xref: /qemu/util/cutils.c (revision 9be38598)
1 /*
2  * Simple C functions to supplement the C library
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #include "qemu/host-utils.h"
27 #include <math.h>
28 
29 #include "qemu/sockets.h"
30 #include "qemu/iov.h"
31 #include "net/net.h"
32 #include "qemu/cutils.h"
33 
34 void strpadcpy(char *buf, int buf_size, const char *str, char pad)
35 {
36     int len = qemu_strnlen(str, buf_size);
37     memcpy(buf, str, len);
38     memset(buf + len, pad, buf_size - len);
39 }
40 
41 void pstrcpy(char *buf, int buf_size, const char *str)
42 {
43     int c;
44     char *q = buf;
45 
46     if (buf_size <= 0)
47         return;
48 
49     for(;;) {
50         c = *str++;
51         if (c == 0 || q >= buf + buf_size - 1)
52             break;
53         *q++ = c;
54     }
55     *q = '\0';
56 }
57 
58 /* strcat and truncate. */
59 char *pstrcat(char *buf, int buf_size, const char *s)
60 {
61     int len;
62     len = strlen(buf);
63     if (len < buf_size)
64         pstrcpy(buf + len, buf_size - len, s);
65     return buf;
66 }
67 
68 int strstart(const char *str, const char *val, const char **ptr)
69 {
70     const char *p, *q;
71     p = str;
72     q = val;
73     while (*q != '\0') {
74         if (*p != *q)
75             return 0;
76         p++;
77         q++;
78     }
79     if (ptr)
80         *ptr = p;
81     return 1;
82 }
83 
84 int stristart(const char *str, const char *val, const char **ptr)
85 {
86     const char *p, *q;
87     p = str;
88     q = val;
89     while (*q != '\0') {
90         if (qemu_toupper(*p) != qemu_toupper(*q))
91             return 0;
92         p++;
93         q++;
94     }
95     if (ptr)
96         *ptr = p;
97     return 1;
98 }
99 
100 /* XXX: use host strnlen if available ? */
101 int qemu_strnlen(const char *s, int max_len)
102 {
103     int i;
104 
105     for(i = 0; i < max_len; i++) {
106         if (s[i] == '\0') {
107             break;
108         }
109     }
110     return i;
111 }
112 
113 char *qemu_strsep(char **input, const char *delim)
114 {
115     char *result = *input;
116     if (result != NULL) {
117         char *p;
118 
119         for (p = result; *p != '\0'; p++) {
120             if (strchr(delim, *p)) {
121                 break;
122             }
123         }
124         if (*p == '\0') {
125             *input = NULL;
126         } else {
127             *p = '\0';
128             *input = p + 1;
129         }
130     }
131     return result;
132 }
133 
134 time_t mktimegm(struct tm *tm)
135 {
136     time_t t;
137     int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
138     if (m < 3) {
139         m += 12;
140         y--;
141     }
142     t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
143                  y / 400 - 719469);
144     t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
145     return t;
146 }
147 
148 /*
149  * Make sure data goes on disk, but if possible do not bother to
150  * write out the inode just for timestamp updates.
151  *
152  * Unfortunately even in 2009 many operating systems do not support
153  * fdatasync and have to fall back to fsync.
154  */
155 int qemu_fdatasync(int fd)
156 {
157 #ifdef CONFIG_FDATASYNC
158     return fdatasync(fd);
159 #else
160     return fsync(fd);
161 #endif
162 }
163 
164 /* vector definitions */
165 #ifdef __ALTIVEC__
166 #include <altivec.h>
167 /* The altivec.h header says we're allowed to undef these for
168  * C++ compatibility.  Here we don't care about C++, but we
169  * undef them anyway to avoid namespace pollution.
170  */
171 #undef vector
172 #undef pixel
173 #undef bool
174 #define VECTYPE        __vector unsigned char
175 #define SPLAT(p)       vec_splat(vec_ld(0, p), 0)
176 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2)
177 #define VEC_OR(v1, v2) ((v1) | (v2))
178 /* altivec.h may redefine the bool macro as vector type.
179  * Reset it to POSIX semantics. */
180 #define bool _Bool
181 #elif defined __SSE2__
182 #include <emmintrin.h>
183 #define VECTYPE        __m128i
184 #define SPLAT(p)       _mm_set1_epi8(*(p))
185 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF)
186 #define VEC_OR(v1, v2) (_mm_or_si128(v1, v2))
187 #else
188 #define VECTYPE        unsigned long
189 #define SPLAT(p)       (*(p) * (~0UL / 255))
190 #define ALL_EQ(v1, v2) ((v1) == (v2))
191 #define VEC_OR(v1, v2) ((v1) | (v2))
192 #endif
193 
194 #define BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR 8
195 
196 static bool
197 can_use_buffer_find_nonzero_offset_inner(const void *buf, size_t len)
198 {
199     return (len % (BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR
200                    * sizeof(VECTYPE)) == 0
201             && ((uintptr_t) buf) % sizeof(VECTYPE) == 0);
202 }
203 
204 /*
205  * Searches for an area with non-zero content in a buffer
206  *
207  * Attention! The len must be a multiple of
208  * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR * sizeof(VECTYPE)
209  * and addr must be a multiple of sizeof(VECTYPE) due to
210  * restriction of optimizations in this function.
211  *
212  * can_use_buffer_find_nonzero_offset_inner() can be used to
213  * check these requirements.
214  *
215  * The return value is the offset of the non-zero area rounded
216  * down to a multiple of sizeof(VECTYPE) for the first
217  * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR chunks and down to
218  * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR * sizeof(VECTYPE)
219  * afterwards.
220  *
221  * If the buffer is all zero the return value is equal to len.
222  */
223 
224 static size_t buffer_find_nonzero_offset_inner(const void *buf, size_t len)
225 {
226     const VECTYPE *p = buf;
227     const VECTYPE zero = (VECTYPE){0};
228     size_t i;
229 
230     assert(can_use_buffer_find_nonzero_offset_inner(buf, len));
231 
232     if (!len) {
233         return 0;
234     }
235 
236     for (i = 0; i < BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR; i++) {
237         if (!ALL_EQ(p[i], zero)) {
238             return i * sizeof(VECTYPE);
239         }
240     }
241 
242     for (i = BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR;
243          i < len / sizeof(VECTYPE);
244          i += BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR) {
245         VECTYPE tmp0 = VEC_OR(p[i + 0], p[i + 1]);
246         VECTYPE tmp1 = VEC_OR(p[i + 2], p[i + 3]);
247         VECTYPE tmp2 = VEC_OR(p[i + 4], p[i + 5]);
248         VECTYPE tmp3 = VEC_OR(p[i + 6], p[i + 7]);
249         VECTYPE tmp01 = VEC_OR(tmp0, tmp1);
250         VECTYPE tmp23 = VEC_OR(tmp2, tmp3);
251         if (!ALL_EQ(VEC_OR(tmp01, tmp23), zero)) {
252             break;
253         }
254     }
255 
256     return i * sizeof(VECTYPE);
257 }
258 
259 #if defined CONFIG_AVX2_OPT
260 #pragma GCC push_options
261 #pragma GCC target("avx2")
262 #include <cpuid.h>
263 #include <immintrin.h>
264 
265 #define AVX2_VECTYPE        __m256i
266 #define AVX2_SPLAT(p)       _mm256_set1_epi8(*(p))
267 #define AVX2_ALL_EQ(v1, v2) \
268     (_mm256_movemask_epi8(_mm256_cmpeq_epi8(v1, v2)) == 0xFFFFFFFF)
269 #define AVX2_VEC_OR(v1, v2) (_mm256_or_si256(v1, v2))
270 
271 static bool
272 can_use_buffer_find_nonzero_offset_avx2(const void *buf, size_t len)
273 {
274     return (len % (BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR
275                    * sizeof(AVX2_VECTYPE)) == 0
276             && ((uintptr_t) buf) % sizeof(AVX2_VECTYPE) == 0);
277 }
278 
279 static size_t buffer_find_nonzero_offset_avx2(const void *buf, size_t len)
280 {
281     const AVX2_VECTYPE *p = buf;
282     const AVX2_VECTYPE zero = (AVX2_VECTYPE){0};
283     size_t i;
284 
285     assert(can_use_buffer_find_nonzero_offset_avx2(buf, len));
286 
287     if (!len) {
288         return 0;
289     }
290 
291     for (i = 0; i < BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR; i++) {
292         if (!AVX2_ALL_EQ(p[i], zero)) {
293             return i * sizeof(AVX2_VECTYPE);
294         }
295     }
296 
297     for (i = BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR;
298          i < len / sizeof(AVX2_VECTYPE);
299          i += BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR) {
300         AVX2_VECTYPE tmp0 = AVX2_VEC_OR(p[i + 0], p[i + 1]);
301         AVX2_VECTYPE tmp1 = AVX2_VEC_OR(p[i + 2], p[i + 3]);
302         AVX2_VECTYPE tmp2 = AVX2_VEC_OR(p[i + 4], p[i + 5]);
303         AVX2_VECTYPE tmp3 = AVX2_VEC_OR(p[i + 6], p[i + 7]);
304         AVX2_VECTYPE tmp01 = AVX2_VEC_OR(tmp0, tmp1);
305         AVX2_VECTYPE tmp23 = AVX2_VEC_OR(tmp2, tmp3);
306         if (!AVX2_ALL_EQ(AVX2_VEC_OR(tmp01, tmp23), zero)) {
307             break;
308         }
309     }
310 
311     return i * sizeof(AVX2_VECTYPE);
312 }
313 
314 static bool avx2_support(void)
315 {
316     int a, b, c, d;
317 
318     if (__get_cpuid_max(0, NULL) < 7) {
319         return false;
320     }
321 
322     __cpuid_count(7, 0, a, b, c, d);
323 
324     return b & bit_AVX2;
325 }
326 
327 bool can_use_buffer_find_nonzero_offset(const void *buf, size_t len) \
328          __attribute__ ((ifunc("can_use_buffer_find_nonzero_offset_ifunc")));
329 size_t buffer_find_nonzero_offset(const void *buf, size_t len) \
330          __attribute__ ((ifunc("buffer_find_nonzero_offset_ifunc")));
331 
332 static void *buffer_find_nonzero_offset_ifunc(void)
333 {
334     typeof(buffer_find_nonzero_offset) *func = (avx2_support()) ?
335         buffer_find_nonzero_offset_avx2 : buffer_find_nonzero_offset_inner;
336 
337     return func;
338 }
339 
340 static void *can_use_buffer_find_nonzero_offset_ifunc(void)
341 {
342     typeof(can_use_buffer_find_nonzero_offset) *func = (avx2_support()) ?
343         can_use_buffer_find_nonzero_offset_avx2 :
344         can_use_buffer_find_nonzero_offset_inner;
345 
346     return func;
347 }
348 #pragma GCC pop_options
349 #else
350 bool can_use_buffer_find_nonzero_offset(const void *buf, size_t len)
351 {
352     return can_use_buffer_find_nonzero_offset_inner(buf, len);
353 }
354 
355 size_t buffer_find_nonzero_offset(const void *buf, size_t len)
356 {
357     return buffer_find_nonzero_offset_inner(buf, len);
358 }
359 #endif
360 
361 /*
362  * Checks if a buffer is all zeroes
363  *
364  * Attention! The len must be a multiple of 4 * sizeof(long) due to
365  * restriction of optimizations in this function.
366  */
367 bool buffer_is_zero(const void *buf, size_t len)
368 {
369     /*
370      * Use long as the biggest available internal data type that fits into the
371      * CPU register and unroll the loop to smooth out the effect of memory
372      * latency.
373      */
374 
375     size_t i;
376     long d0, d1, d2, d3;
377     const long * const data = buf;
378 
379     /* use vector optimized zero check if possible */
380     if (can_use_buffer_find_nonzero_offset(buf, len)) {
381         return buffer_find_nonzero_offset(buf, len) == len;
382     }
383 
384     assert(len % (4 * sizeof(long)) == 0);
385     len /= sizeof(long);
386 
387     for (i = 0; i < len; i += 4) {
388         d0 = data[i + 0];
389         d1 = data[i + 1];
390         d2 = data[i + 2];
391         d3 = data[i + 3];
392 
393         if (d0 || d1 || d2 || d3) {
394             return false;
395         }
396     }
397 
398     return true;
399 }
400 
401 #ifndef _WIN32
402 /* Sets a specific flag */
403 int fcntl_setfl(int fd, int flag)
404 {
405     int flags;
406 
407     flags = fcntl(fd, F_GETFL);
408     if (flags == -1)
409         return -errno;
410 
411     if (fcntl(fd, F_SETFL, flags | flag) == -1)
412         return -errno;
413 
414     return 0;
415 }
416 #endif
417 
418 static int64_t suffix_mul(char suffix, int64_t unit)
419 {
420     switch (qemu_toupper(suffix)) {
421     case QEMU_STRTOSZ_DEFSUFFIX_B:
422         return 1;
423     case QEMU_STRTOSZ_DEFSUFFIX_KB:
424         return unit;
425     case QEMU_STRTOSZ_DEFSUFFIX_MB:
426         return unit * unit;
427     case QEMU_STRTOSZ_DEFSUFFIX_GB:
428         return unit * unit * unit;
429     case QEMU_STRTOSZ_DEFSUFFIX_TB:
430         return unit * unit * unit * unit;
431     case QEMU_STRTOSZ_DEFSUFFIX_PB:
432         return unit * unit * unit * unit * unit;
433     case QEMU_STRTOSZ_DEFSUFFIX_EB:
434         return unit * unit * unit * unit * unit * unit;
435     }
436     return -1;
437 }
438 
439 /*
440  * Convert string to bytes, allowing either B/b for bytes, K/k for KB,
441  * M/m for MB, G/g for GB or T/t for TB. End pointer will be returned
442  * in *end, if not NULL. Return -ERANGE on overflow, Return -EINVAL on
443  * other error.
444  */
445 int64_t qemu_strtosz_suffix_unit(const char *nptr, char **end,
446                             const char default_suffix, int64_t unit)
447 {
448     int64_t retval = -EINVAL;
449     char *endptr;
450     unsigned char c;
451     int mul_required = 0;
452     double val, mul, integral, fraction;
453 
454     errno = 0;
455     val = strtod(nptr, &endptr);
456     if (isnan(val) || endptr == nptr || errno != 0) {
457         goto fail;
458     }
459     fraction = modf(val, &integral);
460     if (fraction != 0) {
461         mul_required = 1;
462     }
463     c = *endptr;
464     mul = suffix_mul(c, unit);
465     if (mul >= 0) {
466         endptr++;
467     } else {
468         mul = suffix_mul(default_suffix, unit);
469         assert(mul >= 0);
470     }
471     if (mul == 1 && mul_required) {
472         goto fail;
473     }
474     if ((val * mul >= INT64_MAX) || val < 0) {
475         retval = -ERANGE;
476         goto fail;
477     }
478     retval = val * mul;
479 
480 fail:
481     if (end) {
482         *end = endptr;
483     }
484 
485     return retval;
486 }
487 
488 int64_t qemu_strtosz_suffix(const char *nptr, char **end,
489                             const char default_suffix)
490 {
491     return qemu_strtosz_suffix_unit(nptr, end, default_suffix, 1024);
492 }
493 
494 int64_t qemu_strtosz(const char *nptr, char **end)
495 {
496     return qemu_strtosz_suffix(nptr, end, QEMU_STRTOSZ_DEFSUFFIX_MB);
497 }
498 
499 /**
500  * Helper function for qemu_strto*l() functions.
501  */
502 static int check_strtox_error(const char *p, char *endptr, const char **next,
503                               int err)
504 {
505     /* If no conversion was performed, prefer BSD behavior over glibc
506      * behavior.
507      */
508     if (err == 0 && endptr == p) {
509         err = EINVAL;
510     }
511     if (!next && *endptr) {
512         return -EINVAL;
513     }
514     if (next) {
515         *next = endptr;
516     }
517     return -err;
518 }
519 
520 /**
521  * QEMU wrappers for strtol(), strtoll(), strtoul(), strotull() C functions.
522  *
523  * Convert ASCII string @nptr to a long integer value
524  * from the given @base. Parameters @nptr, @endptr, @base
525  * follows same semantics as strtol() C function.
526  *
527  * Unlike from strtol() function, if @endptr is not NULL, this
528  * function will return -EINVAL whenever it cannot fully convert
529  * the string in @nptr with given @base to a long. This function returns
530  * the result of the conversion only through the @result parameter.
531  *
532  * If NULL is passed in @endptr, then the whole string in @ntpr
533  * is a number otherwise it returns -EINVAL.
534  *
535  * RETURN VALUE
536  * Unlike from strtol() function, this wrapper returns either
537  * -EINVAL or the errno set by strtol() function (e.g -ERANGE).
538  * If the conversion overflows, -ERANGE is returned, and @result
539  * is set to the max value of the desired type
540  * (e.g. LONG_MAX, LLONG_MAX, ULONG_MAX, ULLONG_MAX). If the case
541  * of underflow, -ERANGE is returned, and @result is set to the min
542  * value of the desired type. For strtol(), strtoll(), @result is set to
543  * LONG_MIN, LLONG_MIN, respectively, and for strtoul(), strtoull() it
544  * is set to 0.
545  */
546 int qemu_strtol(const char *nptr, const char **endptr, int base,
547                 long *result)
548 {
549     char *p;
550     int err = 0;
551     if (!nptr) {
552         if (endptr) {
553             *endptr = nptr;
554         }
555         err = -EINVAL;
556     } else {
557         errno = 0;
558         *result = strtol(nptr, &p, base);
559         err = check_strtox_error(nptr, p, endptr, errno);
560     }
561     return err;
562 }
563 
564 /**
565  * Converts ASCII string to an unsigned long integer.
566  *
567  * If string contains a negative number, value will be converted to
568  * the unsigned representation of the signed value, unless the original
569  * (nonnegated) value would overflow, in this case, it will set @result
570  * to ULONG_MAX, and return ERANGE.
571  *
572  * The same behavior holds, for qemu_strtoull() but sets @result to
573  * ULLONG_MAX instead of ULONG_MAX.
574  *
575  * See qemu_strtol() documentation for more info.
576  */
577 int qemu_strtoul(const char *nptr, const char **endptr, int base,
578                  unsigned long *result)
579 {
580     char *p;
581     int err = 0;
582     if (!nptr) {
583         if (endptr) {
584             *endptr = nptr;
585         }
586         err = -EINVAL;
587     } else {
588         errno = 0;
589         *result = strtoul(nptr, &p, base);
590         /* Windows returns 1 for negative out-of-range values.  */
591         if (errno == ERANGE) {
592             *result = -1;
593         }
594         err = check_strtox_error(nptr, p, endptr, errno);
595     }
596     return err;
597 }
598 
599 /**
600  * Converts ASCII string to a long long integer.
601  *
602  * See qemu_strtol() documentation for more info.
603  */
604 int qemu_strtoll(const char *nptr, const char **endptr, int base,
605                  int64_t *result)
606 {
607     char *p;
608     int err = 0;
609     if (!nptr) {
610         if (endptr) {
611             *endptr = nptr;
612         }
613         err = -EINVAL;
614     } else {
615         errno = 0;
616         *result = strtoll(nptr, &p, base);
617         err = check_strtox_error(nptr, p, endptr, errno);
618     }
619     return err;
620 }
621 
622 /**
623  * Converts ASCII string to an unsigned long long integer.
624  *
625  * See qemu_strtol() documentation for more info.
626  */
627 int qemu_strtoull(const char *nptr, const char **endptr, int base,
628                   uint64_t *result)
629 {
630     char *p;
631     int err = 0;
632     if (!nptr) {
633         if (endptr) {
634             *endptr = nptr;
635         }
636         err = -EINVAL;
637     } else {
638         errno = 0;
639         *result = strtoull(nptr, &p, base);
640         /* Windows returns 1 for negative out-of-range values.  */
641         if (errno == ERANGE) {
642             *result = -1;
643         }
644         err = check_strtox_error(nptr, p, endptr, errno);
645     }
646     return err;
647 }
648 
649 /**
650  * parse_uint:
651  *
652  * @s: String to parse
653  * @value: Destination for parsed integer value
654  * @endptr: Destination for pointer to first character not consumed
655  * @base: integer base, between 2 and 36 inclusive, or 0
656  *
657  * Parse unsigned integer
658  *
659  * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional
660  * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits.
661  *
662  * If @s is null, or @base is invalid, or @s doesn't start with an
663  * integer in the syntax above, set *@value to 0, *@endptr to @s, and
664  * return -EINVAL.
665  *
666  * Set *@endptr to point right beyond the parsed integer (even if the integer
667  * overflows or is negative, all digits will be parsed and *@endptr will
668  * point right beyond them).
669  *
670  * If the integer is negative, set *@value to 0, and return -ERANGE.
671  *
672  * If the integer overflows unsigned long long, set *@value to
673  * ULLONG_MAX, and return -ERANGE.
674  *
675  * Else, set *@value to the parsed integer, and return 0.
676  */
677 int parse_uint(const char *s, unsigned long long *value, char **endptr,
678                int base)
679 {
680     int r = 0;
681     char *endp = (char *)s;
682     unsigned long long val = 0;
683 
684     if (!s) {
685         r = -EINVAL;
686         goto out;
687     }
688 
689     errno = 0;
690     val = strtoull(s, &endp, base);
691     if (errno) {
692         r = -errno;
693         goto out;
694     }
695 
696     if (endp == s) {
697         r = -EINVAL;
698         goto out;
699     }
700 
701     /* make sure we reject negative numbers: */
702     while (isspace((unsigned char)*s)) {
703         s++;
704     }
705     if (*s == '-') {
706         val = 0;
707         r = -ERANGE;
708         goto out;
709     }
710 
711 out:
712     *value = val;
713     *endptr = endp;
714     return r;
715 }
716 
717 /**
718  * parse_uint_full:
719  *
720  * @s: String to parse
721  * @value: Destination for parsed integer value
722  * @base: integer base, between 2 and 36 inclusive, or 0
723  *
724  * Parse unsigned integer from entire string
725  *
726  * Have the same behavior of parse_uint(), but with an additional check
727  * for additional data after the parsed number. If extra characters are present
728  * after the parsed number, the function will return -EINVAL, and *@v will
729  * be set to 0.
730  */
731 int parse_uint_full(const char *s, unsigned long long *value, int base)
732 {
733     char *endp;
734     int r;
735 
736     r = parse_uint(s, value, &endp, base);
737     if (r < 0) {
738         return r;
739     }
740     if (*endp) {
741         *value = 0;
742         return -EINVAL;
743     }
744 
745     return 0;
746 }
747 
748 int qemu_parse_fd(const char *param)
749 {
750     long fd;
751     char *endptr;
752 
753     errno = 0;
754     fd = strtol(param, &endptr, 10);
755     if (param == endptr /* no conversion performed */                    ||
756         errno != 0      /* not representable as long; possibly others */ ||
757         *endptr != '\0' /* final string not empty */                     ||
758         fd < 0          /* invalid as file descriptor */                 ||
759         fd > INT_MAX    /* not representable as int */) {
760         return -1;
761     }
762     return fd;
763 }
764 
765 /*
766  * Implementation of  ULEB128 (http://en.wikipedia.org/wiki/LEB128)
767  * Input is limited to 14-bit numbers
768  */
769 int uleb128_encode_small(uint8_t *out, uint32_t n)
770 {
771     g_assert(n <= 0x3fff);
772     if (n < 0x80) {
773         *out++ = n;
774         return 1;
775     } else {
776         *out++ = (n & 0x7f) | 0x80;
777         *out++ = n >> 7;
778         return 2;
779     }
780 }
781 
782 int uleb128_decode_small(const uint8_t *in, uint32_t *n)
783 {
784     if (!(*in & 0x80)) {
785         *n = *in++;
786         return 1;
787     } else {
788         *n = *in++ & 0x7f;
789         /* we exceed 14 bit number */
790         if (*in & 0x80) {
791             return -1;
792         }
793         *n |= *in++ << 7;
794         return 2;
795     }
796 }
797 
798 /*
799  * helper to parse debug environment variables
800  */
801 int parse_debug_env(const char *name, int max, int initial)
802 {
803     char *debug_env = getenv(name);
804     char *inv = NULL;
805     long debug;
806 
807     if (!debug_env) {
808         return initial;
809     }
810     errno = 0;
811     debug = strtol(debug_env, &inv, 10);
812     if (inv == debug_env) {
813         return initial;
814     }
815     if (debug < 0 || debug > max || errno != 0) {
816         fprintf(stderr, "warning: %s not in [0, %d]", name, max);
817         return initial;
818     }
819     return debug;
820 }
821 
822 /*
823  * Helper to print ethernet mac address
824  */
825 const char *qemu_ether_ntoa(const MACAddr *mac)
826 {
827     static char ret[18];
828 
829     snprintf(ret, sizeof(ret), "%02x:%02x:%02x:%02x:%02x:%02x",
830              mac->a[0], mac->a[1], mac->a[2], mac->a[3], mac->a[4], mac->a[5]);
831 
832     return ret;
833 }
834