xref: /qemu/util/qemu-thread-win32.c (revision 9277d81f)
1 /*
2  * Win32 implementation for mutex/cond/thread functions
3  *
4  * Copyright Red Hat, Inc. 2010
5  *
6  * Author:
7  *  Paolo Bonzini <pbonzini@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef _WIN32_WINNT
15 #define _WIN32_WINNT 0x0600
16 #endif
17 
18 #include "qemu/osdep.h"
19 #include "qemu-common.h"
20 #include "qemu/thread.h"
21 #include "qemu/notify.h"
22 #include "qemu-thread-common.h"
23 #include <process.h>
24 
25 static bool name_threads;
26 
27 void qemu_thread_naming(bool enable)
28 {
29     /* But note we don't actually name them on Windows yet */
30     name_threads = enable;
31 
32     fprintf(stderr, "qemu: thread naming not supported on this host\n");
33 }
34 
35 static void error_exit(int err, const char *msg)
36 {
37     char *pstr;
38 
39     FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
40                   NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
41     fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
42     LocalFree(pstr);
43     abort();
44 }
45 
46 void qemu_mutex_init(QemuMutex *mutex)
47 {
48     InitializeSRWLock(&mutex->lock);
49     qemu_mutex_post_init(mutex);
50 }
51 
52 void qemu_mutex_destroy(QemuMutex *mutex)
53 {
54     assert(mutex->initialized);
55     mutex->initialized = false;
56     InitializeSRWLock(&mutex->lock);
57 }
58 
59 void qemu_mutex_lock_impl(QemuMutex *mutex, const char *file, const int line)
60 {
61     assert(mutex->initialized);
62     qemu_mutex_pre_lock(mutex, file, line);
63     AcquireSRWLockExclusive(&mutex->lock);
64     qemu_mutex_post_lock(mutex, file, line);
65 }
66 
67 int qemu_mutex_trylock_impl(QemuMutex *mutex, const char *file, const int line)
68 {
69     int owned;
70 
71     assert(mutex->initialized);
72     owned = TryAcquireSRWLockExclusive(&mutex->lock);
73     if (owned) {
74         qemu_mutex_post_lock(mutex, file, line);
75         return 0;
76     }
77     return -EBUSY;
78 }
79 
80 void qemu_mutex_unlock_impl(QemuMutex *mutex, const char *file, const int line)
81 {
82     assert(mutex->initialized);
83     qemu_mutex_pre_unlock(mutex, file, line);
84     ReleaseSRWLockExclusive(&mutex->lock);
85 }
86 
87 void qemu_rec_mutex_init(QemuRecMutex *mutex)
88 {
89     InitializeCriticalSection(&mutex->lock);
90     mutex->initialized = true;
91 }
92 
93 void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
94 {
95     assert(mutex->initialized);
96     mutex->initialized = false;
97     DeleteCriticalSection(&mutex->lock);
98 }
99 
100 void qemu_rec_mutex_lock(QemuRecMutex *mutex)
101 {
102     assert(mutex->initialized);
103     EnterCriticalSection(&mutex->lock);
104 }
105 
106 int qemu_rec_mutex_trylock(QemuRecMutex *mutex)
107 {
108     assert(mutex->initialized);
109     return !TryEnterCriticalSection(&mutex->lock);
110 }
111 
112 void qemu_rec_mutex_unlock(QemuRecMutex *mutex)
113 {
114     assert(mutex->initialized);
115     LeaveCriticalSection(&mutex->lock);
116 }
117 
118 void qemu_cond_init(QemuCond *cond)
119 {
120     memset(cond, 0, sizeof(*cond));
121     InitializeConditionVariable(&cond->var);
122     cond->initialized = true;
123 }
124 
125 void qemu_cond_destroy(QemuCond *cond)
126 {
127     assert(cond->initialized);
128     cond->initialized = false;
129     InitializeConditionVariable(&cond->var);
130 }
131 
132 void qemu_cond_signal(QemuCond *cond)
133 {
134     assert(cond->initialized);
135     WakeConditionVariable(&cond->var);
136 }
137 
138 void qemu_cond_broadcast(QemuCond *cond)
139 {
140     assert(cond->initialized);
141     WakeAllConditionVariable(&cond->var);
142 }
143 
144 void qemu_cond_wait_impl(QemuCond *cond, QemuMutex *mutex, const char *file, const int line)
145 {
146     assert(cond->initialized);
147     qemu_mutex_pre_unlock(mutex, file, line);
148     SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
149     qemu_mutex_post_lock(mutex, file, line);
150 }
151 
152 void qemu_sem_init(QemuSemaphore *sem, int init)
153 {
154     /* Manual reset.  */
155     sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
156     sem->initialized = true;
157 }
158 
159 void qemu_sem_destroy(QemuSemaphore *sem)
160 {
161     assert(sem->initialized);
162     sem->initialized = false;
163     CloseHandle(sem->sema);
164 }
165 
166 void qemu_sem_post(QemuSemaphore *sem)
167 {
168     assert(sem->initialized);
169     ReleaseSemaphore(sem->sema, 1, NULL);
170 }
171 
172 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
173 {
174     int rc;
175 
176     assert(sem->initialized);
177     rc = WaitForSingleObject(sem->sema, ms);
178     if (rc == WAIT_OBJECT_0) {
179         return 0;
180     }
181     if (rc != WAIT_TIMEOUT) {
182         error_exit(GetLastError(), __func__);
183     }
184     return -1;
185 }
186 
187 void qemu_sem_wait(QemuSemaphore *sem)
188 {
189     assert(sem->initialized);
190     if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
191         error_exit(GetLastError(), __func__);
192     }
193 }
194 
195 /* Wrap a Win32 manual-reset event with a fast userspace path.  The idea
196  * is to reset the Win32 event lazily, as part of a test-reset-test-wait
197  * sequence.  Such a sequence is, indeed, how QemuEvents are used by
198  * RCU and other subsystems!
199  *
200  * Valid transitions:
201  * - free->set, when setting the event
202  * - busy->set, when setting the event, followed by SetEvent
203  * - set->free, when resetting the event
204  * - free->busy, when waiting
205  *
206  * set->busy does not happen (it can be observed from the outside but
207  * it really is set->free->busy).
208  *
209  * busy->free provably cannot happen; to enforce it, the set->free transition
210  * is done with an OR, which becomes a no-op if the event has concurrently
211  * transitioned to free or busy (and is faster than cmpxchg).
212  */
213 
214 #define EV_SET         0
215 #define EV_FREE        1
216 #define EV_BUSY       -1
217 
218 void qemu_event_init(QemuEvent *ev, bool init)
219 {
220     /* Manual reset.  */
221     ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
222     ev->value = (init ? EV_SET : EV_FREE);
223     ev->initialized = true;
224 }
225 
226 void qemu_event_destroy(QemuEvent *ev)
227 {
228     assert(ev->initialized);
229     ev->initialized = false;
230     CloseHandle(ev->event);
231 }
232 
233 void qemu_event_set(QemuEvent *ev)
234 {
235     assert(ev->initialized);
236     /* qemu_event_set has release semantics, but because it *loads*
237      * ev->value we need a full memory barrier here.
238      */
239     smp_mb();
240     if (atomic_read(&ev->value) != EV_SET) {
241         if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
242             /* There were waiters, wake them up.  */
243             SetEvent(ev->event);
244         }
245     }
246 }
247 
248 void qemu_event_reset(QemuEvent *ev)
249 {
250     unsigned value;
251 
252     assert(ev->initialized);
253     value = atomic_read(&ev->value);
254     smp_mb_acquire();
255     if (value == EV_SET) {
256         /* If there was a concurrent reset (or even reset+wait),
257          * do nothing.  Otherwise change EV_SET->EV_FREE.
258          */
259         atomic_or(&ev->value, EV_FREE);
260     }
261 }
262 
263 void qemu_event_wait(QemuEvent *ev)
264 {
265     unsigned value;
266 
267     assert(ev->initialized);
268     value = atomic_read(&ev->value);
269     smp_mb_acquire();
270     if (value != EV_SET) {
271         if (value == EV_FREE) {
272             /* qemu_event_set is not yet going to call SetEvent, but we are
273              * going to do another check for EV_SET below when setting EV_BUSY.
274              * At that point it is safe to call WaitForSingleObject.
275              */
276             ResetEvent(ev->event);
277 
278             /* Tell qemu_event_set that there are waiters.  No need to retry
279              * because there cannot be a concurent busy->free transition.
280              * After the CAS, the event will be either set or busy.
281              */
282             if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
283                 value = EV_SET;
284             } else {
285                 value = EV_BUSY;
286             }
287         }
288         if (value == EV_BUSY) {
289             WaitForSingleObject(ev->event, INFINITE);
290         }
291     }
292 }
293 
294 struct QemuThreadData {
295     /* Passed to win32_start_routine.  */
296     void             *(*start_routine)(void *);
297     void             *arg;
298     short             mode;
299     NotifierList      exit;
300 
301     /* Only used for joinable threads. */
302     bool              exited;
303     void             *ret;
304     CRITICAL_SECTION  cs;
305 };
306 
307 static bool atexit_registered;
308 static NotifierList main_thread_exit;
309 
310 static __thread QemuThreadData *qemu_thread_data;
311 
312 static void run_main_thread_exit(void)
313 {
314     notifier_list_notify(&main_thread_exit, NULL);
315 }
316 
317 void qemu_thread_atexit_add(Notifier *notifier)
318 {
319     if (!qemu_thread_data) {
320         if (!atexit_registered) {
321             atexit_registered = true;
322             atexit(run_main_thread_exit);
323         }
324         notifier_list_add(&main_thread_exit, notifier);
325     } else {
326         notifier_list_add(&qemu_thread_data->exit, notifier);
327     }
328 }
329 
330 void qemu_thread_atexit_remove(Notifier *notifier)
331 {
332     notifier_remove(notifier);
333 }
334 
335 static unsigned __stdcall win32_start_routine(void *arg)
336 {
337     QemuThreadData *data = (QemuThreadData *) arg;
338     void *(*start_routine)(void *) = data->start_routine;
339     void *thread_arg = data->arg;
340 
341     qemu_thread_data = data;
342     qemu_thread_exit(start_routine(thread_arg));
343     abort();
344 }
345 
346 void qemu_thread_exit(void *arg)
347 {
348     QemuThreadData *data = qemu_thread_data;
349 
350     notifier_list_notify(&data->exit, NULL);
351     if (data->mode == QEMU_THREAD_JOINABLE) {
352         data->ret = arg;
353         EnterCriticalSection(&data->cs);
354         data->exited = true;
355         LeaveCriticalSection(&data->cs);
356     } else {
357         g_free(data);
358     }
359     _endthreadex(0);
360 }
361 
362 void *qemu_thread_join(QemuThread *thread)
363 {
364     QemuThreadData *data;
365     void *ret;
366     HANDLE handle;
367 
368     data = thread->data;
369     if (data->mode == QEMU_THREAD_DETACHED) {
370         return NULL;
371     }
372 
373     /*
374      * Because multiple copies of the QemuThread can exist via
375      * qemu_thread_get_self, we need to store a value that cannot
376      * leak there.  The simplest, non racy way is to store the TID,
377      * discard the handle that _beginthreadex gives back, and
378      * get another copy of the handle here.
379      */
380     handle = qemu_thread_get_handle(thread);
381     if (handle) {
382         WaitForSingleObject(handle, INFINITE);
383         CloseHandle(handle);
384     }
385     ret = data->ret;
386     DeleteCriticalSection(&data->cs);
387     g_free(data);
388     return ret;
389 }
390 
391 void qemu_thread_create(QemuThread *thread, const char *name,
392                        void *(*start_routine)(void *),
393                        void *arg, int mode)
394 {
395     HANDLE hThread;
396     struct QemuThreadData *data;
397 
398     data = g_malloc(sizeof *data);
399     data->start_routine = start_routine;
400     data->arg = arg;
401     data->mode = mode;
402     data->exited = false;
403     notifier_list_init(&data->exit);
404 
405     if (data->mode != QEMU_THREAD_DETACHED) {
406         InitializeCriticalSection(&data->cs);
407     }
408 
409     hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
410                                       data, 0, &thread->tid);
411     if (!hThread) {
412         error_exit(GetLastError(), __func__);
413     }
414     CloseHandle(hThread);
415     thread->data = data;
416 }
417 
418 void qemu_thread_get_self(QemuThread *thread)
419 {
420     thread->data = qemu_thread_data;
421     thread->tid = GetCurrentThreadId();
422 }
423 
424 HANDLE qemu_thread_get_handle(QemuThread *thread)
425 {
426     QemuThreadData *data;
427     HANDLE handle;
428 
429     data = thread->data;
430     if (data->mode == QEMU_THREAD_DETACHED) {
431         return NULL;
432     }
433 
434     EnterCriticalSection(&data->cs);
435     if (!data->exited) {
436         handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
437                             THREAD_SET_CONTEXT, FALSE, thread->tid);
438     } else {
439         handle = NULL;
440     }
441     LeaveCriticalSection(&data->cs);
442     return handle;
443 }
444 
445 bool qemu_thread_is_self(QemuThread *thread)
446 {
447     return GetCurrentThreadId() == thread->tid;
448 }
449