xref: /qemu/util/cutils.c (revision 49f95221)
1 /*
2  * Simple C functions to supplement the C library
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/host-utils.h"
27 #include <math.h>
28 
29 #include "qemu/ctype.h"
30 #include "qemu/cutils.h"
31 #include "qemu/error-report.h"
32 
33 void strpadcpy(char *buf, int buf_size, const char *str, char pad)
34 {
35     int len = qemu_strnlen(str, buf_size);
36     memcpy(buf, str, len);
37     memset(buf + len, pad, buf_size - len);
38 }
39 
40 void pstrcpy(char *buf, int buf_size, const char *str)
41 {
42     int c;
43     char *q = buf;
44 
45     if (buf_size <= 0)
46         return;
47 
48     for(;;) {
49         c = *str++;
50         if (c == 0 || q >= buf + buf_size - 1)
51             break;
52         *q++ = c;
53     }
54     *q = '\0';
55 }
56 
57 /* strcat and truncate. */
58 char *pstrcat(char *buf, int buf_size, const char *s)
59 {
60     int len;
61     len = strlen(buf);
62     if (len < buf_size)
63         pstrcpy(buf + len, buf_size - len, s);
64     return buf;
65 }
66 
67 int strstart(const char *str, const char *val, const char **ptr)
68 {
69     const char *p, *q;
70     p = str;
71     q = val;
72     while (*q != '\0') {
73         if (*p != *q)
74             return 0;
75         p++;
76         q++;
77     }
78     if (ptr)
79         *ptr = p;
80     return 1;
81 }
82 
83 int stristart(const char *str, const char *val, const char **ptr)
84 {
85     const char *p, *q;
86     p = str;
87     q = val;
88     while (*q != '\0') {
89         if (qemu_toupper(*p) != qemu_toupper(*q))
90             return 0;
91         p++;
92         q++;
93     }
94     if (ptr)
95         *ptr = p;
96     return 1;
97 }
98 
99 /* XXX: use host strnlen if available ? */
100 int qemu_strnlen(const char *s, int max_len)
101 {
102     int i;
103 
104     for(i = 0; i < max_len; i++) {
105         if (s[i] == '\0') {
106             break;
107         }
108     }
109     return i;
110 }
111 
112 char *qemu_strsep(char **input, const char *delim)
113 {
114     char *result = *input;
115     if (result != NULL) {
116         char *p;
117 
118         for (p = result; *p != '\0'; p++) {
119             if (strchr(delim, *p)) {
120                 break;
121             }
122         }
123         if (*p == '\0') {
124             *input = NULL;
125         } else {
126             *p = '\0';
127             *input = p + 1;
128         }
129     }
130     return result;
131 }
132 
133 time_t mktimegm(struct tm *tm)
134 {
135     time_t t;
136     int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
137     if (m < 3) {
138         m += 12;
139         y--;
140     }
141     t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
142                  y / 400 - 719469);
143     t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
144     return t;
145 }
146 
147 /*
148  * Make sure data goes on disk, but if possible do not bother to
149  * write out the inode just for timestamp updates.
150  *
151  * Unfortunately even in 2009 many operating systems do not support
152  * fdatasync and have to fall back to fsync.
153  */
154 int qemu_fdatasync(int fd)
155 {
156 #ifdef CONFIG_FDATASYNC
157     return fdatasync(fd);
158 #else
159     return fsync(fd);
160 #endif
161 }
162 
163 /**
164  * Sync changes made to the memory mapped file back to the backing
165  * storage. For POSIX compliant systems this will fallback
166  * to regular msync call. Otherwise it will trigger whole file sync
167  * (including the metadata case there is no support to skip that otherwise)
168  *
169  * @addr   - start of the memory area to be synced
170  * @length - length of the are to be synced
171  * @fd     - file descriptor for the file to be synced
172  *           (mandatory only for POSIX non-compliant systems)
173  */
174 int qemu_msync(void *addr, size_t length, int fd)
175 {
176 #ifdef CONFIG_POSIX
177     size_t align_mask = ~(qemu_real_host_page_size() - 1);
178 
179     /**
180      * There are no strict reqs as per the length of mapping
181      * to be synced. Still the length needs to follow the address
182      * alignment changes. Additionally - round the size to the multiple
183      * of PAGE_SIZE
184      */
185     length += ((uintptr_t)addr & (qemu_real_host_page_size() - 1));
186     length = (length + ~align_mask) & align_mask;
187 
188     addr = (void *)((uintptr_t)addr & align_mask);
189 
190     return msync(addr, length, MS_SYNC);
191 #else /* CONFIG_POSIX */
192     /**
193      * Perform the sync based on the file descriptor
194      * The sync range will most probably be wider than the one
195      * requested - but it will still get the job done
196      */
197     return qemu_fdatasync(fd);
198 #endif /* CONFIG_POSIX */
199 }
200 
201 static int64_t suffix_mul(char suffix, int64_t unit)
202 {
203     switch (qemu_toupper(suffix)) {
204     case 'B':
205         return 1;
206     case 'K':
207         return unit;
208     case 'M':
209         return unit * unit;
210     case 'G':
211         return unit * unit * unit;
212     case 'T':
213         return unit * unit * unit * unit;
214     case 'P':
215         return unit * unit * unit * unit * unit;
216     case 'E':
217         return unit * unit * unit * unit * unit * unit;
218     }
219     return -1;
220 }
221 
222 /*
223  * Convert size string to bytes.
224  *
225  * The size parsing supports the following syntaxes
226  * - 12345 - decimal, scale determined by @default_suffix and @unit
227  * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit
228  * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and
229  *   fractional portion is truncated to byte
230  * - 0x7fEE - hexadecimal, unit determined by @default_suffix
231  *
232  * The following cause a deprecation warning, and may be removed in the future
233  * - 0xabc{kKmMgGtTpP} - hex with scaling suffix
234  *
235  * The following are intentionally not supported
236  * - octal, such as 08
237  * - fractional hex, such as 0x1.8
238  * - floating point exponents, such as 1e3
239  *
240  * The end pointer will be returned in *end, if not NULL.  If there is
241  * no fraction, the input can be decimal or hexadecimal; if there is a
242  * fraction, then the input must be decimal and there must be a suffix
243  * (possibly by @default_suffix) larger than Byte, and the fractional
244  * portion may suffer from precision loss or rounding.  The input must
245  * be positive.
246  *
247  * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on
248  * other error (with *@end left unchanged).
249  */
250 static int do_strtosz(const char *nptr, const char **end,
251                       const char default_suffix, int64_t unit,
252                       uint64_t *result)
253 {
254     int retval;
255     const char *endptr, *f;
256     unsigned char c;
257     bool hex = false;
258     uint64_t val, valf = 0;
259     int64_t mul;
260 
261     /* Parse integral portion as decimal. */
262     retval = qemu_strtou64(nptr, &endptr, 10, &val);
263     if (retval) {
264         goto out;
265     }
266     if (memchr(nptr, '-', endptr - nptr) != NULL) {
267         endptr = nptr;
268         retval = -EINVAL;
269         goto out;
270     }
271     if (val == 0 && (*endptr == 'x' || *endptr == 'X')) {
272         /* Input looks like hex, reparse, and insist on no fraction. */
273         retval = qemu_strtou64(nptr, &endptr, 16, &val);
274         if (retval) {
275             goto out;
276         }
277         if (*endptr == '.') {
278             endptr = nptr;
279             retval = -EINVAL;
280             goto out;
281         }
282         hex = true;
283     } else if (*endptr == '.') {
284         /*
285          * Input looks like a fraction.  Make sure even 1.k works
286          * without fractional digits.  If we see an exponent, treat
287          * the entire input as invalid instead.
288          */
289         double fraction;
290 
291         f = endptr;
292         retval = qemu_strtod_finite(f, &endptr, &fraction);
293         if (retval) {
294             endptr++;
295         } else if (memchr(f, 'e', endptr - f) || memchr(f, 'E', endptr - f)) {
296             endptr = nptr;
297             retval = -EINVAL;
298             goto out;
299         } else {
300             /* Extract into a 64-bit fixed-point fraction. */
301             valf = (uint64_t)(fraction * 0x1p64);
302         }
303     }
304     c = *endptr;
305     mul = suffix_mul(c, unit);
306     if (mul > 0) {
307         if (hex) {
308             warn_report("Using a multiplier suffix on hex numbers "
309                         "is deprecated: %s", nptr);
310         }
311         endptr++;
312     } else {
313         mul = suffix_mul(default_suffix, unit);
314         assert(mul > 0);
315     }
316     if (mul == 1) {
317         /* When a fraction is present, a scale is required. */
318         if (valf != 0) {
319             endptr = nptr;
320             retval = -EINVAL;
321             goto out;
322         }
323     } else {
324         uint64_t valh, tmp;
325 
326         /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */
327         mulu64(&val, &valh, val, mul);
328         mulu64(&valf, &tmp, valf, mul);
329         val += tmp;
330         valh += val < tmp;
331 
332         /* Round 0.5 upward. */
333         tmp = valf >> 63;
334         val += tmp;
335         valh += val < tmp;
336 
337         /* Report overflow. */
338         if (valh != 0) {
339             retval = -ERANGE;
340             goto out;
341         }
342     }
343 
344     retval = 0;
345 
346 out:
347     if (end) {
348         *end = endptr;
349     } else if (*endptr) {
350         retval = -EINVAL;
351     }
352     if (retval == 0) {
353         *result = val;
354     }
355 
356     return retval;
357 }
358 
359 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result)
360 {
361     return do_strtosz(nptr, end, 'B', 1024, result);
362 }
363 
364 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result)
365 {
366     return do_strtosz(nptr, end, 'M', 1024, result);
367 }
368 
369 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result)
370 {
371     return do_strtosz(nptr, end, 'B', 1000, result);
372 }
373 
374 /**
375  * Helper function for error checking after strtol() and the like
376  */
377 static int check_strtox_error(const char *nptr, char *ep,
378                               const char **endptr, bool check_zero,
379                               int libc_errno)
380 {
381     assert(ep >= nptr);
382 
383     /* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */
384     if (check_zero && ep == nptr && libc_errno == 0) {
385         char *tmp;
386 
387         errno = 0;
388         if (strtol(nptr, &tmp, 10) == 0 && errno == 0 &&
389             (*tmp == 'x' || *tmp == 'X')) {
390             ep = tmp;
391         }
392     }
393 
394     if (endptr) {
395         *endptr = ep;
396     }
397 
398     /* Turn "no conversion" into an error */
399     if (libc_errno == 0 && ep == nptr) {
400         return -EINVAL;
401     }
402 
403     /* Fail when we're expected to consume the string, but didn't */
404     if (!endptr && *ep) {
405         return -EINVAL;
406     }
407 
408     return -libc_errno;
409 }
410 
411 /**
412  * Convert string @nptr to an integer, and store it in @result.
413  *
414  * This is a wrapper around strtol() that is harder to misuse.
415  * Semantics of @nptr, @endptr, @base match strtol() with differences
416  * noted below.
417  *
418  * @nptr may be null, and no conversion is performed then.
419  *
420  * If no conversion is performed, store @nptr in *@endptr and return
421  * -EINVAL.
422  *
423  * If @endptr is null, and the string isn't fully converted, return
424  * -EINVAL.  This is the case when the pointer that would be stored in
425  * a non-null @endptr points to a character other than '\0'.
426  *
427  * If the conversion overflows @result, store INT_MAX in @result,
428  * and return -ERANGE.
429  *
430  * If the conversion underflows @result, store INT_MIN in @result,
431  * and return -ERANGE.
432  *
433  * Else store the converted value in @result, and return zero.
434  */
435 int qemu_strtoi(const char *nptr, const char **endptr, int base,
436                 int *result)
437 {
438     char *ep;
439     long long lresult;
440 
441     assert((unsigned) base <= 36 && base != 1);
442     if (!nptr) {
443         if (endptr) {
444             *endptr = nptr;
445         }
446         return -EINVAL;
447     }
448 
449     errno = 0;
450     lresult = strtoll(nptr, &ep, base);
451     if (lresult < INT_MIN) {
452         *result = INT_MIN;
453         errno = ERANGE;
454     } else if (lresult > INT_MAX) {
455         *result = INT_MAX;
456         errno = ERANGE;
457     } else {
458         *result = lresult;
459     }
460     return check_strtox_error(nptr, ep, endptr, lresult == 0, errno);
461 }
462 
463 /**
464  * Convert string @nptr to an unsigned integer, and store it in @result.
465  *
466  * This is a wrapper around strtoul() that is harder to misuse.
467  * Semantics of @nptr, @endptr, @base match strtoul() with differences
468  * noted below.
469  *
470  * @nptr may be null, and no conversion is performed then.
471  *
472  * If no conversion is performed, store @nptr in *@endptr and return
473  * -EINVAL.
474  *
475  * If @endptr is null, and the string isn't fully converted, return
476  * -EINVAL.  This is the case when the pointer that would be stored in
477  * a non-null @endptr points to a character other than '\0'.
478  *
479  * If the conversion overflows @result, store UINT_MAX in @result,
480  * and return -ERANGE.
481  *
482  * Else store the converted value in @result, and return zero.
483  *
484  * Note that a number with a leading minus sign gets converted without
485  * the minus sign, checked for overflow (see above), then negated (in
486  * @result's type).  This is exactly how strtoul() works.
487  */
488 int qemu_strtoui(const char *nptr, const char **endptr, int base,
489                  unsigned int *result)
490 {
491     char *ep;
492     long long lresult;
493 
494     assert((unsigned) base <= 36 && base != 1);
495     if (!nptr) {
496         if (endptr) {
497             *endptr = nptr;
498         }
499         return -EINVAL;
500     }
501 
502     errno = 0;
503     lresult = strtoull(nptr, &ep, base);
504 
505     /* Windows returns 1 for negative out-of-range values.  */
506     if (errno == ERANGE) {
507         *result = -1;
508     } else {
509         if (lresult > UINT_MAX) {
510             *result = UINT_MAX;
511             errno = ERANGE;
512         } else if (lresult < INT_MIN) {
513             *result = UINT_MAX;
514             errno = ERANGE;
515         } else {
516             *result = lresult;
517         }
518     }
519     return check_strtox_error(nptr, ep, endptr, lresult == 0, errno);
520 }
521 
522 /**
523  * Convert string @nptr to a long integer, and store it in @result.
524  *
525  * This is a wrapper around strtol() that is harder to misuse.
526  * Semantics of @nptr, @endptr, @base match strtol() with differences
527  * noted below.
528  *
529  * @nptr may be null, and no conversion is performed then.
530  *
531  * If no conversion is performed, store @nptr in *@endptr and return
532  * -EINVAL.
533  *
534  * If @endptr is null, and the string isn't fully converted, return
535  * -EINVAL.  This is the case when the pointer that would be stored in
536  * a non-null @endptr points to a character other than '\0'.
537  *
538  * If the conversion overflows @result, store LONG_MAX in @result,
539  * and return -ERANGE.
540  *
541  * If the conversion underflows @result, store LONG_MIN in @result,
542  * and return -ERANGE.
543  *
544  * Else store the converted value in @result, and return zero.
545  */
546 int qemu_strtol(const char *nptr, const char **endptr, int base,
547                 long *result)
548 {
549     char *ep;
550 
551     assert((unsigned) base <= 36 && base != 1);
552     if (!nptr) {
553         if (endptr) {
554             *endptr = nptr;
555         }
556         return -EINVAL;
557     }
558 
559     errno = 0;
560     *result = strtol(nptr, &ep, base);
561     return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
562 }
563 
564 /**
565  * Convert string @nptr to an unsigned long, and store it in @result.
566  *
567  * This is a wrapper around strtoul() that is harder to misuse.
568  * Semantics of @nptr, @endptr, @base match strtoul() with differences
569  * noted below.
570  *
571  * @nptr may be null, and no conversion is performed then.
572  *
573  * If no conversion is performed, store @nptr in *@endptr and return
574  * -EINVAL.
575  *
576  * If @endptr is null, and the string isn't fully converted, return
577  * -EINVAL.  This is the case when the pointer that would be stored in
578  * a non-null @endptr points to a character other than '\0'.
579  *
580  * If the conversion overflows @result, store ULONG_MAX in @result,
581  * and return -ERANGE.
582  *
583  * Else store the converted value in @result, and return zero.
584  *
585  * Note that a number with a leading minus sign gets converted without
586  * the minus sign, checked for overflow (see above), then negated (in
587  * @result's type).  This is exactly how strtoul() works.
588  */
589 int qemu_strtoul(const char *nptr, const char **endptr, int base,
590                  unsigned long *result)
591 {
592     char *ep;
593 
594     assert((unsigned) base <= 36 && base != 1);
595     if (!nptr) {
596         if (endptr) {
597             *endptr = nptr;
598         }
599         return -EINVAL;
600     }
601 
602     errno = 0;
603     *result = strtoul(nptr, &ep, base);
604     /* Windows returns 1 for negative out-of-range values.  */
605     if (errno == ERANGE) {
606         *result = -1;
607     }
608     return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
609 }
610 
611 /**
612  * Convert string @nptr to an int64_t.
613  *
614  * Works like qemu_strtol(), except it stores INT64_MAX on overflow,
615  * and INT64_MIN on underflow.
616  */
617 int qemu_strtoi64(const char *nptr, const char **endptr, int base,
618                  int64_t *result)
619 {
620     char *ep;
621 
622     assert((unsigned) base <= 36 && base != 1);
623     if (!nptr) {
624         if (endptr) {
625             *endptr = nptr;
626         }
627         return -EINVAL;
628     }
629 
630     /* This assumes int64_t is long long TODO relax */
631     QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long));
632     errno = 0;
633     *result = strtoll(nptr, &ep, base);
634     return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
635 }
636 
637 /**
638  * Convert string @nptr to an uint64_t.
639  *
640  * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow.
641  */
642 int qemu_strtou64(const char *nptr, const char **endptr, int base,
643                   uint64_t *result)
644 {
645     char *ep;
646 
647     assert((unsigned) base <= 36 && base != 1);
648     if (!nptr) {
649         if (endptr) {
650             *endptr = nptr;
651         }
652         return -EINVAL;
653     }
654 
655     /* This assumes uint64_t is unsigned long long TODO relax */
656     QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long));
657     errno = 0;
658     *result = strtoull(nptr, &ep, base);
659     /* Windows returns 1 for negative out-of-range values.  */
660     if (errno == ERANGE) {
661         *result = -1;
662     }
663     return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
664 }
665 
666 /**
667  * Convert string @nptr to a double.
668   *
669  * This is a wrapper around strtod() that is harder to misuse.
670  * Semantics of @nptr and @endptr match strtod() with differences
671  * noted below.
672  *
673  * @nptr may be null, and no conversion is performed then.
674  *
675  * If no conversion is performed, store @nptr in *@endptr and return
676  * -EINVAL.
677  *
678  * If @endptr is null, and the string isn't fully converted, return
679  * -EINVAL. This is the case when the pointer that would be stored in
680  * a non-null @endptr points to a character other than '\0'.
681  *
682  * If the conversion overflows, store +/-HUGE_VAL in @result, depending
683  * on the sign, and return -ERANGE.
684  *
685  * If the conversion underflows, store +/-0.0 in @result, depending on the
686  * sign, and return -ERANGE.
687  *
688  * Else store the converted value in @result, and return zero.
689  */
690 int qemu_strtod(const char *nptr, const char **endptr, double *result)
691 {
692     char *ep;
693 
694     if (!nptr) {
695         if (endptr) {
696             *endptr = nptr;
697         }
698         return -EINVAL;
699     }
700 
701     errno = 0;
702     *result = strtod(nptr, &ep);
703     return check_strtox_error(nptr, ep, endptr, false, errno);
704 }
705 
706 /**
707  * Convert string @nptr to a finite double.
708  *
709  * Works like qemu_strtod(), except that "NaN" and "inf" are rejected
710  * with -EINVAL and no conversion is performed.
711  */
712 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result)
713 {
714     double tmp;
715     int ret;
716 
717     ret = qemu_strtod(nptr, endptr, &tmp);
718     if (!ret && !isfinite(tmp)) {
719         if (endptr) {
720             *endptr = nptr;
721         }
722         ret = -EINVAL;
723     }
724 
725     if (ret != -EINVAL) {
726         *result = tmp;
727     }
728     return ret;
729 }
730 
731 /**
732  * Searches for the first occurrence of 'c' in 's', and returns a pointer
733  * to the trailing null byte if none was found.
734  */
735 #ifndef HAVE_STRCHRNUL
736 const char *qemu_strchrnul(const char *s, int c)
737 {
738     const char *e = strchr(s, c);
739     if (!e) {
740         e = s + strlen(s);
741     }
742     return e;
743 }
744 #endif
745 
746 /**
747  * parse_uint:
748  *
749  * @s: String to parse
750  * @value: Destination for parsed integer value
751  * @endptr: Destination for pointer to first character not consumed
752  * @base: integer base, between 2 and 36 inclusive, or 0
753  *
754  * Parse unsigned integer
755  *
756  * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional
757  * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits.
758  *
759  * If @s is null, or @base is invalid, or @s doesn't start with an
760  * integer in the syntax above, set *@value to 0, *@endptr to @s, and
761  * return -EINVAL.
762  *
763  * Set *@endptr to point right beyond the parsed integer (even if the integer
764  * overflows or is negative, all digits will be parsed and *@endptr will
765  * point right beyond them).
766  *
767  * If the integer is negative, set *@value to 0, and return -ERANGE.
768  *
769  * If the integer overflows unsigned long long, set *@value to
770  * ULLONG_MAX, and return -ERANGE.
771  *
772  * Else, set *@value to the parsed integer, and return 0.
773  */
774 int parse_uint(const char *s, unsigned long long *value, char **endptr,
775                int base)
776 {
777     int r = 0;
778     char *endp = (char *)s;
779     unsigned long long val = 0;
780 
781     assert((unsigned) base <= 36 && base != 1);
782     if (!s) {
783         r = -EINVAL;
784         goto out;
785     }
786 
787     errno = 0;
788     val = strtoull(s, &endp, base);
789     if (errno) {
790         r = -errno;
791         goto out;
792     }
793 
794     if (endp == s) {
795         r = -EINVAL;
796         goto out;
797     }
798 
799     /* make sure we reject negative numbers: */
800     while (qemu_isspace(*s)) {
801         s++;
802     }
803     if (*s == '-') {
804         val = 0;
805         r = -ERANGE;
806         goto out;
807     }
808 
809 out:
810     *value = val;
811     *endptr = endp;
812     return r;
813 }
814 
815 /**
816  * parse_uint_full:
817  *
818  * @s: String to parse
819  * @value: Destination for parsed integer value
820  * @base: integer base, between 2 and 36 inclusive, or 0
821  *
822  * Parse unsigned integer from entire string
823  *
824  * Have the same behavior of parse_uint(), but with an additional check
825  * for additional data after the parsed number. If extra characters are present
826  * after the parsed number, the function will return -EINVAL, and *@v will
827  * be set to 0.
828  */
829 int parse_uint_full(const char *s, unsigned long long *value, int base)
830 {
831     char *endp;
832     int r;
833 
834     r = parse_uint(s, value, &endp, base);
835     if (r < 0) {
836         return r;
837     }
838     if (*endp) {
839         *value = 0;
840         return -EINVAL;
841     }
842 
843     return 0;
844 }
845 
846 int qemu_parse_fd(const char *param)
847 {
848     long fd;
849     char *endptr;
850 
851     errno = 0;
852     fd = strtol(param, &endptr, 10);
853     if (param == endptr /* no conversion performed */                    ||
854         errno != 0      /* not representable as long; possibly others */ ||
855         *endptr != '\0' /* final string not empty */                     ||
856         fd < 0          /* invalid as file descriptor */                 ||
857         fd > INT_MAX    /* not representable as int */) {
858         return -1;
859     }
860     return fd;
861 }
862 
863 /*
864  * Implementation of  ULEB128 (http://en.wikipedia.org/wiki/LEB128)
865  * Input is limited to 14-bit numbers
866  */
867 int uleb128_encode_small(uint8_t *out, uint32_t n)
868 {
869     g_assert(n <= 0x3fff);
870     if (n < 0x80) {
871         *out = n;
872         return 1;
873     } else {
874         *out++ = (n & 0x7f) | 0x80;
875         *out = n >> 7;
876         return 2;
877     }
878 }
879 
880 int uleb128_decode_small(const uint8_t *in, uint32_t *n)
881 {
882     if (!(*in & 0x80)) {
883         *n = *in;
884         return 1;
885     } else {
886         *n = *in++ & 0x7f;
887         /* we exceed 14 bit number */
888         if (*in & 0x80) {
889             return -1;
890         }
891         *n |= *in << 7;
892         return 2;
893     }
894 }
895 
896 /*
897  * helper to parse debug environment variables
898  */
899 int parse_debug_env(const char *name, int max, int initial)
900 {
901     char *debug_env = getenv(name);
902     char *inv = NULL;
903     long debug;
904 
905     if (!debug_env) {
906         return initial;
907     }
908     errno = 0;
909     debug = strtol(debug_env, &inv, 10);
910     if (inv == debug_env) {
911         return initial;
912     }
913     if (debug < 0 || debug > max || errno != 0) {
914         warn_report("%s not in [0, %d]", name, max);
915         return initial;
916     }
917     return debug;
918 }
919 
920 /*
921  * Return human readable string for size @val.
922  * @val can be anything that uint64_t allows (no more than "16 EiB").
923  * Use IEC binary units like KiB, MiB, and so forth.
924  * Caller is responsible for passing it to g_free().
925  */
926 char *size_to_str(uint64_t val)
927 {
928     static const char *suffixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" };
929     uint64_t div;
930     int i;
931 
932     /*
933      * The exponent (returned in i) minus one gives us
934      * floor(log2(val * 1024 / 1000).  The correction makes us
935      * switch to the higher power when the integer part is >= 1000.
936      * (see e41b509d68afb1f for more info)
937      */
938     frexp(val / (1000.0 / 1024.0), &i);
939     i = (i - 1) / 10;
940     div = 1ULL << (i * 10);
941 
942     return g_strdup_printf("%0.3g %sB", (double)val / div, suffixes[i]);
943 }
944 
945 char *freq_to_str(uint64_t freq_hz)
946 {
947     static const char *const suffixes[] = { "", "K", "M", "G", "T", "P", "E" };
948     double freq = freq_hz;
949     size_t idx = 0;
950 
951     while (freq >= 1000.0) {
952         freq /= 1000.0;
953         idx++;
954     }
955     assert(idx < ARRAY_SIZE(suffixes));
956 
957     return g_strdup_printf("%0.3g %sHz", freq, suffixes[idx]);
958 }
959 
960 int qemu_pstrcmp0(const char **str1, const char **str2)
961 {
962     return g_strcmp0(*str1, *str2);
963 }
964 
965 static inline bool starts_with_prefix(const char *dir)
966 {
967     size_t prefix_len = strlen(CONFIG_PREFIX);
968     return !memcmp(dir, CONFIG_PREFIX, prefix_len) &&
969         (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len]));
970 }
971 
972 /* Return the next path component in dir, and store its length in *p_len.  */
973 static inline const char *next_component(const char *dir, int *p_len)
974 {
975     int len;
976     while ((*dir && G_IS_DIR_SEPARATOR(*dir)) ||
977            (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) {
978         dir++;
979     }
980     len = 0;
981     while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) {
982         len++;
983     }
984     *p_len = len;
985     return dir;
986 }
987 
988 char *get_relocated_path(const char *dir)
989 {
990     size_t prefix_len = strlen(CONFIG_PREFIX);
991     const char *bindir = CONFIG_BINDIR;
992     const char *exec_dir = qemu_get_exec_dir();
993     GString *result;
994     int len_dir, len_bindir;
995 
996     /* Fail if qemu_init_exec_dir was not called.  */
997     assert(exec_dir[0]);
998     if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) {
999         return g_strdup(dir);
1000     }
1001 
1002     result = g_string_new(exec_dir);
1003 
1004     /* Advance over common components.  */
1005     len_dir = len_bindir = prefix_len;
1006     do {
1007         dir += len_dir;
1008         bindir += len_bindir;
1009         dir = next_component(dir, &len_dir);
1010         bindir = next_component(bindir, &len_bindir);
1011     } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir));
1012 
1013     /* Ascend from bindir to the common prefix with dir.  */
1014     while (len_bindir) {
1015         bindir += len_bindir;
1016         g_string_append(result, "/..");
1017         bindir = next_component(bindir, &len_bindir);
1018     }
1019 
1020     if (*dir) {
1021         assert(G_IS_DIR_SEPARATOR(dir[-1]));
1022         g_string_append(result, dir - 1);
1023     }
1024     return g_string_free(result, false);
1025 }
1026