContext *, TCGTemp *, TCGRegSet, TCGRegSet, TCGRegSet);
3154 
3155 /* Mark a temporary as free or dead.  If 'free_or_dead' is negative,
3156    mark it free; otherwise mark it dead.  */
3157 static void temp_free_or_dead(TCGContext *s, TCGTemp *ts, int free_or_dead)
3158 {
3159     if (ts->fixed_reg) {
3160         return;
3161     }
3162     if (ts->val_type == TEMP_VAL_REG) {
3163         s->reg_to_temp[ts->reg] = NULL;
3164     }
3165     ts->val_type = (free_or_dead < 0
3166                     || ts->temp_local
3167                     || ts->temp_global
3168                     ? TEMP_VAL_MEM : TEMP_VAL_DEAD);
3169 }
3170 
3171 /* Mark a temporary as dead.  */
3172 static inline void temp_dead(TCGContext *s, TCGTemp *ts)
3173 {
3174     temp_free_or_dead(s, ts, 1);
3175 }
3176 
3177 /* Sync a temporary to memory. 'allocated_regs' is used in case a temporary
3178    registers needs to be allocated to store a constant.  If 'free_or_dead'
3179    is non-zero, subsequently release the temporary; if it is positive, the
3180    temp is dead; if it is negative, the temp is free.  */
3181 static void temp_sync(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs,
3182                       TCGRegSet preferred_regs, int free_or_dead)
3183 {
3184     if (ts->fixed_reg) {
3185         return;
3186     }
3187     if (!ts->mem_coherent) {
3188         if (!ts->mem_allocated) {
3189             temp_allocate_frame(s, ts);
3190         }
3191         switch (ts->val_type) {
3192         case TEMP_VAL_CONST:
3193             /* If we're going to free the temp immediately, then we won't
3194                require it later in a register, so attempt to store the
3195                constant to memory directly.  */
3196             if (free_or_dead
3197                 && tcg_out_sti(s, ts->type, ts->val,
3198                                ts->mem_base->reg, ts->mem_offset)) {
3199                 break;
3200             }
3201             temp_load(s, ts, tcg_target_available_regs[ts->type],
3202                       allocated_regs, preferred_regs);
3203             /* fallthrough */
3204 
3205         case TEMP_VAL_REG:
3206             tcg_out_st(s, ts->type, ts->reg,
3207                        ts->mem_base->reg, ts->mem_offset);
3208             break;
3209 
3210         case TEMP_VAL_MEM:
3211             break;
3212 
3213         case TEMP_VAL_DEAD:
3214         default:
3215             tcg_abort();
3216         }
3217         ts->mem_coherent = 1;
3218     }
3219     if (free_or_dead) {
3220         temp_free_or_dead(s, ts, free_or_dead);
3221     }
3222 }
3223 
3224 /* free register 'reg' by spilling the corresponding temporary if necessary */
3225 static void tcg_reg_free(TCGContext *s, TCGReg reg, TCGRegSet allocated_regs)
3226 {
3227     TCGTemp *ts = s->reg_to_temp[reg];
3228     if (ts != NULL) {
3229         temp_sync(s, ts, allocated_regs, 0, -1);
3230     }
3231 }
3232 
3233 /**
3234  * tcg_reg_alloc:
3235  * @required_regs: Set of registers in which we must allocate.
3236  * @allocated_regs: Set of registers which must be avoided.
3237  * @preferred_regs: Set of registers we should prefer.
3238  * @rev: True if we search the registers in "indirect" order.
3239  *
3240  * The allocated register must be in @required_regs & ~@allocated_regs,
3241  * but if we can put it in @preferred_regs we may save a move later.
3242  */
3243 static TCGReg tcg_reg_alloc(TCGContext *s, TCGRegSet required_regs,
3244                             TCGRegSet allocated_regs,
3245                             TCGRegSet preferred_regs, bool rev)
3246 {
3247     int i, j, f, n = ARRAY_SIZE(tcg_target_reg_alloc_order);
3248     TCGRegSet reg_ct[2];
3249     const int *order;
3250 
3251     reg_ct[1] = required_regs & ~allocated_regs;
3252     tcg_debug_assert(reg_ct[1] != 0);
3253     reg_ct[0] = reg_ct[1] & preferred_regs;
3254 
3255     /* Skip the preferred_regs option if it cannot be satisfied,
3256        or if the preference made no difference.  */
3257     f = reg_ct[0] == 0 || reg_ct[0] == reg_ct[1];
3258 
3259     order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order;
3260 
3261     /* Try free registers, preferences first.  */
3262     for (j = f; j < 2; j++) {
3263         TCGRegSet set = reg_ct[j];
3264 
3265         if (tcg_regset_single(set)) {
3266             /* One register in the set.  */
3267             TCGReg reg = tcg_regset_first(set);
3268             if (s->reg_to_temp[reg] == NULL) {
3269                 return reg;
3270             }
3271         } else {
3272             for (i = 0; i < n; i++) {
3273                 TCGReg reg = order[i];
3274                 if (s->reg_to_temp[reg] == NULL &&
3275                     tcg_regset_test_reg(set, reg)) {
3276                     return reg;
3277                 }
3278             }
3279         }
3280     }
3281 
3282     /* We must spill something.  */
3283     for (j = f; j < 2; j++) {
3284         TCGRegSet set = reg_ct[j];
3285 
3286         if (tcg_regset_single(set)) {
3287             /* One register in the set.  */
3288             TCGReg reg = tcg_regset_first(set);
3289             tcg_reg_free(s, reg, allocated_regs);
3290             return reg;
3291         } else {
3292             for (i = 0; i < n; i++) {
3293                 TCGReg reg = order[i];
3294                 if (tcg_regset_test_reg(set, reg)) {
3295                     tcg_reg_free(s, reg, allocated_regs);
3296                     return reg;
3297                 }
3298             }
3299         }
3300     }
3301 
3302     tcg_abort();
3303 }
3304 
3305 /* Make sure the temporary is in a register.  If needed, allocate the register
3306    from DESIRED while avoiding ALLOCATED.  */
3307 static void temp_load(TCGContext *s, TCGTemp *ts, TCGRegSet desired_regs,
3308                       TCGRegSet allocated_regs, TCGRegSet preferred_regs)
3309 {
3310     TCGReg reg;
3311 
3312     switch (ts->val_type) {
3313     case TEMP_VAL_REG:
3314         return;
3315     case TEMP_VAL_CONST:
3316         reg = tcg_reg_alloc(s, desired_regs, allocated_regs,
3317                             preferred_regs, ts->indirect_base);
3318         tcg_out_movi(s, ts->type, reg, ts->val);
3319         ts->mem_coherent = 0;
3320         break;
3321     case TEMP_VAL_MEM:
3322         reg = tcg_reg_alloc(s, desired_regs, allocated_regs,
3323                             preferred_regs, ts->indirect_base);
3324         tcg_out_ld(s, ts->type, reg, ts->mem_base->reg, ts->mem_offset);
3325         ts->mem_coherent = 1;
3326         break;
3327     case TEMP_VAL_DEAD:
3328     default:
3329         tcg_abort();
3330     }
3331     ts->reg = reg;
3332     ts->val_type = TEMP_VAL_REG;
3333     s->reg_to_temp[reg] = ts;
3334 }
3335 
3336 /* Save a temporary to memory. 'allocated_regs' is used in case a
3337    temporary registers needs to be allocated to store a constant.  */
3338 static void temp_save(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs)
3339 {
3340     /* The liveness analysis already ensures that globals are back
3341        in memory. Keep an tcg_debug_assert for safety. */
3342     tcg_debug_assert(ts->val_type == TEMP_VAL_MEM || ts->fixed_reg);
3343 }
3344 
3345 /* save globals to their canonical location and assume they can be
3346    modified be the following code. 'allocated_regs' is used in case a
3347    temporary registers needs to be allocated to store a constant. */
3348 static void save_globals(TCGContext *s, TCGRegSet allocated_regs)
3349 {
3350     int i, n;
3351 
3352     for (i = 0, n = s->nb_globals; i < n; i++) {
3353         temp_save(s, &s->temps[i], allocated_regs);
3354     }
3355 }
3356 
3357 /* sync globals to their canonical location and assume they can be
3358    read by the following code. 'allocated_regs' is used in case a
3359    temporary registers needs to be allocated to store a constant. */
3360 static void sync_globals(TCGContext *s, TCGRegSet allocated_regs)
3361 {
3362     int i, n;
3363 
3364     for (i = 0, n = s->nb_globals; i < n; i++) {
3365         TCGTemp *ts = &s->temps[i];
3366         tcg_debug_assert(ts->val_type != TEMP_VAL_REG
3367                          || ts->fixed_reg
3368                          || ts->mem_coherent);
3369     }
3370 }
3371 
3372 /* at the end of a basic block, we assume all temporaries are dead and
3373    all globals are stored at their canonical location. */
3374 static void tcg_reg_alloc_bb_end(TCGContext *s, TCGRegSet allocated_regs)
3375 {
3376     int i;
3377 
3378     for (i = s->nb_globals; i < s->nb_temps; i++) {
3379         TCGTemp *ts = &s->temps[i];
3380         if (ts->temp_local) {
3381             temp_save(s, ts, allocated_regs);
3382         } else {
3383             /* The liveness analysis already ensures that temps are dead.
3384                Keep an tcg_debug_assert for safety. */
3385             tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD);
3386         }
3387     }
3388 
3389     save_globals(s, allocated_regs);
3390 }
3391 
3392 /*
3393  * Specialized code generation for INDEX_op_movi_*.
3394  */
3395 static void tcg_reg_alloc_do_movi(TCGContext *s, TCGTemp *ots,
3396                                   tcg_target_ulong val, TCGLifeData arg_life,
3397                                   TCGRegSet preferred_regs)
3398 {
3399     /* ENV should not be modified.  */
3400     tcg_debug_assert(!ots->fixed_reg);
3401 
3402     /* The movi is not explicitly generated here.  */
3403     if (ots->val_type == TEMP_VAL_REG) {
3404         s->reg_to_temp[ots->reg] = NULL;
3405     }
3406     ots->val_type = TEMP_VAL_CONST;
3407     ots->val = val;
3408     ots->mem_coherent = 0;
3409     if (NEED_SYNC_ARG(0)) {
3410         temp_sync(s, ots, s->reserved_regs, preferred_regs, IS_DEAD_ARG(0));
3411     } else if (IS_DEAD_ARG(0)) {
3412         temp_dead(s, ots);
3413     }
3414 }
3415 
3416 static void tcg_reg_alloc_movi(TCGContext *s, const TCGOp *op)
3417 {
3418     TCGTemp *ots = arg_temp(op->args[0]);
3419     tcg_target_ulong val = op->args[1];
3420 
3421     tcg_reg_alloc_do_movi(s, ots, val, op->life, op->output_pref[0]);
3422 }
3423 
3424 /*
3425  * Specialized code generation for INDEX_op_mov_*.
3426  */
3427 static void tcg_reg_alloc_mov(TCGContext *s, const TCGOp *op)
3428 {
3429     const TCGLifeData arg_life = op->life;
3430     TCGRegSet allocated_regs, preferred_regs;
3431     TCGTemp *ts, *ots;
3432     TCGType otype, itype;
3433 
3434     allocated_regs = s->reserved_regs;
3435     preferred_regs = op->output_pref[0];
3436     ots = arg_temp(op->args[0]);
3437     ts = arg_temp(op->args[1]);
3438 
3439     /* ENV should not be modified.  */
3440     tcg_debug_assert(!ots->fixed_reg);
3441 
3442     /* Note that otype != itype for no-op truncation.  */
3443     otype = ots->type;
3444     itype = ts->type;
3445 
3446     if (ts->val_type == TEMP_VAL_CONST) {
3447         /* propagate constant or generate sti */
3448         tcg_target_ulong val = ts->val;
3449         if (IS_DEAD_ARG(1)) {
3450             temp_dead(s, ts);
3451         }
3452         tcg_reg_alloc_do_movi(s, ots, val, arg_life, preferred_regs);
3453         return;
3454     }
3455 
3456     /* If the source value is in memory we're going to be forced
3457        to have it in a register in order to perform the copy.  Copy
3458        the SOURCE value into its own register first, that way we
3459        don't have to reload SOURCE the next time it is used. */
3460     if (ts->val_type == TEMP_VAL_MEM) {
3461         temp_load(s, ts, tcg_target_available_regs[itype],
3462                   allocated_regs, preferred_regs);
3463     }
3464 
3465     tcg_debug_assert(ts->val_type == TEMP_VAL_REG);
3466     if (IS_DEAD_ARG(0)) {
3467         /* mov to a non-saved dead register makes no sense (even with
3468            liveness analysis disabled). */
3469         tcg_debug_assert(NEED_SYNC_ARG(0));
3470         if (!ots->mem_allocated) {
3471             temp_allocate_frame(s, ots);
3472         }
3473         tcg_out_st(s, otype, ts->reg, ots->mem_base->reg, ots->mem_offset);
3474         if (IS_DEAD_ARG(1)) {
3475             temp_dead(s, ts);
3476         }
3477         temp_dead(s, ots);
3478     } else {
3479         if (IS_DEAD_ARG(1) && !ts->fixed_reg) {
3480             /* the mov can be suppressed */
3481             if (ots->val_type == TEMP_VAL_REG) {
3482                 s->reg_to_temp[ots->reg] = NULL;
3483             }
3484             ots->reg = ts->reg;
3485             temp_dead(s, ts);
3486         } else {
3487             if (ots->val_type != TEMP_VAL_REG) {
3488                 /* When allocating a new register, make sure to not spill the
3489                    input one. */
3490                 tcg_regset_set_reg(allocated_regs, ts->reg);
3491                 ots->reg = tcg_reg_alloc(s, tcg_target_available_regs[otype],
3492                                          allocated_regs, preferred_regs,
3493                                          ots->indirect_base);
3494             }
3495             if (!tcg_out_mov(s, otype, ots->reg, ts->reg)) {
3496                 /*
3497                  * Cross register class move not supported.
3498                  * Store the source register into the destination slot
3499                  * and leave the destination temp as TEMP_VAL_MEM.
3500                  */
3501                 assert(!ots->fixed_reg);
3502                 if (!ts->mem_allocated) {
3503                     temp_allocate_frame(s, ots);
3504                 }
3505                 tcg_out_st(s, ts->type, ts->reg,
3506                            ots->mem_base->reg, ots->mem_offset);
3507                 ots->mem_coherent = 1;
3508                 temp_free_or_dead(s, ots, -1);
3509                 return;
3510             }
3511         }
3512         ots->val_type = TEMP_VAL_REG;
3513         ots->mem_coherent = 0;
3514         s->reg_to_temp[ots->reg] = ots;
3515         if (NEED_SYNC_ARG(0)) {
3516             temp_sync(s, ots, allocated_regs, 0, 0);
3517         }
3518     }
3519 }
3520 
3521 /*
3522  * Specialized code generation for INDEX_op_dup_vec.
3523  */
3524 static void tcg_reg_alloc_dup(TCGContext *s, const TCGOp *op)
3525 {
3526     const TCGLifeData arg_life = op->life;
3527     TCGRegSet dup_out_regs, dup_in_regs;
3528     TCGTemp *its, *ots;
3529     TCGType itype, vtype;
3530     intptr_t endian_fixup;
3531     unsigned vece;
3532     bool ok;
3533 
3534     ots = arg_temp(op->args[0]);
3535     its = arg_temp(op->args[1]);
3536 
3537     /* ENV should not be modified.  */
3538     tcg_debug_assert(!ots->fixed_reg);
3539 
3540     itype = its->type;
3541     vece = TCGOP_VECE(op);
3542     vtype = TCGOP_VECL(op) + TCG_TYPE_V64;
3543 
3544     if (its->val_type == TEMP_VAL_CONST) {
3545         /* Propagate constant via movi -> dupi.  */
3546         tcg_target_ulong val = its->val;
3547         if (IS_DEAD_ARG(1)) {
3548             temp_dead(s, its);
3549         }
3550         tcg_reg_alloc_do_movi(s, ots, val, arg_life, op->output_pref[0]);
3551         return;
3552     }
3553 
3554     dup_out_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[0].u.regs;
3555     dup_in_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[1].u.regs;
3556 
3557     /* Allocate the output register now.  */
3558     if (ots->val_type != TEMP_VAL_REG) {
3559         TCGRegSet allocated_regs = s->reserved_regs;
3560 
3561         if (!IS_DEAD_ARG(1) && its->val_type == TEMP_VAL_REG) {
3562             /* Make sure to not spill the input register. */
3563             tcg_regset_set_reg(allocated_regs, its->reg);
3564         }
3565         ots->reg = tcg_reg_alloc(s, dup_out_regs, allocated_regs,
3566                                  op->output_pref[0], ots->indirect_base);
3567         ots->val_type = TEMP_VAL_REG;
3568         ots->mem_coherent = 0;
3569         s->reg_to_temp[ots->reg] = ots;
3570     }
3571 
3572     switch (its->val_type) {
3573     case TEMP_VAL_REG:
3574         /*
3575          * The dup constriaints must be broad, covering all possible VECE.
3576          * However, tcg_op_dup_vec() gets to see the VECE and we allow it
3577          * to fail, indicating that extra moves are required for that case.
3578          */
3579         if (tcg_regset_test_reg(dup_in_regs, its->reg)) {
3580             if (tcg_out_dup_vec(s, vtype, vece, ots->reg, its->reg)) {
3581                 goto done;
3582             }
3583             /* Try again from memory or a vector input register.  */
3584         }
3585         if (!its->mem_coherent) {
3586             /*
3587              * The input register is not synced, and so an extra store
3588              * would be required to use memory.  Attempt an integer-vector
3589              * register move first.  We do not have a TCGRegSet for this.
3590              */
3591             if (tcg_out_mov(s, itype, ots->reg, its->reg)) {
3592                 break;
3593             }
3594             /* Sync the temp back to its slot and load from there.  */
3595             temp_sync(s, its, s->reserved_regs, 0, 0);
3596         }
3597         /* fall through */
3598 
3599     case TEMP_VAL_MEM:
3600 #ifdef HOST_WORDS_BIGENDIAN
3601         endian_fixup = itype == TCG_TYPE_I32 ? 4 : 8;
3602         endian_fixup -= 1 << vece;
3603 #else
3604         endian_fixup = 0;
3605 #endif
3606         if (tcg_out_dupm_vec(s, vtype, vece, ots->reg, its->mem_base->reg,
3607                              its->mem_offset + endian_fixup)) {
3608             goto done;
3609         }
3610         tcg_out_ld(s, itype, ots->reg, its->mem_base->reg, its->mem_offset);
3611         break;
3612 
3613     default:
3614         g_assert_not_reached();
3615     }
3616 
3617     /* We now have a vector input register, so dup must succeed. */
3618     ok = tcg_out_dup_vec(s, vtype, vece, ots->reg, ots->reg);
3619     tcg_debug_assert(ok);
3620 
3621  done:
3622     if (IS_DEAD_ARG(1)) {
3623         temp_dead(s, its);
3624     }
3625     if (NEED_SYNC_ARG(0)) {
3626         temp_sync(s, ots, s->reserved_regs, 0, 0);
3627     }
3628     if (IS_DEAD_ARG(0)) {
3629         temp_dead(s, ots);
3630     }
3631 }
3632 
3633 static void tcg_reg_alloc_op(TCGContext *s, const TCGOp *op)
3634 {
3635     const TCGLifeData arg_life = op->life;
3636     const TCGOpDef * const def = &tcg_op_defs[op->opc];
3637     TCGRegSet i_allocated_regs;
3638     TCGRegSet o_allocated_regs;
3639     int i, k, nb_iargs, nb_oargs;
3640     TCGReg reg;
3641     TCGArg arg;
3642     const TCGArgConstraint *arg_ct;
3643     TCGTemp *ts;
3644     TCGArg new_args[TCG_MAX_OP_ARGS];
3645     int const_args[TCG_MAX_OP_ARGS];
3646 
3647     nb_oargs = def->nb_oargs;
3648     nb_iargs = def->nb_iargs;
3649 
3650     /* copy constants */
3651     memcpy(new_args + nb_oargs + nb_iargs,
3652            op->args + nb_oargs + nb_iargs,
3653            sizeof(TCGArg) * def->nb_cargs);
3654 
3655     i_allocated_regs = s->reserved_regs;
3656     o_allocated_regs = s->reserved_regs;
3657 
3658     /* satisfy input constraints */
3659     for (k = 0; k < nb_iargs; k++) {
3660         TCGRegSet i_preferred_regs, o_preferred_regs;
3661 
3662         i = def->sorted_args[nb_oargs + k];
3663         arg = op->args[i];
3664         arg_ct = &def->args_ct[i];
3665         ts = arg_temp(arg);
3666 
3667         if (ts->val_type == TEMP_VAL_CONST
3668             && tcg_target_const_match(ts->val, ts->type, arg_ct)) {
3669             /* constant is OK for instruction */
3670             const_args[i] = 1;
3671             new_args[i] = ts->val;
3672             continue;
3673         }
3674 
3675         i_preferred_regs = o_preferred_regs = 0;
3676         if (arg_ct->ct & TCG_CT_IALIAS) {
3677             o_preferred_regs = op->output_pref[arg_ct->alias_index];
3678             if (ts->fixed_reg) {
3679                 /* if fixed register, we must allocate a new register
3680                    if the alias is not the same register */
3681                 if (arg != op->args[arg_ct->alias_index]) {
3682                     goto allocate_in_reg;
3683                 }
3684             } else {
3685                 /* if the input is aliased to an output and if it is
3686                    not dead after the instruction, we must allocate
3687                    a new register and move it */
3688                 if (!IS_DEAD_ARG(i)) {
3689                     goto allocate_in_reg;
3690                 }
3691 
3692                 /* check if the current register has already been allocated
3693                    for another input aliased to an output */
3694                 if (ts->val_type == TEMP_VAL_REG) {
3695                     int k2, i2;
3696                     reg = ts->reg;
3697                     for (k2 = 0 ; k2 < k ; k2++) {
3698                         i2 = def->sorted_args[nb_oargs + k2];
3699                         if ((def->args_ct[i2].ct & TCG_CT_IALIAS) &&
3700                             reg == new_args[i2]) {
3701                             goto allocate_in_reg;
3702                         }
3703                     }
3704                 }
3705                 i_preferred_regs = o_preferred_regs;
3706             }
3707         }
3708 
3709         temp_load(s, ts, arg_ct->u.regs, i_allocated_regs, i_preferred_regs);
3710         reg = ts->reg;
3711 
3712         if (tcg_regset_test_reg(arg_ct->u.regs, reg)) {
3713             /* nothing to do : the constraint is satisfied */
3714         } else {
3715         allocate_in_reg:
3716             /* allocate a new register matching the constraint
3717                and move the temporary register into it */
3718             temp_load(s, ts, tcg_target_available_regs[ts->type],
3719                       i_allocated_regs, 0);
3720             reg = tcg_reg_alloc(s, arg_ct->u.regs, i_allocated_regs,
3721                                 o_preferred_regs, ts->indirect_base);
3722             if (!tcg_out_mov(s, ts->type, reg, ts->reg)) {
3723                 /*
3724                  * Cross register class move not supported.  Sync the
3725                  * temp back to its slot and load from there.
3726                  */
3727                 temp_sync(s, ts, i_allocated_regs, 0, 0);
3728                 tcg_out_ld(s, ts->type, reg,
3729                            ts->mem_base->reg, ts->mem_offset);
3730             }
3731         }
3732         new_args[i] = reg;
3733         const_args[i] = 0;
3734         tcg_regset_set_reg(i_allocated_regs, reg);
3735     }
3736 
3737     /* mark dead temporaries and free the associated registers */
3738     for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
3739         if (IS_DEAD_ARG(i)) {
3740             temp_dead(s, arg_temp(op->args[i]));
3741         }
3742     }
3743 
3744     if (def->flags & TCG_OPF_BB_END) {
3745         tcg_reg_alloc_bb_end(s, i_allocated_regs);
3746     } else {
3747         if (def->flags & TCG_OPF_CALL_CLOBBER) {
3748             /* XXX: permit generic clobber register list ? */
3749             for (i = 0; i < TCG_TARGET_NB_REGS; i++) {
3750                 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) {
3751                     tcg_reg_free(s, i, i_allocated_regs);
3752                 }
3753             }
3754         }
3755         if (def->flags & TCG_OPF_SIDE_EFFECTS) {
3756             /* sync globals if the op has side effects and might trigger
3757                an exception. */
3758             sync_globals(s, i_allocated_regs);
3759         }
3760 
3761         /* satisfy the output constraints */
3762         for(k = 0; k < nb_oargs; k++) {
3763             i = def->sorted_args[k];
3764             arg = op->args[i];
3765             arg_ct = &def->args_ct[i];
3766             ts = arg_temp(arg);
3767 
3768             /* ENV should not be modified.  */
3769             tcg_debug_assert(!ts->fixed_reg);
3770 
3771             if ((arg_ct->ct & TCG_CT_ALIAS)
3772                 && !const_args[arg_ct->alias_index]) {
3773                 reg = new_args[arg_ct->alias_index];
3774             } else if (arg_ct->ct & TCG_CT_NEWREG) {
3775                 reg = tcg_reg_alloc(s, arg_ct->u.regs,
3776                                     i_allocated_regs | o_allocated_regs,
3777                                     op->output_pref[k], ts->indirect_base);
3778             } else {
3779                 reg = tcg_reg_alloc(s, arg_ct->u.regs, o_allocated_regs,
3780                                     op->output_pref[k], ts->indirect_base);
3781             }
3782             tcg_regset_set_reg(o_allocated_regs, reg);
3783             if (ts->val_type == TEMP_VAL_REG) {
3784                 s->reg_to_temp[ts->reg] = NULL;
3785             }
3786             ts->val_type = TEMP_VAL_REG;
3787             ts->reg = reg;
3788             /*
3789              * Temp value is modified, so the value kept in memory is
3790              * potentially not the same.
3791              */
3792             ts->mem_coherent = 0;
3793             s->reg_to_temp[reg] = ts;
3794             new_args[i] = reg;
3795         }
3796     }
3797 
3798     /* emit instruction */
3799     if (def->flags & TCG_OPF_VECTOR) {
3800         tcg_out_vec_op(s, op->opc, TCGOP_VECL(op), TCGOP_VECE(op),
3801                        new_args, const_args);
3802     } else {
3803         tcg_out_op(s, op->opc, new_args, const_args);
3804     }
3805 
3806     /* move the outputs in the correct register if needed */
3807     for(i = 0; i < nb_oargs; i++) {
3808         ts = arg_temp(op->args[i]);
3809 
3810         /* ENV should not be modified.  */
3811         tcg_debug_assert(!ts->fixed_reg);
3812 
3813         if (NEED_SYNC_ARG(i)) {
3814             temp_sync(s, ts, o_allocated_regs, 0, IS_DEAD_ARG(i));
3815         } else if (IS_DEAD_ARG(i)) {
3816             temp_dead(s, ts);
3817         }
3818     }
3819 }
3820 
3821 #ifdef TCG_TARGET_STACK_GROWSUP
3822 #define STACK_DIR(x) (-(x))
3823 #else
3824 #define STACK_DIR(x) (x)
3825 #endif
3826 
3827 static void tcg_reg_alloc_call(TCGContext *s, TCGOp *op)
3828 {
3829     const int nb_oargs = TCGOP_CALLO(op);
3830     const int nb_iargs = TCGOP_CALLI(op);
3831     const TCGLifeData arg_life = op->life;
3832     int flags, nb_regs, i;
3833     TCGReg reg;
3834     TCGArg arg;
3835     TCGTemp *ts;
3836     intptr_t stack_offset;
3837     size_t call_stack_size;
3838     tcg_insn_unit *func_addr;
3839     int allocate_args;
3840     TCGRegSet allocated_regs;
3841 
3842     func_addr = (tcg_insn_unit *)(intptr_t)op->args[nb_oargs + nb_iargs];
3843     flags = op->args[nb_oargs + nb_iargs + 1];
3844 
3845     nb_regs = ARRAY_SIZE(tcg_target_call_iarg_regs);
3846     if (nb_regs > nb_iargs) {
3847         nb_regs = nb_iargs;
3848     }
3849 
3850     /* assign stack slots first */
3851     call_stack_size = (nb_iargs - nb_regs) * sizeof(tcg_target_long);
3852     call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) &
3853         ~(TCG_TARGET_STACK_ALIGN - 1);
3854     allocate_args = (call_stack_size > TCG_STATIC_CALL_ARGS_SIZE);
3855     if (allocate_args) {
3856         /* XXX: if more than TCG_STATIC_CALL_ARGS_SIZE is needed,
3857            preallocate call stack */
3858         tcg_abort();
3859     }
3860 
3861     stack_offset = TCG_TARGET_CALL_STACK_OFFSET;
3862     for (i = nb_regs; i < nb_iargs; i++) {
3863         arg = op->args[nb_oargs + i];
3864 #ifdef TCG_TARGET_STACK_GROWSUP
3865         stack_offset -= sizeof(tcg_target_long);
3866 #endif
3867         if (arg != TCG_CALL_DUMMY_ARG) {
3868             ts = arg_temp(arg);
3869             temp_load(s, ts, tcg_target_available_regs[ts->type],
3870                       s->reserved_regs, 0);
3871             tcg_out_st(s, ts->type, ts->reg, TCG_REG_CALL_STACK, stack_offset);
3872         }
3873 #ifndef TCG_TARGET_STACK_GROWSUP
3874         stack_offset += sizeof(tcg_target_long);
3875 #endif
3876     }
3877 
3878     /* assign input registers */
3879     allocated_regs = s->reserved_regs;
3880     for (i = 0; i < nb_regs; i++) {
3881         arg = op->args[nb_oargs + i];
3882         if (arg != TCG_CALL_DUMMY_ARG) {
3883             ts = arg_temp(arg);
3884             reg = tcg_target_call_iarg_regs[i];
3885 
3886             if (ts->val_type == TEMP_VAL_REG) {
3887                 if (ts->reg != reg) {
3888                     tcg_reg_free(s, reg, allocated_regs);
3889                     if (!tcg_out_mov(s, ts->type, reg, ts->reg)) {
3890                         /*
3891                          * Cross register class move not supported.  Sync the
3892                          * temp back to its slot and load from there.
3893                          */
3894                         temp_sync(s, ts, allocated_regs, 0, 0);
3895                         tcg_out_ld(s, ts->type, reg,
3896                                    ts->mem_base->reg, ts->mem_offset);
3897                     }
3898                 }
3899             } else {
3900                 TCGRegSet arg_set = 0;
3901 
3902                 tcg_reg_free(s, reg, allocated_regs);
3903                 tcg_regset_set_reg(arg_set, reg);
3904                 temp_load(s, ts, arg_set, allocated_regs, 0);
3905             }
3906 
3907             tcg_regset_set_reg(allocated_regs, reg);
3908         }
3909     }
3910 
3911     /* mark dead temporaries and free the associated registers */
3912     for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
3913         if (IS_DEAD_ARG(i)) {
3914             temp_dead(s, arg_temp(op->args[i]));
3915         }
3916     }
3917 
3918     /* clobber call registers */
3919     for (i = 0; i < TCG_TARGET_NB_REGS; i++) {
3920         if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) {
3921             tcg_reg_free(s, i, allocated_regs);
3922         }
3923     }
3924 
3925     /* Save globals if they might be written by the helper, sync them if
3926        they might be read. */
3927     if (flags & TCG_CALL_NO_READ_GLOBALS) {
3928         /* Nothing to do */
3929     } else if (flags & TCG_CALL_NO_WRITE_GLOBALS) {
3930         sync_globals(s, allocated_regs);
3931     } else {
3932         save_globals(s, allocated_regs);
3933     }
3934 
3935     tcg_out_call(s, func_addr);
3936 
3937     /* assign output registers and emit moves if needed */
3938     for(i = 0; i < nb_oargs; i++) {
3939         arg = op->args[i];
3940         ts = arg_temp(arg);
3941 
3942         /* ENV should not be modified.  */
3943         tcg_debug_assert(!ts->fixed_reg);
3944 
3945         reg = tcg_target_call_oarg_regs[i];
3946         tcg_debug_assert(s->reg_to_temp[reg] == NULL);
3947         if (ts->val_type == TEMP_VAL_REG) {
3948             s->reg_to_temp[ts->reg] = NULL;
3949         }
3950         ts->val_type = TEMP_VAL_REG;
3951         ts->reg = reg;
3952         ts->mem_coherent = 0;
3953         s->reg_to_temp[reg] = ts;
3954         if (NEED_SYNC_ARG(i)) {
3955             temp_sync(s, ts, allocated_regs, 0, IS_DEAD_ARG(i));
3956         } else if (IS_DEAD_ARG(i)) {
3957             temp_dead(s, ts);
3958         }
3959     }
3960 }
3961 
3962 #ifdef CONFIG_PROFILER
3963 
3964 /* avoid copy/paste errors */
3965 #define PROF_ADD(to, from, field)                       \
3966     do {                                                \
3967         (to)->field += atomic_read(&((from)->field));   \
3968     } while (0)
3969 
3970 #define PROF_MAX(to, from, field)                                       \
3971     do {                                                                \
3972         typeof((from)->field) val__ = atomic_read(&((from)->field));    \
3973         if (val__ > (to)->field) {                                      \
3974             (to)->field = val__;                                        \
3975         }                                                               \
3976     } while (0)
3977 
3978 /* Pass in a zero'ed @prof */
3979 static inline
3980 void tcg_profile_snapshot(TCGProfile *prof, bool counters, bool table)
3981 {
3982     unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
3983     unsigned int i;
3984 
3985     for (i = 0; i < n_ctxs; i++) {
3986         TCGContext *s = atomic_read(&tcg_ctxs[i]);
3987         const TCGProfile *orig = &s->prof;
3988 
3989         if (counters) {
3990             PROF_ADD(prof, orig, cpu_exec_time);
3991             PROF_ADD(prof, orig, tb_count1);
3992             PROF_ADD(prof, orig, tb_count);
3993             PROF_ADD(prof, orig, op_count);
3994             PROF_MAX(prof, orig, op_count_max);
3995             PROF_ADD(prof, orig, temp_count);
3996             PROF_MAX(prof, orig, temp_count_max);
3997             PROF_ADD(prof, orig, del_op_count);
3998             PROF_ADD(prof, orig, code_in_len);
3999             PROF_ADD(prof, orig, code_out_len);
4000             PROF_ADD(prof, orig, search_out_len);
4001             PROF_ADD(prof, orig, interm_time);
4002             PROF_ADD(prof, orig, code_time);
4003             PROF_ADD(prof, orig, la_time);
4004             PROF_ADD(prof, orig, opt_time);
4005             PROF_ADD(prof, orig, restore_count);
4006             PROF_ADD(prof, orig, restore_time);
4007         }
4008         if (table) {
4009             int i;
4010 
4011             for (i = 0; i < NB_OPS; i++) {
4012                 PROF_ADD(prof, orig, table_op_count[i]);
4013             }
4014         }
4015     }
4016 }
4017 
4018 #undef PROF_ADD
4019 #undef PROF_MAX
4020 
4021 static void tcg_profile_snapshot_counters(TCGProfile *prof)
4022 {
4023     tcg_profile_snapshot(prof, true, false);
4024 }
4025 
4026 static void tcg_profile_snapshot_table(TCGProfile *prof)
4027 {
4028     tcg_profile_snapshot(prof, false, true);
4029 }
4030 
4031 void tcg_dump_op_count(void)
4032 {
4033     TCGProfile prof = {};
4034     int i;
4035 
4036     tcg_profile_snapshot_table(&prof);
4037     for (i = 0; i < NB_OPS; i++) {
4038         qemu_printf("%s %" PRId64 "\n", tcg_op_defs[i].name,
4039                     prof.table_op_count[i]);
4040     }
4041 }
4042 
4043 int64_t tcg_cpu_exec_time(void)
4044 {
4045     unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
4046     unsigned int i;
4047     int64_t ret = 0;
4048 
4049     for (i = 0; i < n_ctxs; i++) {
4050         const TCGContext *s = atomic_read(&tcg_ctxs[i]);
4051         const TCGProfile *prof = &s->prof;
4052 
4053         ret += atomic_read(&prof->cpu_exec_time);
4054     }
4055     return ret;
4056 }
4057 #else
4058 void tcg_dump_op_count(void)
4059 {
4060     qemu_printf("[TCG profiler not compiled]\n");
4061 }
4062 
4063 int64_t tcg_cpu_exec_time(void)
4064 {
4065     error_report("%s: TCG profiler not compiled", __func__);
4066     exit(EXIT_FAILURE);
4067 }
4068 #endif
4069 
4070 
4071 int tcg_gen_code(TCGContext *s, TranslationBlock *tb)
4072 {
4073 #ifdef CONFIG_PROFILER
4074     TCGProfile *prof = &s->prof;
4075 #endif
4076     int i, num_insns;
4077     TCGOp *op;
4078 
4079 #ifdef CONFIG_PROFILER
4080     {
4081         int n = 0;
4082 
4083         QTAILQ_FOREACH(op, &s->ops, link) {
4084             n++;
4085         }
4086         atomic_set(&prof->op_count, prof->op_count + n);
4087         if (n > prof->op_count_max) {
4088             atomic_set(&prof->op_count_max, n);
4089         }
4090 
4091         n = s->nb_temps;
4092         atomic_set(&prof->temp_count, prof->temp_count + n);
4093         if (n > prof->temp_count_max) {
4094             atomic_set(&prof->temp_count_max, n);
4095         }
4096     }
4097 #endif
4098 
4099 #ifdef DEBUG_DISAS
4100     if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP)
4101                  && qemu_log_in_addr_range(tb->pc))) {
4102         FILE *logfile = qemu_log_lock();
4103         qemu_log("OP:\n");
4104         tcg_dump_ops(s, false);
4105         qemu_log("\n");
4106         qemu_log_unlock(logfile);
4107     }
4108 #endif
4109 
4110 #ifdef CONFIG_DEBUG_TCG
4111     /* Ensure all labels referenced have been emitted.  */
4112     {
4113         TCGLabel *l;
4114         bool error = false;
4115 
4116         QSIMPLEQ_FOREACH(l, &s->labels, next) {
4117             if (unlikely(!l->present) && l->refs) {
4118                 qemu_log_mask(CPU_LOG_TB_OP,
4119                               "$L%d referenced but not present.\n", l->id);
4120                 error = true;
4121             }
4122         }
4123         assert(!error);
4124     }
4125 #endif
4126 
4127 #ifdef CONFIG_PROFILER
4128     atomic_set(&prof->opt_time, prof->opt_time - profile_getclock());
4129 #endif
4130 
4131 #ifdef USE_TCG_OPTIMIZATIONS
4132     tcg_optimize(s);
4133 #endif
4134 
4135 #ifdef CONFIG_PROFILER
4136     atomic_set(&prof->opt_time, prof->opt_time + profile_getclock());
4137     atomic_set(&prof->la_time, prof->la_time - profile_getclock());
4138 #endif
4139 
4140     reachable_code_pass(s);
4141     liveness_pass_1(s);
4142 
4143     if (s->nb_indirects > 0) {
4144 #ifdef DEBUG_DISAS
4145         if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND)
4146                      && qemu_log_in_addr_range(tb->pc))) {
4147             FILE *logfile = qemu_log_lock();
4148             qemu_log("OP before indirect lowering:\n");
4149             tcg_dump_ops(s, false);
4150             qemu_log("\n");
4151             qemu_log_unlock(logfile);
4152         }
4153 #endif
4154         /* Replace indirect temps with direct temps.  */
4155         if (liveness_pass_2(s)) {
4156             /* If changes were made, re-run liveness.  */
4157             liveness_pass_1(s);
4158         }
4159     }
4160 
4161 #ifdef CONFIG_PROFILER
4162     atomic_set(&prof->la_time, prof->la_time + profile_getclock());
4163 #endif
4164 
4165 #ifdef DEBUG_DISAS
4166     if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT)
4167                  && qemu_log_in_addr_range(tb->pc))) {
4168         FILE *logfile = qemu_log_lock();
4169         qemu_log("OP after optimization and liveness analysis:\n");
4170         tcg_dump_ops(s, true);
4171         qemu_log("\n");
4172         qemu_log_unlock(logfile);
4173     }
4174 #endif
4175 
4176     tcg_reg_alloc_start(s);
4177 
4178     s->code_buf = tb->tc.ptr;
4179     s->code_ptr = tb->tc.ptr;
4180 
4181 #ifdef TCG_TARGET_NEED_LDST_LABELS
4182     QSIMPLEQ_INIT(&s->ldst_labels);
4183 #endif
4184 #ifdef TCG_TARGET_NEED_POOL_LABELS
4185     s->pool_labels = NULL;
4186 #endif
4187 
4188     num_insns = -1;
4189     QTAILQ_FOREACH(op, &s->ops, link) {
4190         TCGOpcode opc = op->opc;
4191 
4192 #ifdef CONFIG_PROFILER
4193         atomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1);
4194 #endif
4195 
4196         switch (opc) {
4197         case INDEX_op_mov_i32:
4198         case INDEX_op_mov_i64:
4199         case INDEX_op_mov_vec:
4200             tcg_reg_alloc_mov(s, op);
4201             break;
4202         case INDEX_op_movi_i32:
4203         case INDEX_op_movi_i64:
4204         case INDEX_op_dupi_vec:
4205             tcg_reg_alloc_movi(s, op);
4206             break;
4207         case INDEX_op_dup_vec:
4208             tcg_reg_alloc_dup(s, op);
4209             break;
4210         case INDEX_op_insn_start:
4211             if (num_insns >= 0) {
4212                 size_t off = tcg_current_code_size(s);
4213                 s->gen_insn_end_off[num_insns] = off;
4214                 /* Assert that we do not overflow our stored offset.  */
4215                 assert(s->gen_insn_end_off[num_insns] == off);
4216             }
4217             num_insns++;
4218             for (i = 0; i < TARGET_INSN_START_WORDS; ++i) {
4219                 target_ulong a;
4220 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
4221                 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]);
4222 #else
4223                 a = op->args[i];
4224 #endif
4225                 s->gen_insn_data[num_insns][i] = a;
4226             }
4227             break;
4228         case INDEX_op_discard:
4229             temp_dead(s, arg_temp(op->args[0]));
4230             break;
4231         case INDEX_op_set_label:
4232             tcg_reg_alloc_bb_end(s, s->reserved_regs);
4233             tcg_out_label(s, arg_label(op->args[0]), s->code_ptr);
4234             break;
4235         case INDEX_op_call:
4236             tcg_reg_alloc_call(s, op);
4237             break;
4238         default:
4239             /* Sanity check that we've not introduced any unhandled opcodes. */
4240             tcg_debug_assert(tcg_op_supported(opc));
4241             /* Note: in order to speed up the code, it would be much
4242                faster to have specialized register allocator functions for
4243                some common argument patterns */
4244             tcg_reg_alloc_op(s, op);
4245             break;
4246         }
4247 #ifdef CONFIG_DEBUG_TCG
4248         check_regs(s);
4249 #endif
4250         /* Test for (pending) buffer overflow.  The assumption is that any
4251            one operation beginning below the high water mark cannot overrun
4252            the buffer completely.  Thus we can test for overflow after
4253            generating code without having to check during generation.  */
4254         if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) {
4255             return -1;
4256         }
4257         /* Test for TB overflow, as seen by gen_insn_end_off.  */
4258         if (unlikely(tcg_current_code_size(s) > UINT16_MAX)) {
4259             return -2;
4260         }
4261     }
4262     tcg_debug_assert(num_insns >= 0);
4263     s->gen_insn_end_off[num_insns] = tcg_current_code_size(s);
4264 
4265     /* Generate TB finalization at the end of block */
4266 #ifdef TCG_TARGET_NEED_LDST_LABELS
4267     i = tcg_out_ldst_finalize(s);
4268     if (i < 0) {
4269         return i;
4270     }
4271 #endif
4272 #ifdef TCG_TARGET_NEED_POOL_LABELS
4273     i = tcg_out_pool_finalize(s);
4274     if (i < 0) {
4275         return i;
4276     }
4277 #endif
4278     if (!tcg_resolve_relocs(s)) {
4279         return -2;
4280     }
4281 
4282     /* flush instruction cache */
4283     flush_icache_range((uintptr_t)s->code_buf, (uintptr_t)s->code_ptr);
4284 
4285     return tcg_current_code_size(s);
4286 }
4287 
4288 #ifdef CONFIG_PROFILER
4289 void tcg_dump_info(void)
4290 {
4291     TCGProfile prof = {};
4292     const TCGProfile *s;
4293     int64_t tb_count;
4294     int64_t tb_div_count;
4295     int64_t tot;
4296 
4297     tcg_profile_snapshot_counters(&prof);
4298     s = &prof;
4299     tb_count = s->tb_count;
4300     tb_div_count = tb_count ? tb_count : 1;
4301     tot = s->interm_time + s->code_time;
4302 
4303     qemu_printf("JIT cycles          %" PRId64 " (%0.3f s at 2.4 GHz)\n",
4304                 tot, tot / 2.4e9);
4305     qemu_printf("translated TBs      %" PRId64 " (aborted=%" PRId64
4306                 " %0.1f%%)\n",
4307                 tb_count, s->tb_count1 - tb_count,
4308                 (double)(s->tb_count1 - s->tb_count)
4309                 / (s->tb_count1 ? s->tb_count1 : 1) * 100.0);
4310     qemu_printf("avg ops/TB          %0.1f max=%d\n",
4311                 (double)s->op_count / tb_div_count, s->op_count_max);
4312     qemu_printf("deleted ops/TB      %0.2f\n",
4313                 (double)s->del_op_count / tb_div_count);
4314     qemu_printf("avg temps/TB        %0.2f max=%d\n",
4315                 (double)s->temp_count / tb_div_count, s->temp_count_max);
4316     qemu_printf("avg host code/TB    %0.1f\n",
4317                 (double)s->code_out_len / tb_div_count);
4318     qemu_printf("avg search data/TB  %0.1f\n",
4319                 (double)s->search_out_len / tb_div_count);
4320 
4321     qemu_printf("cycles/op           %0.1f\n",
4322                 s->op_count ? (double)tot / s->op_count : 0);
4323     qemu_printf("cycles/in byte      %0.1f\n",
4324                 s->code_in_len ? (double)tot / s->code_in_len : 0);
4325     qemu_printf("cycles/out byte     %0.1f\n",
4326                 s->code_out_len ? (double)tot / s->code_out_len : 0);
4327     qemu_printf("cycles/search byte     %0.1f\n",
4328                 s->search_out_len ? (double)tot / s->search_out_len : 0);
4329     if (tot == 0) {
4330         tot = 1;
4331     }
4332     qemu_printf("  gen_interm time   %0.1f%%\n",
4333                 (double)s->interm_time / tot * 100.0);
4334     qemu_printf("  gen_code time     %0.1f%%\n",
4335                 (double)s->code_time / tot * 100.0);
4336     qemu_printf("optim./code time    %0.1f%%\n",
4337                 (double)s->opt_time / (s->code_time ? s->code_time : 1)
4338                 * 100.0);
4339     qemu_printf("liveness/code time  %0.1f%%\n",
4340                 (double)s->la_time / (s->code_time ? s->code_time : 1) * 100.0);
4341     qemu_printf("cpu_restore count   %" PRId64 "\n",
4342                 s->restore_count);
4343     qemu_printf("  avg cycles        %0.1f\n",
4344                 s->restore_count ? (double)s->restore_time / s->restore_count : 0);
4345 }
4346 #else
4347 void tcg_dump_info(void)
4348 {
4349     qemu_printf("[TCG profiler not compiled]\n");
4350 }
4351 #endif
4352 
4353 #ifdef ELF_HOST_MACHINE
4354 /* In order to use this feature, the backend needs to do three things:
4355 
4356    (1) Define ELF_HOST_MACHINE to indicate both what value to
4357        put into the ELF image and to indicate support for the feature.
4358 
4359    (2) Define tcg_register_jit.  This should create a buffer containing
4360        the contents of a .debug_frame section that describes the post-
4361        prologue unwind info for the tcg machine.
4362 
4363    (3) Call tcg_register_jit_int, with the constructed .debug_frame.
4364 */
4365 
4366 /* Begin GDB interface.  THE FOLLOWING MUST MATCH GDB DOCS.  */
4367 typedef enum {
4368     JIT_NOACTION = 0,
4369     JIT_REGISTER_FN,
4370     JIT_UNREGISTER_FN
4371 } jit_actions_t;
4372 
4373 struct jit_code_entry {
4374     struct jit_code_entry *next_entry;
4375     struct jit_code_entry *prev_entry;
4376     const void *symfile_addr;
4377     uint64_t symfile_size;
4378 };
4379 
4380 struct jit_descriptor {
4381     uint32_t version;
4382     uint32_t action_flag;
4383     struct jit_code_entry *relevant_entry;
4384     struct jit_code_entry *first_entry;
4385 };
4386 
4387 void __jit_debug_register_code(void) __attribute__((noinline));
4388 void __jit_debug_register_code(void)
4389 {
4390     asm("");
4391 }
4392 
4393 /* Must statically initialize the version, because GDB may check
4394    the version before we can set it.  */
4395 struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
4396 
4397 /* End GDB interface.  */
4398 
4399 static int find_string(const char *strtab, const char *str)
4400 {
4401     const char *p = strtab + 1;
4402 
4403     while (1) {
4404         if (strcmp(p, str) == 0) {
4405             return p - strtab;
4406         }
4407         p += strlen(p) + 1;
4408     }
4409 }
4410 
4411 static void tcg_register_jit_int(void *buf_ptr, size_t buf_size,
4412                                  const void *debug_frame,
4413                                  size_t debug_frame_size)
4414 {
4415     struct __attribute__((packed)) DebugInfo {
4416         uint32_t  len;
4417         uint16_t  version;
4418         uint32_t  abbrev;
4419         uint8_t   ptr_size;
4420         uint8_t   cu_die;
4421         uint16_t  cu_lang;
4422         uintptr_t cu_low_pc;
4423         uintptr_t cu_high_pc;
4424         uint8_t   fn_die;
4425         char      fn_name[16];
4426         uintptr_t fn_low_pc;
4427         uintptr_t fn_high_pc;
4428         uint8_t   cu_eoc;
4429     };
4430 
4431     struct ElfImage {
4432         ElfW(Ehdr) ehdr;
4433         ElfW(Phdr) phdr;
4434         ElfW(Shdr) shdr[7];
4435         ElfW(Sym)  sym[2];
4436         struct DebugInfo di;
4437         uint8_t    da[24];
4438         char       str[80];
4439     };
4440 
4441     struct ElfImage *img;
4442 
4443     static const struct ElfImage img_template = {
4444         .ehdr = {
4445             .e_ident[EI_MAG0] = ELFMAG0,
4446             .e_ident[EI_MAG1] = ELFMAG1,
4447             .e_ident[EI_MAG2] = ELFMAG2,
4448             .e_ident[EI_MAG3] = ELFMAG3,
4449             .e_ident[EI_CLASS] = ELF_CLASS,
4450             .e_ident[EI_DATA] = ELF_DATA,
4451             .e_ident[EI_VERSION] = EV_CURRENT,
4452             .e_type = ET_EXEC,
4453             .e_machine = ELF_HOST_MACHINE,
4454             .e_version = EV_CURRENT,
4455             .e_phoff = offsetof(struct ElfImage, phdr),
4456             .e_shoff = offsetof(struct ElfImage, shdr),
4457             .e_ehsize = sizeof(ElfW(Shdr)),
4458             .e_phentsize = sizeof(ElfW(Phdr)),
4459             .e_phnum = 1,
4460             .e_shentsize = sizeof(ElfW(Shdr)),
4461             .e_shnum = ARRAY_SIZE(img->shdr),
4462             .e_shstrndx = ARRAY_SIZE(img->shdr) - 1,
4463 #ifdef ELF_HOST_FLAGS
4464             .e_flags = ELF_HOST_FLAGS,
4465 #endif
4466 #ifdef ELF_OSABI
4467             .e_ident[EI_OSABI] = ELF_OSABI,
4468 #endif
4469         },
4470         .phdr = {
4471             .p_type = PT_LOAD,
4472             .p_flags = PF_X,
4473         },
4474         .shdr = {
4475             [0] = { .sh_type = SHT_NULL },
4476             /* Trick: The contents of code_gen_buffer are not present in
4477                this fake ELF file; that got allocated elsewhere.  Therefore
4478                we mark .text as SHT_NOBITS (similar to .bss) so that readers
4479                will not look for contents.  We can record any address.  */
4480             [1] = { /* .text */
4481                 .sh_type = SHT_NOBITS,
4482                 .sh_flags = SHF_EXECINSTR | SHF_ALLOC,
4483             },
4484             [2] = { /* .debug_info */
4485                 .sh_type = SHT_PROGBITS,
4486                 .sh_offset = offsetof(struct ElfImage, di),
4487                 .sh_size = sizeof(struct DebugInfo),
4488             },
4489             [3] = { /* .debug_abbrev */
4490                 .sh_type = SHT_PROGBITS,
4491                 .sh_offset = offsetof(struct ElfImage, da),
4492                 .sh_size = sizeof(img->da),
4493             },
4494             [4] = { /* .debug_frame */
4495                 .sh_type = SHT_PROGBITS,
4496                 .sh_offset = sizeof(struct ElfImage),
4497             },
4498             [5] = { /* .symtab */
4499                 .sh_type = SHT_SYMTAB,
4500                 .sh_offset = offsetof(struct ElfImage, sym),
4501                 .sh_size = sizeof(img->sym),
4502                 .sh_info = 1,
4503                 .sh_link = ARRAY_SIZE(img->shdr) - 1,
4504                 .sh_entsize = sizeof(ElfW(Sym)),
4505             },
4506             [6] = { /* .strtab */
4507                 .sh_type = SHT_STRTAB,
4508                 .sh_offset = offsetof(struct ElfImage, str),
4509                 .sh_size = sizeof(img->str),
4510             }
4511         },
4512         .sym = {
4513             [1] = { /* code_gen_buffer */
4514                 .st_info = ELF_ST_INFO(STB_GLOBAL, STT_FUNC),
4515                 .st_shndx = 1,
4516             }
4517         },
4518         .di = {
4519             .len = sizeof(struct DebugInfo) - 4,
4520             .version = 2,
4521             .ptr_size = sizeof(void *),
4522             .cu_die = 1,
4523             .cu_lang = 0x8001,  /* DW_LANG_Mips_Assembler */
4524             .fn_die = 2,
4525             .fn_name = "code_gen_buffer"
4526         },
4527         .da = {
4528             1,          /* abbrev number (the cu) */
4529             0x11, 1,    /* DW_TAG_compile_unit, has children */
4530             0x13, 0x5,  /* DW_AT_language, DW_FORM_data2 */
4531             0x11, 0x1,  /* DW_AT_low_pc, DW_FORM_addr */
4532             0x12, 0x1,  /* DW_AT_high_pc, DW_FORM_addr */
4533             0, 0,       /* end of abbrev */
4534             2,          /* abbrev number (the fn) */
4535             0x2e, 0,    /* DW_TAG_subprogram, no children */
4536             0x3, 0x8,   /* DW_AT_name, DW_FORM_string */
4537             0x11, 0x1,  /* DW_AT_low_pc, DW_FORM_addr */
4538             0x12, 0x1,  /* DW_AT_high_pc, DW_FORM_addr */
4539             0, 0,       /* end of abbrev */
4540             0           /* no more abbrev */
4541         },
4542         .str = "\0" ".text\0" ".debug_info\0" ".debug_abbrev\0"
4543                ".debug_frame\0" ".symtab\0" ".strtab\0" "code_gen_buffer",
4544     };
4545 
4546     /* We only need a single jit entry; statically allocate it.  */
4547     static struct jit_code_entry one_entry;
4548 
4549     uintptr_t buf = (uintptr_t)buf_ptr;
4550     size_t img_size = sizeof(struct ElfImage) + debug_frame_size;
4551     DebugFrameHeader *dfh;
4552 
4553     img = g_malloc(img_size);
4554     *img = img_template;
4555 
4556     img->phdr.p_vaddr = buf;
4557     img->phdr.p_paddr = buf;
4558     img->phdr.p_memsz = buf_size;
4559 
4560     img->shdr[1].sh_name = find_string(img->str, ".text");
4561     img->shdr[1].sh_addr = buf;
4562     img->shdr[1].sh_size = buf_size;
4563 
4564     img->shdr[2].sh_name = find_string(img->str, ".debug_info");
4565     img->shdr[3].sh_name = find_string(img->str, ".debug_abbrev");
4566 
4567     img->shdr[4].sh_name = find_string(img->str, ".debug_frame");
4568     img->shdr[4].sh_size = debug_frame_size;
4569 
4570     img->shdr[5].sh_name = find_string(img->str, ".symtab");
4571     img->shdr[6].sh_name = find_string(img->str, ".strtab");
4572 
4573     img->sym[1].st_name = find_string(img->str, "code_gen_buffer");
4574     img->sym[1].st_value = buf;
4575     img->sym[1].st_size = buf_size;
4576 
4577     img->di.cu_low_pc = buf;
4578     img->di.cu_high_pc = buf + buf_size;
4579     img->di.fn_low_pc = buf;
4580     img->di.fn_high_pc = buf + buf_size;
4581 
4582     dfh = (DebugFrameHeader *)(img + 1);
4583     memcpy(dfh, debug_frame, debug_frame_size);
4584     dfh->fde.func_start = buf;
4585     dfh->fde.func_len = buf_size;
4586 
4587 #ifdef DEBUG_JIT
4588     /* Enable this block to be able to debug the ELF image file creation.
4589        One can use readelf, objdump, or other inspection utilities.  */
4590     {
4591         FILE *f = fopen("/tmp/qemu.jit", "w+b");
4592         if (f) {
4593             if (fwrite(img, img_size, 1, f) != img_size) {
4594                 /* Avoid stupid unused return value warning for fwrite.  */
4595             }
4596             fclose(f);
4597         }
4598     }
4599 #endif
4600 
4601     one_entry.symfile_addr = img;
4602     one_entry.symfile_size = img_size;
4603 
4604     __jit_debug_descriptor.action_flag = JIT_REGISTER_FN;
4605     __jit_debug_descriptor.relevant_entry = &one_entry;
4606     __jit_debug_descriptor.first_entry = &one_entry;
4607     __jit_debug_register_code();
4608 }
4609 #else
4610 /* No support for the feature.  Provide the entry point expected by exec.c,
4611    and implement the internal function we declared earlier.  */
4612 
4613 static void tcg_register_jit_int(void *buf, size_t size,
4614                                  const void *debug_frame,
4615                                  size_t debug_frame_size)
4616 {
4617 }
4618 
4619 void tcg_register_jit(void *buf, size_t buf_size)
4620 {
4621 }
4622 #endif /* ELF_HOST_MACHINE */
4623 
4624 #if !TCG_TARGET_MAYBE_vec
4625 void tcg_expand_vec_op(TCGOpcode o, TCGType t, unsigned e, TCGArg a0, ...)
4626 {
4627     g_assert_not_reached();
4628 }
4629 #endif
4630