xref: /qemu/util/hbitmap.c (revision 52ea63de)
1 /*
2  * Hierarchical Bitmap Data Type
3  *
4  * Copyright Red Hat, Inc., 2012
5  *
6  * Author: Paolo Bonzini <pbonzini@redhat.com>
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or
9  * later.  See the COPYING file in the top-level directory.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/hbitmap.h"
14 #include "qemu/host-utils.h"
15 #include "trace.h"
16 
17 /* HBitmaps provides an array of bits.  The bits are stored as usual in an
18  * array of unsigned longs, but HBitmap is also optimized to provide fast
19  * iteration over set bits; going from one bit to the next is O(logB n)
20  * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
21  * that the number of levels is in fact fixed.
22  *
23  * In order to do this, it stacks multiple bitmaps with progressively coarser
24  * granularity; in all levels except the last, bit N is set iff the N-th
25  * unsigned long is nonzero in the immediately next level.  When iteration
26  * completes on the last level it can examine the 2nd-last level to quickly
27  * skip entire words, and even do so recursively to skip blocks of 64 words or
28  * powers thereof (32 on 32-bit machines).
29  *
30  * Given an index in the bitmap, it can be split in group of bits like
31  * this (for the 64-bit case):
32  *
33  *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
34  *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
35  *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
36  *
37  * So it is easy to move up simply by shifting the index right by
38  * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
39  * similarly, and add the word index within the group.  Iteration uses
40  * ffs (find first set bit) to find the next word to examine; this
41  * operation can be done in constant time in most current architectures.
42  *
43  * Setting or clearing a range of m bits on all levels, the work to perform
44  * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
45  *
46  * When iterating on a bitmap, each bit (on any level) is only visited
47  * once.  Hence, The total cost of visiting a bitmap with m bits in it is
48  * the number of bits that are set in all bitmaps.  Unless the bitmap is
49  * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
50  * cost of advancing from one bit to the next is usually constant (worst case
51  * O(logB n) as in the non-amortized complexity).
52  */
53 
54 struct HBitmap {
55     /* Number of total bits in the bottom level.  */
56     uint64_t size;
57 
58     /* Number of set bits in the bottom level.  */
59     uint64_t count;
60 
61     /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
62      * will actually represent a group of 2^G elements.  Each operation on a
63      * range of bits first rounds the bits to determine which group they land
64      * in, and then affect the entire page; iteration will only visit the first
65      * bit of each group.  Here is an example of operations in a size-16,
66      * granularity-1 HBitmap:
67      *
68      *    initial state            00000000
69      *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
70      *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
71      *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
72      *    reset(start=5, count=5)  00000000
73      *
74      * From an implementation point of view, when setting or resetting bits,
75      * the bitmap will scale bit numbers right by this amount of bits.  When
76      * iterating, the bitmap will scale bit numbers left by this amount of
77      * bits.
78      */
79     int granularity;
80 
81     /* A number of progressively less coarse bitmaps (i.e. level 0 is the
82      * coarsest).  Each bit in level N represents a word in level N+1 that
83      * has a set bit, except the last level where each bit represents the
84      * actual bitmap.
85      *
86      * Note that all bitmaps have the same number of levels.  Even a 1-bit
87      * bitmap will still allocate HBITMAP_LEVELS arrays.
88      */
89     unsigned long *levels[HBITMAP_LEVELS];
90 
91     /* The length of each levels[] array. */
92     uint64_t sizes[HBITMAP_LEVELS];
93 };
94 
95 /* Advance hbi to the next nonzero word and return it.  hbi->pos
96  * is updated.  Returns zero if we reach the end of the bitmap.
97  */
98 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
99 {
100     size_t pos = hbi->pos;
101     const HBitmap *hb = hbi->hb;
102     unsigned i = HBITMAP_LEVELS - 1;
103 
104     unsigned long cur;
105     do {
106         cur = hbi->cur[--i];
107         pos >>= BITS_PER_LEVEL;
108     } while (cur == 0);
109 
110     /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
111      * bits in the level 0 bitmap; thus we can repurpose the most significant
112      * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
113      * that the above loop ends even without an explicit check on i.
114      */
115 
116     if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
117         return 0;
118     }
119     for (; i < HBITMAP_LEVELS - 1; i++) {
120         /* Shift back pos to the left, matching the right shifts above.
121          * The index of this word's least significant set bit provides
122          * the low-order bits.
123          */
124         assert(cur);
125         pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
126         hbi->cur[i] = cur & (cur - 1);
127 
128         /* Set up next level for iteration.  */
129         cur = hb->levels[i + 1][pos];
130     }
131 
132     hbi->pos = pos;
133     trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
134 
135     assert(cur);
136     return cur;
137 }
138 
139 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
140 {
141     unsigned i, bit;
142     uint64_t pos;
143 
144     hbi->hb = hb;
145     pos = first >> hb->granularity;
146     assert(pos < hb->size);
147     hbi->pos = pos >> BITS_PER_LEVEL;
148     hbi->granularity = hb->granularity;
149 
150     for (i = HBITMAP_LEVELS; i-- > 0; ) {
151         bit = pos & (BITS_PER_LONG - 1);
152         pos >>= BITS_PER_LEVEL;
153 
154         /* Drop bits representing items before first.  */
155         hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
156 
157         /* We have already added level i+1, so the lowest set bit has
158          * been processed.  Clear it.
159          */
160         if (i != HBITMAP_LEVELS - 1) {
161             hbi->cur[i] &= ~(1UL << bit);
162         }
163     }
164 }
165 
166 bool hbitmap_empty(const HBitmap *hb)
167 {
168     return hb->count == 0;
169 }
170 
171 int hbitmap_granularity(const HBitmap *hb)
172 {
173     return hb->granularity;
174 }
175 
176 uint64_t hbitmap_count(const HBitmap *hb)
177 {
178     return hb->count << hb->granularity;
179 }
180 
181 /* Count the number of set bits between start and end, not accounting for
182  * the granularity.  Also an example of how to use hbitmap_iter_next_word.
183  */
184 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
185 {
186     HBitmapIter hbi;
187     uint64_t count = 0;
188     uint64_t end = last + 1;
189     unsigned long cur;
190     size_t pos;
191 
192     hbitmap_iter_init(&hbi, hb, start << hb->granularity);
193     for (;;) {
194         pos = hbitmap_iter_next_word(&hbi, &cur);
195         if (pos >= (end >> BITS_PER_LEVEL)) {
196             break;
197         }
198         count += ctpopl(cur);
199     }
200 
201     if (pos == (end >> BITS_PER_LEVEL)) {
202         /* Drop bits representing the END-th and subsequent items.  */
203         int bit = end & (BITS_PER_LONG - 1);
204         cur &= (1UL << bit) - 1;
205         count += ctpopl(cur);
206     }
207 
208     return count;
209 }
210 
211 /* Setting starts at the last layer and propagates up if an element
212  * changes from zero to non-zero.
213  */
214 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
215 {
216     unsigned long mask;
217     bool changed;
218 
219     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
220     assert(start <= last);
221 
222     mask = 2UL << (last & (BITS_PER_LONG - 1));
223     mask -= 1UL << (start & (BITS_PER_LONG - 1));
224     changed = (*elem == 0);
225     *elem |= mask;
226     return changed;
227 }
228 
229 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
230 static void hb_set_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
231 {
232     size_t pos = start >> BITS_PER_LEVEL;
233     size_t lastpos = last >> BITS_PER_LEVEL;
234     bool changed = false;
235     size_t i;
236 
237     i = pos;
238     if (i < lastpos) {
239         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
240         changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
241         for (;;) {
242             start = next;
243             next += BITS_PER_LONG;
244             if (++i == lastpos) {
245                 break;
246             }
247             changed |= (hb->levels[level][i] == 0);
248             hb->levels[level][i] = ~0UL;
249         }
250     }
251     changed |= hb_set_elem(&hb->levels[level][i], start, last);
252 
253     /* If there was any change in this layer, we may have to update
254      * the one above.
255      */
256     if (level > 0 && changed) {
257         hb_set_between(hb, level - 1, pos, lastpos);
258     }
259 }
260 
261 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
262 {
263     /* Compute range in the last layer.  */
264     uint64_t last = start + count - 1;
265 
266     trace_hbitmap_set(hb, start, count,
267                       start >> hb->granularity, last >> hb->granularity);
268 
269     start >>= hb->granularity;
270     last >>= hb->granularity;
271     count = last - start + 1;
272 
273     hb->count += count - hb_count_between(hb, start, last);
274     hb_set_between(hb, HBITMAP_LEVELS - 1, start, last);
275 }
276 
277 /* Resetting works the other way round: propagate up if the new
278  * value is zero.
279  */
280 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
281 {
282     unsigned long mask;
283     bool blanked;
284 
285     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
286     assert(start <= last);
287 
288     mask = 2UL << (last & (BITS_PER_LONG - 1));
289     mask -= 1UL << (start & (BITS_PER_LONG - 1));
290     blanked = *elem != 0 && ((*elem & ~mask) == 0);
291     *elem &= ~mask;
292     return blanked;
293 }
294 
295 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
296 static void hb_reset_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
297 {
298     size_t pos = start >> BITS_PER_LEVEL;
299     size_t lastpos = last >> BITS_PER_LEVEL;
300     bool changed = false;
301     size_t i;
302 
303     i = pos;
304     if (i < lastpos) {
305         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
306 
307         /* Here we need a more complex test than when setting bits.  Even if
308          * something was changed, we must not blank bits in the upper level
309          * unless the lower-level word became entirely zero.  So, remove pos
310          * from the upper-level range if bits remain set.
311          */
312         if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
313             changed = true;
314         } else {
315             pos++;
316         }
317 
318         for (;;) {
319             start = next;
320             next += BITS_PER_LONG;
321             if (++i == lastpos) {
322                 break;
323             }
324             changed |= (hb->levels[level][i] != 0);
325             hb->levels[level][i] = 0UL;
326         }
327     }
328 
329     /* Same as above, this time for lastpos.  */
330     if (hb_reset_elem(&hb->levels[level][i], start, last)) {
331         changed = true;
332     } else {
333         lastpos--;
334     }
335 
336     if (level > 0 && changed) {
337         hb_reset_between(hb, level - 1, pos, lastpos);
338     }
339 }
340 
341 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
342 {
343     /* Compute range in the last layer.  */
344     uint64_t last = start + count - 1;
345 
346     trace_hbitmap_reset(hb, start, count,
347                         start >> hb->granularity, last >> hb->granularity);
348 
349     start >>= hb->granularity;
350     last >>= hb->granularity;
351 
352     hb->count -= hb_count_between(hb, start, last);
353     hb_reset_between(hb, HBITMAP_LEVELS - 1, start, last);
354 }
355 
356 void hbitmap_reset_all(HBitmap *hb)
357 {
358     unsigned int i;
359 
360     /* Same as hbitmap_alloc() except for memset() instead of malloc() */
361     for (i = HBITMAP_LEVELS; --i >= 1; ) {
362         memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
363     }
364 
365     hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
366     hb->count = 0;
367 }
368 
369 bool hbitmap_get(const HBitmap *hb, uint64_t item)
370 {
371     /* Compute position and bit in the last layer.  */
372     uint64_t pos = item >> hb->granularity;
373     unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
374 
375     return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
376 }
377 
378 void hbitmap_free(HBitmap *hb)
379 {
380     unsigned i;
381     for (i = HBITMAP_LEVELS; i-- > 0; ) {
382         g_free(hb->levels[i]);
383     }
384     g_free(hb);
385 }
386 
387 HBitmap *hbitmap_alloc(uint64_t size, int granularity)
388 {
389     HBitmap *hb = g_new0(struct HBitmap, 1);
390     unsigned i;
391 
392     assert(granularity >= 0 && granularity < 64);
393     size = (size + (1ULL << granularity) - 1) >> granularity;
394     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
395 
396     hb->size = size;
397     hb->granularity = granularity;
398     for (i = HBITMAP_LEVELS; i-- > 0; ) {
399         size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
400         hb->sizes[i] = size;
401         hb->levels[i] = g_new0(unsigned long, size);
402     }
403 
404     /* We necessarily have free bits in level 0 due to the definition
405      * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
406      * hbitmap_iter_skip_words.
407      */
408     assert(size == 1);
409     hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
410     return hb;
411 }
412 
413 void hbitmap_truncate(HBitmap *hb, uint64_t size)
414 {
415     bool shrink;
416     unsigned i;
417     uint64_t num_elements = size;
418     uint64_t old;
419 
420     /* Size comes in as logical elements, adjust for granularity. */
421     size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
422     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
423     shrink = size < hb->size;
424 
425     /* bit sizes are identical; nothing to do. */
426     if (size == hb->size) {
427         return;
428     }
429 
430     /* If we're losing bits, let's clear those bits before we invalidate all of
431      * our invariants. This helps keep the bitcount consistent, and will prevent
432      * us from carrying around garbage bits beyond the end of the map.
433      */
434     if (shrink) {
435         /* Don't clear partial granularity groups;
436          * start at the first full one. */
437         uint64_t start = QEMU_ALIGN_UP(num_elements, 1 << hb->granularity);
438         uint64_t fix_count = (hb->size << hb->granularity) - start;
439 
440         assert(fix_count);
441         hbitmap_reset(hb, start, fix_count);
442     }
443 
444     hb->size = size;
445     for (i = HBITMAP_LEVELS; i-- > 0; ) {
446         size = MAX(BITS_TO_LONGS(size), 1);
447         if (hb->sizes[i] == size) {
448             break;
449         }
450         old = hb->sizes[i];
451         hb->sizes[i] = size;
452         hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
453         if (!shrink) {
454             memset(&hb->levels[i][old], 0x00,
455                    (size - old) * sizeof(*hb->levels[i]));
456         }
457     }
458 }
459 
460 
461 /**
462  * Given HBitmaps A and B, let A := A (BITOR) B.
463  * Bitmap B will not be modified.
464  *
465  * @return true if the merge was successful,
466  *         false if it was not attempted.
467  */
468 bool hbitmap_merge(HBitmap *a, const HBitmap *b)
469 {
470     int i;
471     uint64_t j;
472 
473     if ((a->size != b->size) || (a->granularity != b->granularity)) {
474         return false;
475     }
476 
477     if (hbitmap_count(b) == 0) {
478         return true;
479     }
480 
481     /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
482      * It may be possible to improve running times for sparsely populated maps
483      * by using hbitmap_iter_next, but this is suboptimal for dense maps.
484      */
485     for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
486         for (j = 0; j < a->sizes[i]; j++) {
487             a->levels[i][j] |= b->levels[i][j];
488         }
489     }
490 
491     return true;
492 }
493