xref: /qemu/tests/bench/qht-bench.c (revision c5955f4f)
1 /*
2  * Copyright (C) 2016, Emilio G. Cota <cota@braap.org>
3  *
4  * License: GNU GPL, version 2 or later.
5  *   See the COPYING file in the top-level directory.
6  */
7 #include "qemu/osdep.h"
8 #include "qemu/processor.h"
9 #include "qemu/atomic.h"
10 #include "qemu/qht.h"
11 #include "qemu/rcu.h"
12 #include "qemu/xxhash.h"
13 #include "qemu/memalign.h"
14 
15 struct thread_stats {
16     size_t rd;
17     size_t not_rd;
18     size_t in;
19     size_t not_in;
20     size_t rm;
21     size_t not_rm;
22     size_t rz;
23     size_t not_rz;
24 };
25 
26 struct thread_info {
27     void (*func)(struct thread_info *);
28     struct thread_stats stats;
29     /*
30      * Seed is in the range [1..UINT64_MAX], because the RNG requires
31      * a non-zero seed.  To use, subtract 1 and compare against the
32      * threshold with </>=.  This lets threshold = 0 never match (0% hit),
33      * and threshold = UINT64_MAX always match (100% hit).
34      */
35     uint64_t seed;
36     bool write_op; /* writes alternate between insertions and removals */
37     bool resize_down;
38 } QEMU_ALIGNED(64); /* avoid false sharing among threads */
39 
40 static struct qht ht;
41 static QemuThread *rw_threads;
42 
43 #define DEFAULT_RANGE (4096)
44 #define DEFAULT_QHT_N_ELEMS DEFAULT_RANGE
45 
46 static unsigned int duration = 1;
47 static unsigned int n_rw_threads = 1;
48 static unsigned long lookup_range = DEFAULT_RANGE;
49 static unsigned long update_range = DEFAULT_RANGE;
50 static size_t init_range = DEFAULT_RANGE;
51 static size_t init_size = DEFAULT_RANGE;
52 static size_t n_ready_threads;
53 static long populate_offset;
54 static long *keys;
55 
56 static size_t resize_min;
57 static size_t resize_max;
58 static struct thread_info *rz_info;
59 static unsigned long resize_delay = 1000;
60 static double resize_rate; /* 0.0 to 1.0 */
61 static unsigned int n_rz_threads = 1;
62 static QemuThread *rz_threads;
63 static bool precompute_hash;
64 
65 static double update_rate; /* 0.0 to 1.0 */
66 static uint64_t update_threshold;
67 static uint64_t resize_threshold;
68 
69 static size_t qht_n_elems = DEFAULT_QHT_N_ELEMS;
70 static int qht_mode;
71 
72 static bool test_start;
73 static bool test_stop;
74 
75 static struct thread_info *rw_info;
76 
77 static const char commands_string[] =
78     " -d = duration, in seconds\n"
79     " -n = number of threads\n"
80     "\n"
81     " -o = offset at which keys start\n"
82     " -p = precompute hashes\n"
83     "\n"
84     " -g = set -s,-k,-K,-l,-r to the same value\n"
85     " -s = initial size hint\n"
86     " -k = initial number of keys\n"
87     " -K = initial range of keys (will be rounded up to pow2)\n"
88     " -l = lookup range of keys (will be rounded up to pow2)\n"
89     " -r = update range of keys (will be rounded up to pow2)\n"
90     "\n"
91     " -u = update rate (0.0 to 100.0), 50/50 split of insertions/removals\n"
92     "\n"
93     " -R = enable auto-resize\n"
94     " -S = resize rate (0.0 to 100.0)\n"
95     " -D = delay (in us) between potential resizes\n"
96     " -N = number of resize threads";
97 
98 static void usage_complete(int argc, char *argv[])
99 {
100     fprintf(stderr, "Usage: %s [options]\n", argv[0]);
101     fprintf(stderr, "options:\n%s\n", commands_string);
102     exit(-1);
103 }
104 
105 static bool is_equal(const void *ap, const void *bp)
106 {
107     const long *a = ap;
108     const long *b = bp;
109 
110     return *a == *b;
111 }
112 
113 static uint32_t h(unsigned long v)
114 {
115     return qemu_xxhash2(v);
116 }
117 
118 static uint32_t hval(unsigned long v)
119 {
120     return v;
121 }
122 
123 static uint32_t (*hfunc)(unsigned long v) = h;
124 
125 /*
126  * From: https://en.wikipedia.org/wiki/Xorshift
127  * This is faster than rand_r(), and gives us a wider range (RAND_MAX is only
128  * guaranteed to be >= INT_MAX).
129  */
130 static uint64_t xorshift64star(uint64_t x)
131 {
132     x ^= x >> 12; /* a */
133     x ^= x << 25; /* b */
134     x ^= x >> 27; /* c */
135     return x * UINT64_C(2685821657736338717);
136 }
137 
138 static void do_rz(struct thread_info *info)
139 {
140     struct thread_stats *stats = &info->stats;
141     uint64_t r = info->seed - 1;
142 
143     if (r < resize_threshold) {
144         size_t size = info->resize_down ? resize_min : resize_max;
145         bool resized;
146 
147         resized = qht_resize(&ht, size);
148         info->resize_down = !info->resize_down;
149 
150         if (resized) {
151             stats->rz++;
152         } else {
153             stats->not_rz++;
154         }
155     }
156     g_usleep(resize_delay);
157 }
158 
159 static void do_rw(struct thread_info *info)
160 {
161     struct thread_stats *stats = &info->stats;
162     uint64_t r = info->seed - 1;
163     uint32_t hash;
164     long *p;
165 
166     if (r >= update_threshold) {
167         bool read;
168 
169         p = &keys[r & (lookup_range - 1)];
170         hash = hfunc(*p);
171         read = qht_lookup(&ht, p, hash);
172         if (read) {
173             stats->rd++;
174         } else {
175             stats->not_rd++;
176         }
177     } else {
178         p = &keys[r & (update_range - 1)];
179         hash = hfunc(*p);
180         if (info->write_op) {
181             bool written = false;
182 
183             if (qht_lookup(&ht, p, hash) == NULL) {
184                 written = qht_insert(&ht, p, hash, NULL);
185             }
186             if (written) {
187                 stats->in++;
188             } else {
189                 stats->not_in++;
190             }
191         } else {
192             bool removed = false;
193 
194             if (qht_lookup(&ht, p, hash)) {
195                 removed = qht_remove(&ht, p, hash);
196             }
197             if (removed) {
198                 stats->rm++;
199             } else {
200                 stats->not_rm++;
201             }
202         }
203         info->write_op = !info->write_op;
204     }
205 }
206 
207 static void *thread_func(void *p)
208 {
209     struct thread_info *info = p;
210 
211     rcu_register_thread();
212 
213     qatomic_inc(&n_ready_threads);
214     while (!qatomic_read(&test_start)) {
215         cpu_relax();
216     }
217 
218     rcu_read_lock();
219     while (!qatomic_read(&test_stop)) {
220         info->seed = xorshift64star(info->seed);
221         info->func(info);
222     }
223     rcu_read_unlock();
224 
225     rcu_unregister_thread();
226     return NULL;
227 }
228 
229 /* sets everything except info->func */
230 static void prepare_thread_info(struct thread_info *info, int i)
231 {
232     /* seed for the RNG; each thread should have a different one */
233     info->seed = (i + 1) ^ time(NULL);
234     /* the first update will be a write */
235     info->write_op = true;
236     /* the first resize will be down */
237     info->resize_down = true;
238 
239     memset(&info->stats, 0, sizeof(info->stats));
240 }
241 
242 static void
243 th_create_n(QemuThread **threads, struct thread_info **infos, const char *name,
244             void (*func)(struct thread_info *), int offset, int n)
245 {
246     struct thread_info *info;
247     QemuThread *th;
248     int i;
249 
250     th = g_malloc(sizeof(*th) * n);
251     *threads = th;
252 
253     info = qemu_memalign(64, sizeof(*info) * n);
254     *infos = info;
255 
256     for (i = 0; i < n; i++) {
257         prepare_thread_info(&info[i], offset + i);
258         info[i].func = func;
259         qemu_thread_create(&th[i], name, thread_func, &info[i],
260                            QEMU_THREAD_JOINABLE);
261     }
262 }
263 
264 static void create_threads(void)
265 {
266     th_create_n(&rw_threads, &rw_info, "rw", do_rw, 0, n_rw_threads);
267     th_create_n(&rz_threads, &rz_info, "rz", do_rz, n_rw_threads, n_rz_threads);
268 }
269 
270 static void pr_params(void)
271 {
272     printf("Parameters:\n");
273     printf(" duration:          %d s\n", duration);
274     printf(" # of threads:      %u\n", n_rw_threads);
275     printf(" initial # of keys: %zu\n", init_size);
276     printf(" initial size hint: %zu\n", qht_n_elems);
277     printf(" auto-resize:       %s\n",
278            qht_mode & QHT_MODE_AUTO_RESIZE ? "on" : "off");
279     if (resize_rate) {
280         printf(" resize_rate:       %f%%\n", resize_rate * 100.0);
281         printf(" resize range:      %zu-%zu\n", resize_min, resize_max);
282         printf(" # resize threads   %u\n", n_rz_threads);
283     }
284     printf(" update rate:       %f%%\n", update_rate * 100.0);
285     printf(" offset:            %ld\n", populate_offset);
286     printf(" initial key range: %zu\n", init_range);
287     printf(" lookup range:      %lu\n", lookup_range);
288     printf(" update range:      %lu\n", update_range);
289 }
290 
291 static void do_threshold(double rate, uint64_t *threshold)
292 {
293     /*
294      * For 0 <= rate <= 1, scale to fit in a uint64_t.
295      *
296      * Scale by 2**64, with a special case for 1.0.
297      * The remainder of the possible values are scattered between 0
298      * and 0xfffffffffffff800 (nextafter(0x1p64, 0)).
299      *
300      * Note that we cannot simply scale by UINT64_MAX, because that
301      * value is not representable as an IEEE double value.
302      *
303      * If we scale by the next largest value, nextafter(0x1p64, 0),
304      * then the remainder of the possible values are scattered between
305      * 0 and 0xfffffffffffff000.  Which leaves us with a gap between
306      * the final two inputs that is twice as large as any other.
307      */
308     if (rate == 1.0) {
309         *threshold = UINT64_MAX;
310     } else {
311         *threshold = rate * 0x1p64;
312     }
313 }
314 
315 static void htable_init(void)
316 {
317     unsigned long n = MAX(init_range, update_range);
318     uint64_t r = time(NULL);
319     size_t retries = 0;
320     size_t i;
321 
322     /* avoid allocating memory later by allocating all the keys now */
323     keys = g_malloc(sizeof(*keys) * n);
324     for (i = 0; i < n; i++) {
325         long val = populate_offset + i;
326 
327         keys[i] = precompute_hash ? h(val) : hval(val);
328     }
329 
330     /* some sanity checks */
331     g_assert_cmpuint(lookup_range, <=, n);
332 
333     /* compute thresholds */
334     do_threshold(update_rate, &update_threshold);
335     do_threshold(resize_rate, &resize_threshold);
336 
337     if (resize_rate) {
338         resize_min = n / 2;
339         resize_max = n;
340         assert(resize_min < resize_max);
341     } else {
342         n_rz_threads = 0;
343     }
344 
345     /* initialize the hash table */
346     qht_init(&ht, is_equal, qht_n_elems, qht_mode);
347     assert(init_size <= init_range);
348 
349     pr_params();
350 
351     fprintf(stderr, "Initialization: populating %zu items...", init_size);
352     for (i = 0; i < init_size; i++) {
353         for (;;) {
354             uint32_t hash;
355             long *p;
356 
357             r = xorshift64star(r);
358             p = &keys[r & (init_range - 1)];
359             hash = hfunc(*p);
360             if (qht_insert(&ht, p, hash, NULL)) {
361                 break;
362             }
363             retries++;
364         }
365     }
366     fprintf(stderr, " populated after %zu retries\n", retries);
367 }
368 
369 static void add_stats(struct thread_stats *s, struct thread_info *info, int n)
370 {
371     int i;
372 
373     for (i = 0; i < n; i++) {
374         struct thread_stats *stats = &info[i].stats;
375 
376         s->rd += stats->rd;
377         s->not_rd += stats->not_rd;
378 
379         s->in += stats->in;
380         s->not_in += stats->not_in;
381 
382         s->rm += stats->rm;
383         s->not_rm += stats->not_rm;
384 
385         s->rz += stats->rz;
386         s->not_rz += stats->not_rz;
387     }
388 }
389 
390 static void pr_stats(void)
391 {
392     struct thread_stats s = {};
393     double tx;
394 
395     add_stats(&s, rw_info, n_rw_threads);
396     add_stats(&s, rz_info, n_rz_threads);
397 
398     printf("Results:\n");
399 
400     if (resize_rate) {
401         printf(" Resizes:           %zu (%.2f%% of %zu)\n",
402                s.rz, (double)s.rz / (s.rz + s.not_rz) * 100, s.rz + s.not_rz);
403     }
404 
405     printf(" Read:              %.2f M (%.2f%% of %.2fM)\n",
406            (double)s.rd / 1e6,
407            (double)s.rd / (s.rd + s.not_rd) * 100,
408            (double)(s.rd + s.not_rd) / 1e6);
409     printf(" Inserted:          %.2f M (%.2f%% of %.2fM)\n",
410            (double)s.in / 1e6,
411            (double)s.in / (s.in + s.not_in) * 100,
412            (double)(s.in + s.not_in) / 1e6);
413     printf(" Removed:           %.2f M (%.2f%% of %.2fM)\n",
414            (double)s.rm / 1e6,
415            (double)s.rm / (s.rm + s.not_rm) * 100,
416            (double)(s.rm + s.not_rm) / 1e6);
417 
418     tx = (s.rd + s.not_rd + s.in + s.not_in + s.rm + s.not_rm) / 1e6 / duration;
419     printf(" Throughput:        %.2f MT/s\n", tx);
420     printf(" Throughput/thread: %.2f MT/s/thread\n", tx / n_rw_threads);
421 }
422 
423 static void run_test(void)
424 {
425     int i;
426 
427     while (qatomic_read(&n_ready_threads) != n_rw_threads + n_rz_threads) {
428         cpu_relax();
429     }
430 
431     qatomic_set(&test_start, true);
432     g_usleep(duration * G_USEC_PER_SEC);
433     qatomic_set(&test_stop, true);
434 
435     for (i = 0; i < n_rw_threads; i++) {
436         qemu_thread_join(&rw_threads[i]);
437     }
438     for (i = 0; i < n_rz_threads; i++) {
439         qemu_thread_join(&rz_threads[i]);
440     }
441 }
442 
443 static void parse_args(int argc, char *argv[])
444 {
445     int c;
446 
447     for (;;) {
448         c = getopt(argc, argv, "d:D:g:k:K:l:hn:N:o:pr:Rs:S:u:");
449         if (c < 0) {
450             break;
451         }
452         switch (c) {
453         case 'd':
454             duration = atoi(optarg);
455             break;
456         case 'D':
457             resize_delay = atol(optarg);
458             break;
459         case 'g':
460             init_range = pow2ceil(atol(optarg));
461             lookup_range = pow2ceil(atol(optarg));
462             update_range = pow2ceil(atol(optarg));
463             qht_n_elems = atol(optarg);
464             init_size = atol(optarg);
465             break;
466         case 'h':
467             usage_complete(argc, argv);
468             exit(0);
469         case 'k':
470             init_size = atol(optarg);
471             break;
472         case 'K':
473             init_range = pow2ceil(atol(optarg));
474             break;
475         case 'l':
476             lookup_range = pow2ceil(atol(optarg));
477             break;
478         case 'n':
479             n_rw_threads = atoi(optarg);
480             break;
481         case 'N':
482             n_rz_threads = atoi(optarg);
483             break;
484         case 'o':
485             populate_offset = atol(optarg);
486             break;
487         case 'p':
488             precompute_hash = true;
489             hfunc = hval;
490             break;
491         case 'r':
492             update_range = pow2ceil(atol(optarg));
493             break;
494         case 'R':
495             qht_mode |= QHT_MODE_AUTO_RESIZE;
496             break;
497         case 's':
498             qht_n_elems = atol(optarg);
499             break;
500         case 'S':
501             resize_rate = atof(optarg) / 100.0;
502             if (resize_rate > 1.0) {
503                 resize_rate = 1.0;
504             }
505             break;
506         case 'u':
507             update_rate = atof(optarg) / 100.0;
508             if (update_rate > 1.0) {
509                 update_rate = 1.0;
510             }
511             break;
512         }
513     }
514 }
515 
516 int main(int argc, char *argv[])
517 {
518     parse_args(argc, argv);
519     htable_init();
520     create_threads();
521     run_test();
522     pr_stats();
523     return 0;
524 }
525