xref: /qemu/util/hbitmap.c (revision bf8d4924)
1 /*
2  * Hierarchical Bitmap Data Type
3  *
4  * Copyright Red Hat, Inc., 2012
5  *
6  * Author: Paolo Bonzini <pbonzini@redhat.com>
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or
9  * later.  See the COPYING file in the top-level directory.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/hbitmap.h"
14 #include "qemu/host-utils.h"
15 #include "trace.h"
16 
17 /* HBitmaps provides an array of bits.  The bits are stored as usual in an
18  * array of unsigned longs, but HBitmap is also optimized to provide fast
19  * iteration over set bits; going from one bit to the next is O(logB n)
20  * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
21  * that the number of levels is in fact fixed.
22  *
23  * In order to do this, it stacks multiple bitmaps with progressively coarser
24  * granularity; in all levels except the last, bit N is set iff the N-th
25  * unsigned long is nonzero in the immediately next level.  When iteration
26  * completes on the last level it can examine the 2nd-last level to quickly
27  * skip entire words, and even do so recursively to skip blocks of 64 words or
28  * powers thereof (32 on 32-bit machines).
29  *
30  * Given an index in the bitmap, it can be split in group of bits like
31  * this (for the 64-bit case):
32  *
33  *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
34  *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
35  *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
36  *
37  * So it is easy to move up simply by shifting the index right by
38  * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
39  * similarly, and add the word index within the group.  Iteration uses
40  * ffs (find first set bit) to find the next word to examine; this
41  * operation can be done in constant time in most current architectures.
42  *
43  * Setting or clearing a range of m bits on all levels, the work to perform
44  * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
45  *
46  * When iterating on a bitmap, each bit (on any level) is only visited
47  * once.  Hence, The total cost of visiting a bitmap with m bits in it is
48  * the number of bits that are set in all bitmaps.  Unless the bitmap is
49  * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
50  * cost of advancing from one bit to the next is usually constant (worst case
51  * O(logB n) as in the non-amortized complexity).
52  */
53 
54 struct HBitmap {
55     /* Number of total bits in the bottom level.  */
56     uint64_t size;
57 
58     /* Number of set bits in the bottom level.  */
59     uint64_t count;
60 
61     /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
62      * will actually represent a group of 2^G elements.  Each operation on a
63      * range of bits first rounds the bits to determine which group they land
64      * in, and then affect the entire page; iteration will only visit the first
65      * bit of each group.  Here is an example of operations in a size-16,
66      * granularity-1 HBitmap:
67      *
68      *    initial state            00000000
69      *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
70      *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
71      *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
72      *    reset(start=5, count=5)  00000000
73      *
74      * From an implementation point of view, when setting or resetting bits,
75      * the bitmap will scale bit numbers right by this amount of bits.  When
76      * iterating, the bitmap will scale bit numbers left by this amount of
77      * bits.
78      */
79     int granularity;
80 
81     /* A number of progressively less coarse bitmaps (i.e. level 0 is the
82      * coarsest).  Each bit in level N represents a word in level N+1 that
83      * has a set bit, except the last level where each bit represents the
84      * actual bitmap.
85      *
86      * Note that all bitmaps have the same number of levels.  Even a 1-bit
87      * bitmap will still allocate HBITMAP_LEVELS arrays.
88      */
89     unsigned long *levels[HBITMAP_LEVELS];
90 
91     /* The length of each levels[] array. */
92     uint64_t sizes[HBITMAP_LEVELS];
93 };
94 
95 /* Advance hbi to the next nonzero word and return it.  hbi->pos
96  * is updated.  Returns zero if we reach the end of the bitmap.
97  */
98 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
99 {
100     size_t pos = hbi->pos;
101     const HBitmap *hb = hbi->hb;
102     unsigned i = HBITMAP_LEVELS - 1;
103 
104     unsigned long cur;
105     do {
106         cur = hbi->cur[--i];
107         pos >>= BITS_PER_LEVEL;
108     } while (cur == 0);
109 
110     /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
111      * bits in the level 0 bitmap; thus we can repurpose the most significant
112      * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
113      * that the above loop ends even without an explicit check on i.
114      */
115 
116     if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
117         return 0;
118     }
119     for (; i < HBITMAP_LEVELS - 1; i++) {
120         /* Shift back pos to the left, matching the right shifts above.
121          * The index of this word's least significant set bit provides
122          * the low-order bits.
123          */
124         assert(cur);
125         pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
126         hbi->cur[i] = cur & (cur - 1);
127 
128         /* Set up next level for iteration.  */
129         cur = hb->levels[i + 1][pos];
130     }
131 
132     hbi->pos = pos;
133     trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
134 
135     assert(cur);
136     return cur;
137 }
138 
139 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
140 {
141     unsigned i, bit;
142     uint64_t pos;
143 
144     hbi->hb = hb;
145     pos = first >> hb->granularity;
146     assert(pos < hb->size);
147     hbi->pos = pos >> BITS_PER_LEVEL;
148     hbi->granularity = hb->granularity;
149 
150     for (i = HBITMAP_LEVELS; i-- > 0; ) {
151         bit = pos & (BITS_PER_LONG - 1);
152         pos >>= BITS_PER_LEVEL;
153 
154         /* Drop bits representing items before first.  */
155         hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
156 
157         /* We have already added level i+1, so the lowest set bit has
158          * been processed.  Clear it.
159          */
160         if (i != HBITMAP_LEVELS - 1) {
161             hbi->cur[i] &= ~(1UL << bit);
162         }
163     }
164 }
165 
166 bool hbitmap_empty(const HBitmap *hb)
167 {
168     return hb->count == 0;
169 }
170 
171 int hbitmap_granularity(const HBitmap *hb)
172 {
173     return hb->granularity;
174 }
175 
176 uint64_t hbitmap_count(const HBitmap *hb)
177 {
178     return hb->count << hb->granularity;
179 }
180 
181 /* Count the number of set bits between start and end, not accounting for
182  * the granularity.  Also an example of how to use hbitmap_iter_next_word.
183  */
184 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
185 {
186     HBitmapIter hbi;
187     uint64_t count = 0;
188     uint64_t end = last + 1;
189     unsigned long cur;
190     size_t pos;
191 
192     hbitmap_iter_init(&hbi, hb, start << hb->granularity);
193     for (;;) {
194         pos = hbitmap_iter_next_word(&hbi, &cur);
195         if (pos >= (end >> BITS_PER_LEVEL)) {
196             break;
197         }
198         count += ctpopl(cur);
199     }
200 
201     if (pos == (end >> BITS_PER_LEVEL)) {
202         /* Drop bits representing the END-th and subsequent items.  */
203         int bit = end & (BITS_PER_LONG - 1);
204         cur &= (1UL << bit) - 1;
205         count += ctpopl(cur);
206     }
207 
208     return count;
209 }
210 
211 /* Setting starts at the last layer and propagates up if an element
212  * changes from zero to non-zero.
213  */
214 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
215 {
216     unsigned long mask;
217     bool changed;
218 
219     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
220     assert(start <= last);
221 
222     mask = 2UL << (last & (BITS_PER_LONG - 1));
223     mask -= 1UL << (start & (BITS_PER_LONG - 1));
224     changed = (*elem == 0);
225     *elem |= mask;
226     return changed;
227 }
228 
229 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
230 static void hb_set_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
231 {
232     size_t pos = start >> BITS_PER_LEVEL;
233     size_t lastpos = last >> BITS_PER_LEVEL;
234     bool changed = false;
235     size_t i;
236 
237     i = pos;
238     if (i < lastpos) {
239         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
240         changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
241         for (;;) {
242             start = next;
243             next += BITS_PER_LONG;
244             if (++i == lastpos) {
245                 break;
246             }
247             changed |= (hb->levels[level][i] == 0);
248             hb->levels[level][i] = ~0UL;
249         }
250     }
251     changed |= hb_set_elem(&hb->levels[level][i], start, last);
252 
253     /* If there was any change in this layer, we may have to update
254      * the one above.
255      */
256     if (level > 0 && changed) {
257         hb_set_between(hb, level - 1, pos, lastpos);
258     }
259 }
260 
261 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
262 {
263     /* Compute range in the last layer.  */
264     uint64_t last = start + count - 1;
265 
266     trace_hbitmap_set(hb, start, count,
267                       start >> hb->granularity, last >> hb->granularity);
268 
269     start >>= hb->granularity;
270     last >>= hb->granularity;
271     count = last - start + 1;
272     assert(last < hb->size);
273 
274     hb->count += count - hb_count_between(hb, start, last);
275     hb_set_between(hb, HBITMAP_LEVELS - 1, start, last);
276 }
277 
278 /* Resetting works the other way round: propagate up if the new
279  * value is zero.
280  */
281 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
282 {
283     unsigned long mask;
284     bool blanked;
285 
286     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
287     assert(start <= last);
288 
289     mask = 2UL << (last & (BITS_PER_LONG - 1));
290     mask -= 1UL << (start & (BITS_PER_LONG - 1));
291     blanked = *elem != 0 && ((*elem & ~mask) == 0);
292     *elem &= ~mask;
293     return blanked;
294 }
295 
296 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
297 static void hb_reset_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
298 {
299     size_t pos = start >> BITS_PER_LEVEL;
300     size_t lastpos = last >> BITS_PER_LEVEL;
301     bool changed = false;
302     size_t i;
303 
304     i = pos;
305     if (i < lastpos) {
306         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
307 
308         /* Here we need a more complex test than when setting bits.  Even if
309          * something was changed, we must not blank bits in the upper level
310          * unless the lower-level word became entirely zero.  So, remove pos
311          * from the upper-level range if bits remain set.
312          */
313         if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
314             changed = true;
315         } else {
316             pos++;
317         }
318 
319         for (;;) {
320             start = next;
321             next += BITS_PER_LONG;
322             if (++i == lastpos) {
323                 break;
324             }
325             changed |= (hb->levels[level][i] != 0);
326             hb->levels[level][i] = 0UL;
327         }
328     }
329 
330     /* Same as above, this time for lastpos.  */
331     if (hb_reset_elem(&hb->levels[level][i], start, last)) {
332         changed = true;
333     } else {
334         lastpos--;
335     }
336 
337     if (level > 0 && changed) {
338         hb_reset_between(hb, level - 1, pos, lastpos);
339     }
340 }
341 
342 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
343 {
344     /* Compute range in the last layer.  */
345     uint64_t last = start + count - 1;
346 
347     trace_hbitmap_reset(hb, start, count,
348                         start >> hb->granularity, last >> hb->granularity);
349 
350     start >>= hb->granularity;
351     last >>= hb->granularity;
352     assert(last < hb->size);
353 
354     hb->count -= hb_count_between(hb, start, last);
355     hb_reset_between(hb, HBITMAP_LEVELS - 1, start, last);
356 }
357 
358 void hbitmap_reset_all(HBitmap *hb)
359 {
360     unsigned int i;
361 
362     /* Same as hbitmap_alloc() except for memset() instead of malloc() */
363     for (i = HBITMAP_LEVELS; --i >= 1; ) {
364         memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
365     }
366 
367     hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
368     hb->count = 0;
369 }
370 
371 bool hbitmap_get(const HBitmap *hb, uint64_t item)
372 {
373     /* Compute position and bit in the last layer.  */
374     uint64_t pos = item >> hb->granularity;
375     unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
376     assert(pos < hb->size);
377 
378     return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
379 }
380 
381 void hbitmap_free(HBitmap *hb)
382 {
383     unsigned i;
384     for (i = HBITMAP_LEVELS; i-- > 0; ) {
385         g_free(hb->levels[i]);
386     }
387     g_free(hb);
388 }
389 
390 HBitmap *hbitmap_alloc(uint64_t size, int granularity)
391 {
392     HBitmap *hb = g_new0(struct HBitmap, 1);
393     unsigned i;
394 
395     assert(granularity >= 0 && granularity < 64);
396     size = (size + (1ULL << granularity) - 1) >> granularity;
397     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
398 
399     hb->size = size;
400     hb->granularity = granularity;
401     for (i = HBITMAP_LEVELS; i-- > 0; ) {
402         size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
403         hb->sizes[i] = size;
404         hb->levels[i] = g_new0(unsigned long, size);
405     }
406 
407     /* We necessarily have free bits in level 0 due to the definition
408      * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
409      * hbitmap_iter_skip_words.
410      */
411     assert(size == 1);
412     hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
413     return hb;
414 }
415 
416 void hbitmap_truncate(HBitmap *hb, uint64_t size)
417 {
418     bool shrink;
419     unsigned i;
420     uint64_t num_elements = size;
421     uint64_t old;
422 
423     /* Size comes in as logical elements, adjust for granularity. */
424     size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
425     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
426     shrink = size < hb->size;
427 
428     /* bit sizes are identical; nothing to do. */
429     if (size == hb->size) {
430         return;
431     }
432 
433     /* If we're losing bits, let's clear those bits before we invalidate all of
434      * our invariants. This helps keep the bitcount consistent, and will prevent
435      * us from carrying around garbage bits beyond the end of the map.
436      */
437     if (shrink) {
438         /* Don't clear partial granularity groups;
439          * start at the first full one. */
440         uint64_t start = QEMU_ALIGN_UP(num_elements, 1 << hb->granularity);
441         uint64_t fix_count = (hb->size << hb->granularity) - start;
442 
443         assert(fix_count);
444         hbitmap_reset(hb, start, fix_count);
445     }
446 
447     hb->size = size;
448     for (i = HBITMAP_LEVELS; i-- > 0; ) {
449         size = MAX(BITS_TO_LONGS(size), 1);
450         if (hb->sizes[i] == size) {
451             break;
452         }
453         old = hb->sizes[i];
454         hb->sizes[i] = size;
455         hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
456         if (!shrink) {
457             memset(&hb->levels[i][old], 0x00,
458                    (size - old) * sizeof(*hb->levels[i]));
459         }
460     }
461 }
462 
463 
464 /**
465  * Given HBitmaps A and B, let A := A (BITOR) B.
466  * Bitmap B will not be modified.
467  *
468  * @return true if the merge was successful,
469  *         false if it was not attempted.
470  */
471 bool hbitmap_merge(HBitmap *a, const HBitmap *b)
472 {
473     int i;
474     uint64_t j;
475 
476     if ((a->size != b->size) || (a->granularity != b->granularity)) {
477         return false;
478     }
479 
480     if (hbitmap_count(b) == 0) {
481         return true;
482     }
483 
484     /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
485      * It may be possible to improve running times for sparsely populated maps
486      * by using hbitmap_iter_next, but this is suboptimal for dense maps.
487      */
488     for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
489         for (j = 0; j < a->sizes[i]; j++) {
490             a->levels[i][j] |= b->levels[i][j];
491         }
492     }
493 
494     return true;
495 }
496