xref: /qemu/util/uri.c (revision 83ecdb18)
1 /**
2  * uri.c: set of generic URI related routines
3  *
4  * Reference: RFCs 3986, 2732 and 2373
5  *
6  * Copyright (C) 1998-2003 Daniel Veillard.  All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
21  * DANIEL VEILLARD BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
22  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  * Except as contained in this notice, the name of Daniel Veillard shall not
26  * be used in advertising or otherwise to promote the sale, use or other
27  * dealings in this Software without prior written authorization from him.
28  *
29  * daniel@veillard.com
30  *
31  **
32  *
33  * Copyright (C) 2007, 2009-2010 Red Hat, Inc.
34  *
35  * This library is free software; you can redistribute it and/or
36  * modify it under the terms of the GNU Lesser General Public
37  * License as published by the Free Software Foundation; either
38  * version 2.1 of the License, or (at your option) any later version.
39  *
40  * This library is distributed in the hope that it will be useful,
41  * but WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * Lesser General Public License for more details.
44  *
45  * You should have received a copy of the GNU Lesser General Public
46  * License along with this library. If not, see <https://www.gnu.org/licenses/>.
47  *
48  * Authors:
49  *    Richard W.M. Jones <rjones@redhat.com>
50  *
51  */
52 
53 #include "qemu/osdep.h"
54 #include "qemu/cutils.h"
55 
56 #include "qemu/uri.h"
57 
58 static void uri_clean(URI *uri);
59 
60 /*
61  * Old rule from 2396 used in legacy handling code
62  * alpha    = lowalpha | upalpha
63  */
64 #define IS_ALPHA(x) (IS_LOWALPHA(x) || IS_UPALPHA(x))
65 
66 /*
67  * lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" |
68  *            "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" |
69  *            "u" | "v" | "w" | "x" | "y" | "z"
70  */
71 
72 #define IS_LOWALPHA(x) (((x) >= 'a') && ((x) <= 'z'))
73 
74 /*
75  * upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" |
76  *           "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T" |
77  *           "U" | "V" | "W" | "X" | "Y" | "Z"
78  */
79 #define IS_UPALPHA(x) (((x) >= 'A') && ((x) <= 'Z'))
80 
81 #ifdef IS_DIGIT
82 #undef IS_DIGIT
83 #endif
84 /*
85  * digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
86  */
87 #define IS_DIGIT(x) (((x) >= '0') && ((x) <= '9'))
88 
89 /*
90  * alphanum = alpha | digit
91  */
92 
93 #define IS_ALPHANUM(x) (IS_ALPHA(x) || IS_DIGIT(x))
94 
95 /*
96  * mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"
97  */
98 
99 #define IS_MARK(x) (((x) == '-') || ((x) == '_') || ((x) == '.') ||            \
100     ((x) == '!') || ((x) == '~') || ((x) == '*') || ((x) == '\'') ||           \
101     ((x) == '(') || ((x) == ')'))
102 
103 /*
104  * unwise = "{" | "}" | "|" | "\" | "^" | "`"
105  */
106 
107 #define IS_UNWISE(p)                                                           \
108     (((*(p) == '{')) || ((*(p) == '}')) || ((*(p) == '|')) ||                  \
109      ((*(p) == '\\')) || ((*(p) == '^')) || ((*(p) == '[')) ||                 \
110      ((*(p) == ']')) || ((*(p) == '`')))
111 /*
112  * reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" | "$" | "," |
113  *            "[" | "]"
114  */
115 
116 #define IS_RESERVED(x) (((x) == ';') || ((x) == '/') || ((x) == '?') ||        \
117     ((x) == ':') || ((x) == '@') || ((x) == '&') || ((x) == '=') ||            \
118     ((x) == '+') || ((x) == '$') || ((x) == ',') || ((x) == '[') ||            \
119     ((x) == ']'))
120 
121 /*
122  * unreserved = alphanum | mark
123  */
124 
125 #define IS_UNRESERVED(x) (IS_ALPHANUM(x) || IS_MARK(x))
126 
127 /*
128  * Skip to next pointer char, handle escaped sequences
129  */
130 
131 #define NEXT(p) ((*p == '%') ? p += 3 : p++)
132 
133 /*
134  * Productions from the spec.
135  *
136  *    authority     = server | reg_name
137  *    reg_name      = 1*( unreserved | escaped | "$" | "," |
138  *                        ";" | ":" | "@" | "&" | "=" | "+" )
139  *
140  * path          = [ abs_path | opaque_part ]
141  */
142 
143 /************************************************************************
144  *                                                                      *
145  *                         RFC 3986 parser                              *
146  *                                                                      *
147  ************************************************************************/
148 
149 #define ISA_DIGIT(p) ((*(p) >= '0') && (*(p) <= '9'))
150 #define ISA_ALPHA(p) (((*(p) >= 'a') && (*(p) <= 'z')) ||                      \
151                       ((*(p) >= 'A') && (*(p) <= 'Z')))
152 #define ISA_HEXDIG(p)                                                          \
153     (ISA_DIGIT(p) || ((*(p) >= 'a') && (*(p) <= 'f')) ||                       \
154      ((*(p) >= 'A') && (*(p) <= 'F')))
155 
156 /*
157  *    sub-delims    = "!" / "$" / "&" / "'" / "(" / ")"
158  *                     / "*" / "+" / "," / ";" / "="
159  */
160 #define ISA_SUB_DELIM(p)                                                       \
161     (((*(p) == '!')) || ((*(p) == '$')) || ((*(p) == '&')) ||                  \
162      ((*(p) == '(')) || ((*(p) == ')')) || ((*(p) == '*')) ||                  \
163      ((*(p) == '+')) || ((*(p) == ',')) || ((*(p) == ';')) ||                  \
164      ((*(p) == '=')) || ((*(p) == '\'')))
165 
166 /*
167  *    gen-delims    = ":" / "/" / "?" / "#" / "[" / "]" / "@"
168  */
169 #define ISA_GEN_DELIM(p)                                                       \
170     (((*(p) == ':')) || ((*(p) == '/')) || ((*(p) == '?')) ||                  \
171      ((*(p) == '#')) || ((*(p) == '[')) || ((*(p) == ']')) ||                  \
172      ((*(p) == '@')))
173 
174 /*
175  *    reserved      = gen-delims / sub-delims
176  */
177 #define ISA_RESERVED(p) (ISA_GEN_DELIM(p) || (ISA_SUB_DELIM(p)))
178 
179 /*
180  *    unreserved    = ALPHA / DIGIT / "-" / "." / "_" / "~"
181  */
182 #define ISA_UNRESERVED(p)                                                      \
183     ((ISA_ALPHA(p)) || (ISA_DIGIT(p)) || ((*(p) == '-')) ||                    \
184      ((*(p) == '.')) || ((*(p) == '_')) || ((*(p) == '~')))
185 
186 /*
187  *    pct-encoded   = "%" HEXDIG HEXDIG
188  */
189 #define ISA_PCT_ENCODED(p)                                                     \
190     ((*(p) == '%') && (ISA_HEXDIG(p + 1)) && (ISA_HEXDIG(p + 2)))
191 
192 /*
193  *    pchar         = unreserved / pct-encoded / sub-delims / ":" / "@"
194  */
195 #define ISA_PCHAR(p)                                                           \
196     (ISA_UNRESERVED(p) || ISA_PCT_ENCODED(p) || ISA_SUB_DELIM(p) ||            \
197      ((*(p) == ':')) || ((*(p) == '@')))
198 
199 /**
200  * rfc3986_parse_scheme:
201  * @uri:  pointer to an URI structure
202  * @str:  pointer to the string to analyze
203  *
204  * Parse an URI scheme
205  *
206  * ALPHA *( ALPHA / DIGIT / "+" / "-" / "." )
207  *
208  * Returns 0 or the error code
209  */
210 static int rfc3986_parse_scheme(URI *uri, const char **str)
211 {
212     const char *cur;
213 
214     if (str == NULL) {
215         return -1;
216     }
217 
218     cur = *str;
219     if (!ISA_ALPHA(cur)) {
220         return 2;
221     }
222     cur++;
223     while (ISA_ALPHA(cur) || ISA_DIGIT(cur) || (*cur == '+') || (*cur == '-') ||
224            (*cur == '.')) {
225         cur++;
226     }
227     if (uri != NULL) {
228         g_free(uri->scheme);
229         uri->scheme = g_strndup(*str, cur - *str);
230     }
231     *str = cur;
232     return 0;
233 }
234 
235 /**
236  * rfc3986_parse_fragment:
237  * @uri:  pointer to an URI structure
238  * @str:  pointer to the string to analyze
239  *
240  * Parse the query part of an URI
241  *
242  * fragment      = *( pchar / "/" / "?" )
243  * NOTE: the strict syntax as defined by 3986 does not allow '[' and ']'
244  *       in the fragment identifier but this is used very broadly for
245  *       xpointer scheme selection, so we are allowing it here to not break
246  *       for example all the DocBook processing chains.
247  *
248  * Returns 0 or the error code
249  */
250 static int rfc3986_parse_fragment(URI *uri, const char **str)
251 {
252     const char *cur;
253 
254     if (str == NULL) {
255         return -1;
256     }
257 
258     cur = *str;
259 
260     while ((ISA_PCHAR(cur)) || (*cur == '/') || (*cur == '?') ||
261            (*cur == '[') || (*cur == ']') ||
262            ((uri != NULL) && (uri->cleanup & 1) && (IS_UNWISE(cur)))) {
263         NEXT(cur);
264     }
265     if (uri != NULL) {
266         g_free(uri->fragment);
267         if (uri->cleanup & 2) {
268             uri->fragment = g_strndup(*str, cur - *str);
269         } else {
270             uri->fragment = uri_string_unescape(*str, cur - *str, NULL);
271         }
272     }
273     *str = cur;
274     return 0;
275 }
276 
277 /**
278  * rfc3986_parse_query:
279  * @uri:  pointer to an URI structure
280  * @str:  pointer to the string to analyze
281  *
282  * Parse the query part of an URI
283  *
284  * query = *uric
285  *
286  * Returns 0 or the error code
287  */
288 static int rfc3986_parse_query(URI *uri, const char **str)
289 {
290     const char *cur;
291 
292     if (str == NULL) {
293         return -1;
294     }
295 
296     cur = *str;
297 
298     while ((ISA_PCHAR(cur)) || (*cur == '/') || (*cur == '?') ||
299            ((uri != NULL) && (uri->cleanup & 1) && (IS_UNWISE(cur)))) {
300         NEXT(cur);
301     }
302     if (uri != NULL) {
303         g_free(uri->query);
304         uri->query = g_strndup(*str, cur - *str);
305     }
306     *str = cur;
307     return 0;
308 }
309 
310 /**
311  * rfc3986_parse_port:
312  * @uri:  pointer to an URI structure
313  * @str:  the string to analyze
314  *
315  * Parse a port  part and fills in the appropriate fields
316  * of the @uri structure
317  *
318  * port          = *DIGIT
319  *
320  * Returns 0 or the error code
321  */
322 static int rfc3986_parse_port(URI *uri, const char **str)
323 {
324     const char *cur = *str;
325     int port = 0;
326 
327     if (ISA_DIGIT(cur)) {
328         while (ISA_DIGIT(cur)) {
329             port = port * 10 + (*cur - '0');
330             if (port > 65535) {
331                 return 1;
332             }
333             cur++;
334         }
335         if (uri) {
336             uri->port = port;
337         }
338         *str = cur;
339         return 0;
340     }
341     return 1;
342 }
343 
344 /**
345  * rfc3986_parse_user_info:
346  * @uri:  pointer to an URI structure
347  * @str:  the string to analyze
348  *
349  * Parse a user information part and fill in the appropriate fields
350  * of the @uri structure
351  *
352  * userinfo      = *( unreserved / pct-encoded / sub-delims / ":" )
353  *
354  * Returns 0 or the error code
355  */
356 static int rfc3986_parse_user_info(URI *uri, const char **str)
357 {
358     const char *cur;
359 
360     cur = *str;
361     while (ISA_UNRESERVED(cur) || ISA_PCT_ENCODED(cur) || ISA_SUB_DELIM(cur) ||
362            (*cur == ':')) {
363         NEXT(cur);
364     }
365     if (*cur == '@') {
366         if (uri != NULL) {
367             g_free(uri->user);
368             if (uri->cleanup & 2) {
369                 uri->user = g_strndup(*str, cur - *str);
370             } else {
371                 uri->user = uri_string_unescape(*str, cur - *str, NULL);
372             }
373         }
374         *str = cur;
375         return 0;
376     }
377     return 1;
378 }
379 
380 /**
381  * rfc3986_parse_dec_octet:
382  * @str:  the string to analyze
383  *
384  *    dec-octet     = DIGIT                 ; 0-9
385  *                  / %x31-39 DIGIT         ; 10-99
386  *                  / "1" 2DIGIT            ; 100-199
387  *                  / "2" %x30-34 DIGIT     ; 200-249
388  *                  / "25" %x30-35          ; 250-255
389  *
390  * Skip a dec-octet.
391  *
392  * Returns 0 if found and skipped, 1 otherwise
393  */
394 static int rfc3986_parse_dec_octet(const char **str)
395 {
396     const char *cur = *str;
397 
398     if (!(ISA_DIGIT(cur))) {
399         return 1;
400     }
401     if (!ISA_DIGIT(cur + 1)) {
402         cur++;
403     } else if ((*cur != '0') && (ISA_DIGIT(cur + 1)) && (!ISA_DIGIT(cur + 2))) {
404         cur += 2;
405     } else if ((*cur == '1') && (ISA_DIGIT(cur + 1)) && (ISA_DIGIT(cur + 2))) {
406         cur += 3;
407     } else if ((*cur == '2') && (*(cur + 1) >= '0') && (*(cur + 1) <= '4') &&
408              (ISA_DIGIT(cur + 2))) {
409         cur += 3;
410     } else if ((*cur == '2') && (*(cur + 1) == '5') && (*(cur + 2) >= '0') &&
411              (*(cur + 1) <= '5')) {
412         cur += 3;
413     } else {
414         return 1;
415     }
416     *str = cur;
417     return 0;
418 }
419 /**
420  * rfc3986_parse_host:
421  * @uri:  pointer to an URI structure
422  * @str:  the string to analyze
423  *
424  * Parse an host part and fills in the appropriate fields
425  * of the @uri structure
426  *
427  * host          = IP-literal / IPv4address / reg-name
428  * IP-literal    = "[" ( IPv6address / IPvFuture  ) "]"
429  * IPv4address   = dec-octet "." dec-octet "." dec-octet "." dec-octet
430  * reg-name      = *( unreserved / pct-encoded / sub-delims )
431  *
432  * Returns 0 or the error code
433  */
434 static int rfc3986_parse_host(URI *uri, const char **str)
435 {
436     const char *cur = *str;
437     const char *host;
438 
439     host = cur;
440     /*
441      * IPv6 and future addressing scheme are enclosed between brackets
442      */
443     if (*cur == '[') {
444         cur++;
445         while ((*cur != ']') && (*cur != 0)) {
446             cur++;
447         }
448         if (*cur != ']') {
449             return 1;
450         }
451         cur++;
452         goto found;
453     }
454     /*
455      * try to parse an IPv4
456      */
457     if (ISA_DIGIT(cur)) {
458         if (rfc3986_parse_dec_octet(&cur) != 0) {
459             goto not_ipv4;
460         }
461         if (*cur != '.') {
462             goto not_ipv4;
463         }
464         cur++;
465         if (rfc3986_parse_dec_octet(&cur) != 0) {
466             goto not_ipv4;
467         }
468         if (*cur != '.') {
469             goto not_ipv4;
470         }
471         if (rfc3986_parse_dec_octet(&cur) != 0) {
472             goto not_ipv4;
473         }
474         if (*cur != '.') {
475             goto not_ipv4;
476         }
477         if (rfc3986_parse_dec_octet(&cur) != 0) {
478             goto not_ipv4;
479         }
480         goto found;
481     not_ipv4:
482         cur = *str;
483     }
484     /*
485      * then this should be a hostname which can be empty
486      */
487     while (ISA_UNRESERVED(cur) || ISA_PCT_ENCODED(cur) || ISA_SUB_DELIM(cur)) {
488         NEXT(cur);
489     }
490 found:
491     if (uri != NULL) {
492         g_free(uri->authority);
493         uri->authority = NULL;
494         g_free(uri->server);
495         if (cur != host) {
496             if (uri->cleanup & 2) {
497                 uri->server = g_strndup(host, cur - host);
498             } else {
499                 uri->server = uri_string_unescape(host, cur - host, NULL);
500             }
501         } else {
502             uri->server = NULL;
503         }
504     }
505     *str = cur;
506     return 0;
507 }
508 
509 /**
510  * rfc3986_parse_authority:
511  * @uri:  pointer to an URI structure
512  * @str:  the string to analyze
513  *
514  * Parse an authority part and fills in the appropriate fields
515  * of the @uri structure
516  *
517  * authority     = [ userinfo "@" ] host [ ":" port ]
518  *
519  * Returns 0 or the error code
520  */
521 static int rfc3986_parse_authority(URI *uri, const char **str)
522 {
523     const char *cur;
524     int ret;
525 
526     cur = *str;
527     /*
528      * try to parse a userinfo and check for the trailing @
529      */
530     ret = rfc3986_parse_user_info(uri, &cur);
531     if ((ret != 0) || (*cur != '@')) {
532         cur = *str;
533     } else {
534         cur++;
535     }
536     ret = rfc3986_parse_host(uri, &cur);
537     if (ret != 0) {
538         return ret;
539     }
540     if (*cur == ':') {
541         cur++;
542         ret = rfc3986_parse_port(uri, &cur);
543         if (ret != 0) {
544             return ret;
545         }
546     }
547     *str = cur;
548     return 0;
549 }
550 
551 /**
552  * rfc3986_parse_segment:
553  * @str:  the string to analyze
554  * @forbid: an optional forbidden character
555  * @empty: allow an empty segment
556  *
557  * Parse a segment and fills in the appropriate fields
558  * of the @uri structure
559  *
560  * segment       = *pchar
561  * segment-nz    = 1*pchar
562  * segment-nz-nc = 1*( unreserved / pct-encoded / sub-delims / "@" )
563  *               ; non-zero-length segment without any colon ":"
564  *
565  * Returns 0 or the error code
566  */
567 static int rfc3986_parse_segment(const char **str, char forbid, int empty)
568 {
569     const char *cur;
570 
571     cur = *str;
572     if (!ISA_PCHAR(cur)) {
573         if (empty) {
574             return 0;
575         }
576         return 1;
577     }
578     while (ISA_PCHAR(cur) && (*cur != forbid)) {
579         NEXT(cur);
580     }
581     *str = cur;
582     return 0;
583 }
584 
585 /**
586  * rfc3986_parse_path_ab_empty:
587  * @uri:  pointer to an URI structure
588  * @str:  the string to analyze
589  *
590  * Parse an path absolute or empty and fills in the appropriate fields
591  * of the @uri structure
592  *
593  * path-abempty  = *( "/" segment )
594  *
595  * Returns 0 or the error code
596  */
597 static int rfc3986_parse_path_ab_empty(URI *uri, const char **str)
598 {
599     const char *cur;
600     int ret;
601 
602     cur = *str;
603 
604     while (*cur == '/') {
605         cur++;
606         ret = rfc3986_parse_segment(&cur, 0, 1);
607         if (ret != 0) {
608             return ret;
609         }
610     }
611     if (uri != NULL) {
612         g_free(uri->path);
613         if (*str != cur) {
614             if (uri->cleanup & 2) {
615                 uri->path = g_strndup(*str, cur - *str);
616             } else {
617                 uri->path = uri_string_unescape(*str, cur - *str, NULL);
618             }
619         } else {
620             uri->path = NULL;
621         }
622     }
623     *str = cur;
624     return 0;
625 }
626 
627 /**
628  * rfc3986_parse_path_absolute:
629  * @uri:  pointer to an URI structure
630  * @str:  the string to analyze
631  *
632  * Parse an path absolute and fills in the appropriate fields
633  * of the @uri structure
634  *
635  * path-absolute = "/" [ segment-nz *( "/" segment ) ]
636  *
637  * Returns 0 or the error code
638  */
639 static int rfc3986_parse_path_absolute(URI *uri, const char **str)
640 {
641     const char *cur;
642     int ret;
643 
644     cur = *str;
645 
646     if (*cur != '/') {
647         return 1;
648     }
649     cur++;
650     ret = rfc3986_parse_segment(&cur, 0, 0);
651     if (ret == 0) {
652         while (*cur == '/') {
653             cur++;
654             ret = rfc3986_parse_segment(&cur, 0, 1);
655             if (ret != 0) {
656                 return ret;
657             }
658         }
659     }
660     if (uri != NULL) {
661         g_free(uri->path);
662         if (cur != *str) {
663             if (uri->cleanup & 2) {
664                 uri->path = g_strndup(*str, cur - *str);
665             } else {
666                 uri->path = uri_string_unescape(*str, cur - *str, NULL);
667             }
668         } else {
669             uri->path = NULL;
670         }
671     }
672     *str = cur;
673     return 0;
674 }
675 
676 /**
677  * rfc3986_parse_path_rootless:
678  * @uri:  pointer to an URI structure
679  * @str:  the string to analyze
680  *
681  * Parse an path without root and fills in the appropriate fields
682  * of the @uri structure
683  *
684  * path-rootless = segment-nz *( "/" segment )
685  *
686  * Returns 0 or the error code
687  */
688 static int rfc3986_parse_path_rootless(URI *uri, const char **str)
689 {
690     const char *cur;
691     int ret;
692 
693     cur = *str;
694 
695     ret = rfc3986_parse_segment(&cur, 0, 0);
696     if (ret != 0) {
697         return ret;
698     }
699     while (*cur == '/') {
700         cur++;
701         ret = rfc3986_parse_segment(&cur, 0, 1);
702         if (ret != 0) {
703             return ret;
704         }
705     }
706     if (uri != NULL) {
707         g_free(uri->path);
708         if (cur != *str) {
709             if (uri->cleanup & 2) {
710                 uri->path = g_strndup(*str, cur - *str);
711             } else {
712                 uri->path = uri_string_unescape(*str, cur - *str, NULL);
713             }
714         } else {
715             uri->path = NULL;
716         }
717     }
718     *str = cur;
719     return 0;
720 }
721 
722 /**
723  * rfc3986_parse_path_no_scheme:
724  * @uri:  pointer to an URI structure
725  * @str:  the string to analyze
726  *
727  * Parse an path which is not a scheme and fills in the appropriate fields
728  * of the @uri structure
729  *
730  * path-noscheme = segment-nz-nc *( "/" segment )
731  *
732  * Returns 0 or the error code
733  */
734 static int rfc3986_parse_path_no_scheme(URI *uri, const char **str)
735 {
736     const char *cur;
737     int ret;
738 
739     cur = *str;
740 
741     ret = rfc3986_parse_segment(&cur, ':', 0);
742     if (ret != 0) {
743         return ret;
744     }
745     while (*cur == '/') {
746         cur++;
747         ret = rfc3986_parse_segment(&cur, 0, 1);
748         if (ret != 0) {
749             return ret;
750         }
751     }
752     if (uri != NULL) {
753         g_free(uri->path);
754         if (cur != *str) {
755             if (uri->cleanup & 2) {
756                 uri->path = g_strndup(*str, cur - *str);
757             } else {
758                 uri->path = uri_string_unescape(*str, cur - *str, NULL);
759             }
760         } else {
761             uri->path = NULL;
762         }
763     }
764     *str = cur;
765     return 0;
766 }
767 
768 /**
769  * rfc3986_parse_hier_part:
770  * @uri:  pointer to an URI structure
771  * @str:  the string to analyze
772  *
773  * Parse an hierarchical part and fills in the appropriate fields
774  * of the @uri structure
775  *
776  * hier-part     = "//" authority path-abempty
777  *                / path-absolute
778  *                / path-rootless
779  *                / path-empty
780  *
781  * Returns 0 or the error code
782  */
783 static int rfc3986_parse_hier_part(URI *uri, const char **str)
784 {
785     const char *cur;
786     int ret;
787 
788     cur = *str;
789 
790     if ((*cur == '/') && (*(cur + 1) == '/')) {
791         cur += 2;
792         ret = rfc3986_parse_authority(uri, &cur);
793         if (ret != 0) {
794             return ret;
795         }
796         ret = rfc3986_parse_path_ab_empty(uri, &cur);
797         if (ret != 0) {
798             return ret;
799         }
800         *str = cur;
801         return 0;
802     } else if (*cur == '/') {
803         ret = rfc3986_parse_path_absolute(uri, &cur);
804         if (ret != 0) {
805             return ret;
806         }
807     } else if (ISA_PCHAR(cur)) {
808         ret = rfc3986_parse_path_rootless(uri, &cur);
809         if (ret != 0) {
810             return ret;
811         }
812     } else {
813         /* path-empty is effectively empty */
814         if (uri != NULL) {
815             g_free(uri->path);
816             uri->path = NULL;
817         }
818     }
819     *str = cur;
820     return 0;
821 }
822 
823 /**
824  * rfc3986_parse_relative_ref:
825  * @uri:  pointer to an URI structure
826  * @str:  the string to analyze
827  *
828  * Parse an URI string and fills in the appropriate fields
829  * of the @uri structure
830  *
831  * relative-ref  = relative-part [ "?" query ] [ "#" fragment ]
832  * relative-part = "//" authority path-abempty
833  *               / path-absolute
834  *               / path-noscheme
835  *               / path-empty
836  *
837  * Returns 0 or the error code
838  */
839 static int rfc3986_parse_relative_ref(URI *uri, const char *str)
840 {
841     int ret;
842 
843     if ((*str == '/') && (*(str + 1) == '/')) {
844         str += 2;
845         ret = rfc3986_parse_authority(uri, &str);
846         if (ret != 0) {
847             return ret;
848         }
849         ret = rfc3986_parse_path_ab_empty(uri, &str);
850         if (ret != 0) {
851             return ret;
852         }
853     } else if (*str == '/') {
854         ret = rfc3986_parse_path_absolute(uri, &str);
855         if (ret != 0) {
856             return ret;
857         }
858     } else if (ISA_PCHAR(str)) {
859         ret = rfc3986_parse_path_no_scheme(uri, &str);
860         if (ret != 0) {
861             return ret;
862         }
863     } else {
864         /* path-empty is effectively empty */
865         if (uri != NULL) {
866             g_free(uri->path);
867             uri->path = NULL;
868         }
869     }
870 
871     if (*str == '?') {
872         str++;
873         ret = rfc3986_parse_query(uri, &str);
874         if (ret != 0) {
875             return ret;
876         }
877     }
878     if (*str == '#') {
879         str++;
880         ret = rfc3986_parse_fragment(uri, &str);
881         if (ret != 0) {
882             return ret;
883         }
884     }
885     if (*str != 0) {
886         uri_clean(uri);
887         return 1;
888     }
889     return 0;
890 }
891 
892 /**
893  * rfc3986_parse:
894  * @uri:  pointer to an URI structure
895  * @str:  the string to analyze
896  *
897  * Parse an URI string and fills in the appropriate fields
898  * of the @uri structure
899  *
900  * scheme ":" hier-part [ "?" query ] [ "#" fragment ]
901  *
902  * Returns 0 or the error code
903  */
904 static int rfc3986_parse(URI *uri, const char *str)
905 {
906     int ret;
907 
908     ret = rfc3986_parse_scheme(uri, &str);
909     if (ret != 0) {
910         return ret;
911     }
912     if (*str != ':') {
913         return 1;
914     }
915     str++;
916     ret = rfc3986_parse_hier_part(uri, &str);
917     if (ret != 0) {
918         return ret;
919     }
920     if (*str == '?') {
921         str++;
922         ret = rfc3986_parse_query(uri, &str);
923         if (ret != 0) {
924             return ret;
925         }
926     }
927     if (*str == '#') {
928         str++;
929         ret = rfc3986_parse_fragment(uri, &str);
930         if (ret != 0) {
931             return ret;
932         }
933     }
934     if (*str != 0) {
935         uri_clean(uri);
936         return 1;
937     }
938     return 0;
939 }
940 
941 /**
942  * rfc3986_parse_uri_reference:
943  * @uri:  pointer to an URI structure
944  * @str:  the string to analyze
945  *
946  * Parse an URI reference string and fills in the appropriate fields
947  * of the @uri structure
948  *
949  * URI-reference = URI / relative-ref
950  *
951  * Returns 0 or the error code
952  */
953 static int rfc3986_parse_uri_reference(URI *uri, const char *str)
954 {
955     int ret;
956 
957     if (str == NULL) {
958         return -1;
959     }
960     uri_clean(uri);
961 
962     /*
963      * Try first to parse absolute refs, then fallback to relative if
964      * it fails.
965      */
966     ret = rfc3986_parse(uri, str);
967     if (ret != 0) {
968         uri_clean(uri);
969         ret = rfc3986_parse_relative_ref(uri, str);
970         if (ret != 0) {
971             uri_clean(uri);
972             return ret;
973         }
974     }
975     return 0;
976 }
977 
978 /**
979  * uri_parse:
980  * @str:  the URI string to analyze
981  *
982  * Parse an URI based on RFC 3986
983  *
984  * URI-reference = [ absoluteURI | relativeURI ] [ "#" fragment ]
985  *
986  * Returns a newly built URI or NULL in case of error
987  */
988 URI *uri_parse(const char *str)
989 {
990     URI *uri;
991     int ret;
992 
993     if (str == NULL) {
994         return NULL;
995     }
996     uri = uri_new();
997     ret = rfc3986_parse_uri_reference(uri, str);
998     if (ret) {
999         uri_free(uri);
1000         return NULL;
1001     }
1002     return uri;
1003 }
1004 
1005 /**
1006  * uri_parse_into:
1007  * @uri:  pointer to an URI structure
1008  * @str:  the string to analyze
1009  *
1010  * Parse an URI reference string based on RFC 3986 and fills in the
1011  * appropriate fields of the @uri structure
1012  *
1013  * URI-reference = URI / relative-ref
1014  *
1015  * Returns 0 or the error code
1016  */
1017 int uri_parse_into(URI *uri, const char *str)
1018 {
1019     return rfc3986_parse_uri_reference(uri, str);
1020 }
1021 
1022 /**
1023  * uri_parse_raw:
1024  * @str:  the URI string to analyze
1025  * @raw:  if 1 unescaping of URI pieces are disabled
1026  *
1027  * Parse an URI but allows to keep intact the original fragments.
1028  *
1029  * URI-reference = URI / relative-ref
1030  *
1031  * Returns a newly built URI or NULL in case of error
1032  */
1033 URI *uri_parse_raw(const char *str, int raw)
1034 {
1035     URI *uri;
1036     int ret;
1037 
1038     if (str == NULL) {
1039         return NULL;
1040     }
1041     uri = uri_new();
1042     if (raw) {
1043         uri->cleanup |= 2;
1044     }
1045     ret = uri_parse_into(uri, str);
1046     if (ret) {
1047         uri_free(uri);
1048         return NULL;
1049     }
1050     return uri;
1051 }
1052 
1053 /************************************************************************
1054  *                                                                      *
1055  *                    Generic URI structure functions                   *
1056  *                                                                      *
1057  ************************************************************************/
1058 
1059 /**
1060  * uri_new:
1061  *
1062  * Simply creates an empty URI
1063  *
1064  * Returns the new structure or NULL in case of error
1065  */
1066 URI *uri_new(void)
1067 {
1068     return g_new0(URI, 1);
1069 }
1070 
1071 /**
1072  * realloc2n:
1073  *
1074  * Function to handle properly a reallocation when saving an URI
1075  * Also imposes some limit on the length of an URI string output
1076  */
1077 static char *realloc2n(char *ret, int *max)
1078 {
1079     char *temp;
1080     int tmp;
1081 
1082     tmp = *max * 2;
1083     temp = g_realloc(ret, (tmp + 1));
1084     *max = tmp;
1085     return temp;
1086 }
1087 
1088 /**
1089  * uri_to_string:
1090  * @uri:  pointer to an URI
1091  *
1092  * Save the URI as an escaped string
1093  *
1094  * Returns a new string (to be deallocated by caller)
1095  */
1096 char *uri_to_string(URI *uri)
1097 {
1098     char *ret = NULL;
1099     char *temp;
1100     const char *p;
1101     int len;
1102     int max;
1103 
1104     if (uri == NULL) {
1105         return NULL;
1106     }
1107 
1108     max = 80;
1109     ret = g_malloc(max + 1);
1110     len = 0;
1111 
1112     if (uri->scheme != NULL) {
1113         p = uri->scheme;
1114         while (*p != 0) {
1115             if (len >= max) {
1116                 temp = realloc2n(ret, &max);
1117                 ret = temp;
1118             }
1119             ret[len++] = *p++;
1120         }
1121         if (len >= max) {
1122             temp = realloc2n(ret, &max);
1123             ret = temp;
1124         }
1125         ret[len++] = ':';
1126     }
1127     if (uri->opaque != NULL) {
1128         p = uri->opaque;
1129         while (*p != 0) {
1130             if (len + 3 >= max) {
1131                 temp = realloc2n(ret, &max);
1132                 ret = temp;
1133             }
1134             if (IS_RESERVED(*(p)) || IS_UNRESERVED(*(p))) {
1135                 ret[len++] = *p++;
1136             } else {
1137                 int val = *(unsigned char *)p++;
1138                 int hi = val / 0x10, lo = val % 0x10;
1139                 ret[len++] = '%';
1140                 ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
1141                 ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
1142             }
1143         }
1144     } else {
1145         if (uri->server != NULL) {
1146             if (len + 3 >= max) {
1147                 temp = realloc2n(ret, &max);
1148                 ret = temp;
1149             }
1150             ret[len++] = '/';
1151             ret[len++] = '/';
1152             if (uri->user != NULL) {
1153                 p = uri->user;
1154                 while (*p != 0) {
1155                     if (len + 3 >= max) {
1156                         temp = realloc2n(ret, &max);
1157                         ret = temp;
1158                     }
1159                     if ((IS_UNRESERVED(*(p))) || ((*(p) == ';')) ||
1160                         ((*(p) == ':')) || ((*(p) == '&')) || ((*(p) == '=')) ||
1161                         ((*(p) == '+')) || ((*(p) == '$')) || ((*(p) == ','))) {
1162                         ret[len++] = *p++;
1163                     } else {
1164                         int val = *(unsigned char *)p++;
1165                         int hi = val / 0x10, lo = val % 0x10;
1166                         ret[len++] = '%';
1167                         ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
1168                         ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
1169                     }
1170                 }
1171                 if (len + 3 >= max) {
1172                     temp = realloc2n(ret, &max);
1173                     ret = temp;
1174                 }
1175                 ret[len++] = '@';
1176             }
1177             p = uri->server;
1178             while (*p != 0) {
1179                 if (len >= max) {
1180                     temp = realloc2n(ret, &max);
1181                     ret = temp;
1182                 }
1183                 ret[len++] = *p++;
1184             }
1185             if (uri->port > 0) {
1186                 if (len + 10 >= max) {
1187                     temp = realloc2n(ret, &max);
1188                     ret = temp;
1189                 }
1190                 len += snprintf(&ret[len], max - len, ":%d", uri->port);
1191             }
1192         } else if (uri->authority != NULL) {
1193             if (len + 3 >= max) {
1194                 temp = realloc2n(ret, &max);
1195                 ret = temp;
1196             }
1197             ret[len++] = '/';
1198             ret[len++] = '/';
1199             p = uri->authority;
1200             while (*p != 0) {
1201                 if (len + 3 >= max) {
1202                     temp = realloc2n(ret, &max);
1203                     ret = temp;
1204                 }
1205                 if ((IS_UNRESERVED(*(p))) || ((*(p) == '$')) ||
1206                     ((*(p) == ',')) || ((*(p) == ';')) || ((*(p) == ':')) ||
1207                     ((*(p) == '@')) || ((*(p) == '&')) || ((*(p) == '=')) ||
1208                     ((*(p) == '+'))) {
1209                     ret[len++] = *p++;
1210                 } else {
1211                     int val = *(unsigned char *)p++;
1212                     int hi = val / 0x10, lo = val % 0x10;
1213                     ret[len++] = '%';
1214                     ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
1215                     ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
1216                 }
1217             }
1218         } else if (uri->scheme != NULL) {
1219             if (len + 3 >= max) {
1220                 temp = realloc2n(ret, &max);
1221                 ret = temp;
1222             }
1223             ret[len++] = '/';
1224             ret[len++] = '/';
1225         }
1226         if (uri->path != NULL) {
1227             p = uri->path;
1228             /*
1229              * the colon in file:///d: should not be escaped or
1230              * Windows accesses fail later.
1231              */
1232             if ((uri->scheme != NULL) && (p[0] == '/') &&
1233                 (((p[1] >= 'a') && (p[1] <= 'z')) ||
1234                  ((p[1] >= 'A') && (p[1] <= 'Z'))) &&
1235                 (p[2] == ':') && (!strcmp(uri->scheme, "file"))) {
1236                 if (len + 3 >= max) {
1237                     temp = realloc2n(ret, &max);
1238                     ret = temp;
1239                 }
1240                 ret[len++] = *p++;
1241                 ret[len++] = *p++;
1242                 ret[len++] = *p++;
1243             }
1244             while (*p != 0) {
1245                 if (len + 3 >= max) {
1246                     temp = realloc2n(ret, &max);
1247                     ret = temp;
1248                 }
1249                 if ((IS_UNRESERVED(*(p))) || ((*(p) == '/')) ||
1250                     ((*(p) == ';')) || ((*(p) == '@')) || ((*(p) == '&')) ||
1251                     ((*(p) == '=')) || ((*(p) == '+')) || ((*(p) == '$')) ||
1252                     ((*(p) == ','))) {
1253                     ret[len++] = *p++;
1254                 } else {
1255                     int val = *(unsigned char *)p++;
1256                     int hi = val / 0x10, lo = val % 0x10;
1257                     ret[len++] = '%';
1258                     ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
1259                     ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
1260                 }
1261             }
1262         }
1263         if (uri->query != NULL) {
1264             if (len + 1 >= max) {
1265                 temp = realloc2n(ret, &max);
1266                 ret = temp;
1267             }
1268             ret[len++] = '?';
1269             p = uri->query;
1270             while (*p != 0) {
1271                 if (len + 1 >= max) {
1272                     temp = realloc2n(ret, &max);
1273                     ret = temp;
1274                 }
1275                 ret[len++] = *p++;
1276             }
1277         }
1278     }
1279     if (uri->fragment != NULL) {
1280         if (len + 3 >= max) {
1281             temp = realloc2n(ret, &max);
1282             ret = temp;
1283         }
1284         ret[len++] = '#';
1285         p = uri->fragment;
1286         while (*p != 0) {
1287             if (len + 3 >= max) {
1288                 temp = realloc2n(ret, &max);
1289                 ret = temp;
1290             }
1291             if ((IS_UNRESERVED(*(p))) || (IS_RESERVED(*(p)))) {
1292                 ret[len++] = *p++;
1293             } else {
1294                 int val = *(unsigned char *)p++;
1295                 int hi = val / 0x10, lo = val % 0x10;
1296                 ret[len++] = '%';
1297                 ret[len++] = hi + (hi > 9 ? 'A' - 10 : '0');
1298                 ret[len++] = lo + (lo > 9 ? 'A' - 10 : '0');
1299             }
1300         }
1301     }
1302     if (len >= max) {
1303         temp = realloc2n(ret, &max);
1304         ret = temp;
1305     }
1306     ret[len] = 0;
1307     return ret;
1308 }
1309 
1310 /**
1311  * uri_clean:
1312  * @uri:  pointer to an URI
1313  *
1314  * Make sure the URI struct is free of content
1315  */
1316 static void uri_clean(URI *uri)
1317 {
1318     if (uri == NULL) {
1319         return;
1320     }
1321 
1322     g_free(uri->scheme);
1323     uri->scheme = NULL;
1324     g_free(uri->server);
1325     uri->server = NULL;
1326     g_free(uri->user);
1327     uri->user = NULL;
1328     g_free(uri->path);
1329     uri->path = NULL;
1330     g_free(uri->fragment);
1331     uri->fragment = NULL;
1332     g_free(uri->opaque);
1333     uri->opaque = NULL;
1334     g_free(uri->authority);
1335     uri->authority = NULL;
1336     g_free(uri->query);
1337     uri->query = NULL;
1338 }
1339 
1340 /**
1341  * uri_free:
1342  * @uri:  pointer to an URI, NULL is ignored
1343  *
1344  * Free up the URI struct
1345  */
1346 void uri_free(URI *uri)
1347 {
1348     uri_clean(uri);
1349     g_free(uri);
1350 }
1351 
1352 /************************************************************************
1353  *                                                                      *
1354  *                           Helper functions                           *
1355  *                                                                      *
1356  ************************************************************************/
1357 
1358 /**
1359  * normalize_uri_path:
1360  * @path:  pointer to the path string
1361  *
1362  * Applies the 5 normalization steps to a path string--that is, RFC 2396
1363  * Section 5.2, steps 6.c through 6.g.
1364  *
1365  * Normalization occurs directly on the string, no new allocation is done
1366  *
1367  * Returns 0 or an error code
1368  */
1369 static int normalize_uri_path(char *path)
1370 {
1371     char *cur, *out;
1372 
1373     if (path == NULL) {
1374         return -1;
1375     }
1376 
1377     /* Skip all initial "/" chars.  We want to get to the beginning of the
1378      * first non-empty segment.
1379      */
1380     cur = path;
1381     while (cur[0] == '/') {
1382         ++cur;
1383     }
1384     if (cur[0] == '\0') {
1385         return 0;
1386     }
1387 
1388     /* Keep everything we've seen so far.  */
1389     out = cur;
1390 
1391     /*
1392      * Analyze each segment in sequence for cases (c) and (d).
1393      */
1394     while (cur[0] != '\0') {
1395         /*
1396          * c) All occurrences of "./", where "." is a complete path segment,
1397          *    are removed from the buffer string.
1398          */
1399         if ((cur[0] == '.') && (cur[1] == '/')) {
1400             cur += 2;
1401             /* '//' normalization should be done at this point too */
1402             while (cur[0] == '/') {
1403                 cur++;
1404             }
1405             continue;
1406         }
1407 
1408         /*
1409          * d) If the buffer string ends with "." as a complete path segment,
1410          *    that "." is removed.
1411          */
1412         if ((cur[0] == '.') && (cur[1] == '\0')) {
1413             break;
1414         }
1415 
1416         /* Otherwise keep the segment.  */
1417         while (cur[0] != '/') {
1418             if (cur[0] == '\0') {
1419                 goto done_cd;
1420             }
1421             (out++)[0] = (cur++)[0];
1422         }
1423         /* nomalize // */
1424         while ((cur[0] == '/') && (cur[1] == '/')) {
1425             cur++;
1426         }
1427 
1428         (out++)[0] = (cur++)[0];
1429     }
1430 done_cd:
1431     out[0] = '\0';
1432 
1433     /* Reset to the beginning of the first segment for the next sequence.  */
1434     cur = path;
1435     while (cur[0] == '/') {
1436         ++cur;
1437     }
1438     if (cur[0] == '\0') {
1439         return 0;
1440     }
1441 
1442     /*
1443      * Analyze each segment in sequence for cases (e) and (f).
1444      *
1445      * e) All occurrences of "<segment>/../", where <segment> is a
1446      *    complete path segment not equal to "..", are removed from the
1447      *    buffer string.  Removal of these path segments is performed
1448      *    iteratively, removing the leftmost matching pattern on each
1449      *    iteration, until no matching pattern remains.
1450      *
1451      * f) If the buffer string ends with "<segment>/..", where <segment>
1452      *    is a complete path segment not equal to "..", that
1453      *    "<segment>/.." is removed.
1454      *
1455      * To satisfy the "iterative" clause in (e), we need to collapse the
1456      * string every time we find something that needs to be removed.  Thus,
1457      * we don't need to keep two pointers into the string: we only need a
1458      * "current position" pointer.
1459      */
1460     while (1) {
1461         char *segp, *tmp;
1462 
1463         /* At the beginning of each iteration of this loop, "cur" points to
1464          * the first character of the segment we want to examine.
1465          */
1466 
1467         /* Find the end of the current segment.  */
1468         segp = cur;
1469         while ((segp[0] != '/') && (segp[0] != '\0')) {
1470             ++segp;
1471         }
1472 
1473         /* If this is the last segment, we're done (we need at least two
1474          * segments to meet the criteria for the (e) and (f) cases).
1475          */
1476         if (segp[0] == '\0') {
1477             break;
1478         }
1479 
1480         /* If the first segment is "..", or if the next segment _isn't_ "..",
1481          * keep this segment and try the next one.
1482          */
1483         ++segp;
1484         if (((cur[0] == '.') && (cur[1] == '.') && (segp == cur + 3)) ||
1485             ((segp[0] != '.') || (segp[1] != '.') ||
1486              ((segp[2] != '/') && (segp[2] != '\0')))) {
1487             cur = segp;
1488             continue;
1489         }
1490 
1491         /* If we get here, remove this segment and the next one and back up
1492          * to the previous segment (if there is one), to implement the
1493          * "iteratively" clause.  It's pretty much impossible to back up
1494          * while maintaining two pointers into the buffer, so just compact
1495          * the whole buffer now.
1496          */
1497 
1498         /* If this is the end of the buffer, we're done.  */
1499         if (segp[2] == '\0') {
1500             cur[0] = '\0';
1501             break;
1502         }
1503         /* Valgrind complained, strcpy(cur, segp + 3); */
1504         /* string will overlap, do not use strcpy */
1505         tmp = cur;
1506         segp += 3;
1507         while ((*tmp++ = *segp++) != 0) {
1508             /* No further work */
1509         }
1510 
1511         /* If there are no previous segments, then keep going from here.  */
1512         segp = cur;
1513         while ((segp > path) && ((--segp)[0] == '/')) {
1514             /* No further work */
1515         }
1516         if (segp == path) {
1517             continue;
1518         }
1519 
1520         /* "segp" is pointing to the end of a previous segment; find it's
1521          * start.  We need to back up to the previous segment and start
1522          * over with that to handle things like "foo/bar/../..".  If we
1523          * don't do this, then on the first pass we'll remove the "bar/..",
1524          * but be pointing at the second ".." so we won't realize we can also
1525          * remove the "foo/..".
1526          */
1527         cur = segp;
1528         while ((cur > path) && (cur[-1] != '/')) {
1529             --cur;
1530         }
1531     }
1532     out[0] = '\0';
1533 
1534     /*
1535      * g) If the resulting buffer string still begins with one or more
1536      *    complete path segments of "..", then the reference is
1537      *    considered to be in error. Implementations may handle this
1538      *    error by retaining these components in the resolved path (i.e.,
1539      *    treating them as part of the final URI), by removing them from
1540      *    the resolved path (i.e., discarding relative levels above the
1541      *    root), or by avoiding traversal of the reference.
1542      *
1543      * We discard them from the final path.
1544      */
1545     if (path[0] == '/') {
1546         cur = path;
1547         while ((cur[0] == '/') && (cur[1] == '.') && (cur[2] == '.') &&
1548                ((cur[3] == '/') || (cur[3] == '\0'))) {
1549             cur += 3;
1550         }
1551 
1552         if (cur != path) {
1553             out = path;
1554             while (cur[0] != '\0') {
1555                 (out++)[0] = (cur++)[0];
1556             }
1557             out[0] = 0;
1558         }
1559     }
1560 
1561     return 0;
1562 }
1563 
1564 static int is_hex(char c)
1565 {
1566     if (((c >= '0') && (c <= '9')) || ((c >= 'a') && (c <= 'f')) ||
1567         ((c >= 'A') && (c <= 'F'))) {
1568         return 1;
1569     }
1570     return 0;
1571 }
1572 
1573 /**
1574  * uri_string_unescape:
1575  * @str:  the string to unescape
1576  * @len:   the length in bytes to unescape (or <= 0 to indicate full string)
1577  * @target:  optional destination buffer
1578  *
1579  * Unescaping routine, but does not check that the string is an URI. The
1580  * output is a direct unsigned char translation of %XX values (no encoding)
1581  * Note that the length of the result can only be smaller or same size as
1582  * the input string.
1583  *
1584  * Returns a copy of the string, but unescaped, will return NULL only in case
1585  * of error
1586  */
1587 char *uri_string_unescape(const char *str, int len, char *target)
1588 {
1589     char *ret, *out;
1590     const char *in;
1591 
1592     if (str == NULL) {
1593         return NULL;
1594     }
1595     if (len <= 0) {
1596         len = strlen(str);
1597     }
1598     if (len < 0) {
1599         return NULL;
1600     }
1601 
1602     if (target == NULL) {
1603         ret = g_malloc(len + 1);
1604     } else {
1605         ret = target;
1606     }
1607     in = str;
1608     out = ret;
1609     while (len > 0) {
1610         if ((len > 2) && (*in == '%') && (is_hex(in[1])) && (is_hex(in[2]))) {
1611             in++;
1612             if ((*in >= '0') && (*in <= '9')) {
1613                 *out = (*in - '0');
1614             } else if ((*in >= 'a') && (*in <= 'f')) {
1615                 *out = (*in - 'a') + 10;
1616             } else if ((*in >= 'A') && (*in <= 'F')) {
1617                 *out = (*in - 'A') + 10;
1618             }
1619             in++;
1620             if ((*in >= '0') && (*in <= '9')) {
1621                 *out = *out * 16 + (*in - '0');
1622             } else if ((*in >= 'a') && (*in <= 'f')) {
1623                 *out = *out * 16 + (*in - 'a') + 10;
1624             } else if ((*in >= 'A') && (*in <= 'F')) {
1625                 *out = *out * 16 + (*in - 'A') + 10;
1626             }
1627             in++;
1628             len -= 3;
1629             out++;
1630         } else {
1631             *out++ = *in++;
1632             len--;
1633         }
1634     }
1635     *out = 0;
1636     return ret;
1637 }
1638 
1639 /**
1640  * uri_string_escape:
1641  * @str:  string to escape
1642  * @list: exception list string of chars not to escape
1643  *
1644  * This routine escapes a string to hex, ignoring reserved characters (a-z)
1645  * and the characters in the exception list.
1646  *
1647  * Returns a new escaped string or NULL in case of error.
1648  */
1649 char *uri_string_escape(const char *str, const char *list)
1650 {
1651     char *ret, ch;
1652     char *temp;
1653     const char *in;
1654     int len, out;
1655 
1656     if (str == NULL) {
1657         return NULL;
1658     }
1659     if (str[0] == 0) {
1660         return g_strdup(str);
1661     }
1662     len = strlen(str);
1663     if (!(len > 0)) {
1664         return NULL;
1665     }
1666 
1667     len += 20;
1668     ret = g_malloc(len);
1669     in = str;
1670     out = 0;
1671     while (*in != 0) {
1672         if (len - out <= 3) {
1673             temp = realloc2n(ret, &len);
1674             ret = temp;
1675         }
1676 
1677         ch = *in;
1678 
1679         if ((ch != '@') && (!IS_UNRESERVED(ch)) && (!strchr(list, ch))) {
1680             unsigned char val;
1681             ret[out++] = '%';
1682             val = ch >> 4;
1683             if (val <= 9) {
1684                 ret[out++] = '0' + val;
1685             } else {
1686                 ret[out++] = 'A' + val - 0xA;
1687             }
1688             val = ch & 0xF;
1689             if (val <= 9) {
1690                 ret[out++] = '0' + val;
1691             } else {
1692                 ret[out++] = 'A' + val - 0xA;
1693             }
1694             in++;
1695         } else {
1696             ret[out++] = *in++;
1697         }
1698     }
1699     ret[out] = 0;
1700     return ret;
1701 }
1702 
1703 /************************************************************************
1704  *                                                                      *
1705  *                           Public functions                           *
1706  *                                                                      *
1707  ************************************************************************/
1708 
1709 /**
1710  * uri_resolve:
1711  * @URI:  the URI instance found in the document
1712  * @base:  the base value
1713  *
1714  * Computes he final URI of the reference done by checking that
1715  * the given URI is valid, and building the final URI using the
1716  * base URI. This is processed according to section 5.2 of the
1717  * RFC 2396
1718  *
1719  * 5.2. Resolving Relative References to Absolute Form
1720  *
1721  * Returns a new URI string (to be freed by the caller) or NULL in case
1722  *         of error.
1723  */
1724 char *uri_resolve(const char *uri, const char *base)
1725 {
1726     char *val = NULL;
1727     int ret, len, indx, cur, out;
1728     URI *ref = NULL;
1729     URI *bas = NULL;
1730     URI *res = NULL;
1731 
1732     /*
1733      * 1) The URI reference is parsed into the potential four components and
1734      *    fragment identifier, as described in Section 4.3.
1735      *
1736      *    NOTE that a completely empty URI is treated by modern browsers
1737      *    as a reference to "." rather than as a synonym for the current
1738      *    URI.  Should we do that here?
1739      */
1740     if (uri == NULL) {
1741         ret = -1;
1742     } else {
1743         if (*uri) {
1744             ref = uri_new();
1745             ret = uri_parse_into(ref, uri);
1746         } else {
1747             ret = 0;
1748         }
1749     }
1750     if (ret != 0) {
1751         goto done;
1752     }
1753     if ((ref != NULL) && (ref->scheme != NULL)) {
1754         /*
1755          * The URI is absolute don't modify.
1756          */
1757         val = g_strdup(uri);
1758         goto done;
1759     }
1760     if (base == NULL) {
1761         ret = -1;
1762     } else {
1763         bas = uri_new();
1764         ret = uri_parse_into(bas, base);
1765     }
1766     if (ret != 0) {
1767         if (ref) {
1768             val = uri_to_string(ref);
1769         }
1770         goto done;
1771     }
1772     if (ref == NULL) {
1773         /*
1774          * the base fragment must be ignored
1775          */
1776         g_free(bas->fragment);
1777         bas->fragment = NULL;
1778         val = uri_to_string(bas);
1779         goto done;
1780     }
1781 
1782     /*
1783      * 2) If the path component is empty and the scheme, authority, and
1784      *    query components are undefined, then it is a reference to the
1785      *    current document and we are done.  Otherwise, the reference URI's
1786      *    query and fragment components are defined as found (or not found)
1787      *    within the URI reference and not inherited from the base URI.
1788      *
1789      *    NOTE that in modern browsers, the parsing differs from the above
1790      *    in the following aspect:  the query component is allowed to be
1791      *    defined while still treating this as a reference to the current
1792      *    document.
1793      */
1794     res = uri_new();
1795     if ((ref->scheme == NULL) && (ref->path == NULL) &&
1796         ((ref->authority == NULL) && (ref->server == NULL))) {
1797         res->scheme = g_strdup(bas->scheme);
1798         if (bas->authority != NULL) {
1799             res->authority = g_strdup(bas->authority);
1800         } else if (bas->server != NULL) {
1801             res->server = g_strdup(bas->server);
1802             res->user = g_strdup(bas->user);
1803             res->port = bas->port;
1804         }
1805         res->path = g_strdup(bas->path);
1806         if (ref->query != NULL) {
1807             res->query = g_strdup(ref->query);
1808         } else {
1809             res->query = g_strdup(bas->query);
1810         }
1811         res->fragment = g_strdup(ref->fragment);
1812         goto step_7;
1813     }
1814 
1815     /*
1816      * 3) If the scheme component is defined, indicating that the reference
1817      *    starts with a scheme name, then the reference is interpreted as an
1818      *    absolute URI and we are done.  Otherwise, the reference URI's
1819      *    scheme is inherited from the base URI's scheme component.
1820      */
1821     if (ref->scheme != NULL) {
1822         val = uri_to_string(ref);
1823         goto done;
1824     }
1825     res->scheme = g_strdup(bas->scheme);
1826 
1827     res->query = g_strdup(ref->query);
1828     res->fragment = g_strdup(ref->fragment);
1829 
1830     /*
1831      * 4) If the authority component is defined, then the reference is a
1832      *    network-path and we skip to step 7.  Otherwise, the reference
1833      *    URI's authority is inherited from the base URI's authority
1834      *    component, which will also be undefined if the URI scheme does not
1835      *    use an authority component.
1836      */
1837     if ((ref->authority != NULL) || (ref->server != NULL)) {
1838         if (ref->authority != NULL) {
1839             res->authority = g_strdup(ref->authority);
1840         } else {
1841             res->server = g_strdup(ref->server);
1842             res->user = g_strdup(ref->user);
1843             res->port = ref->port;
1844         }
1845         res->path = g_strdup(ref->path);
1846         goto step_7;
1847     }
1848     if (bas->authority != NULL) {
1849         res->authority = g_strdup(bas->authority);
1850     } else if (bas->server != NULL) {
1851         res->server = g_strdup(bas->server);
1852         res->user = g_strdup(bas->user);
1853         res->port = bas->port;
1854     }
1855 
1856     /*
1857      * 5) If the path component begins with a slash character ("/"), then
1858      *    the reference is an absolute-path and we skip to step 7.
1859      */
1860     if ((ref->path != NULL) && (ref->path[0] == '/')) {
1861         res->path = g_strdup(ref->path);
1862         goto step_7;
1863     }
1864 
1865     /*
1866      * 6) If this step is reached, then we are resolving a relative-path
1867      *    reference.  The relative path needs to be merged with the base
1868      *    URI's path.  Although there are many ways to do this, we will
1869      *    describe a simple method using a separate string buffer.
1870      *
1871      * Allocate a buffer large enough for the result string.
1872      */
1873     len = 2; /* extra / and 0 */
1874     if (ref->path != NULL) {
1875         len += strlen(ref->path);
1876     }
1877     if (bas->path != NULL) {
1878         len += strlen(bas->path);
1879     }
1880     res->path = g_malloc(len);
1881     res->path[0] = 0;
1882 
1883     /*
1884      * a) All but the last segment of the base URI's path component is
1885      *    copied to the buffer.  In other words, any characters after the
1886      *    last (right-most) slash character, if any, are excluded.
1887      */
1888     cur = 0;
1889     out = 0;
1890     if (bas->path != NULL) {
1891         while (bas->path[cur] != 0) {
1892             while ((bas->path[cur] != 0) && (bas->path[cur] != '/')) {
1893                 cur++;
1894             }
1895             if (bas->path[cur] == 0) {
1896                 break;
1897             }
1898 
1899             cur++;
1900             while (out < cur) {
1901                 res->path[out] = bas->path[out];
1902                 out++;
1903             }
1904         }
1905     }
1906     res->path[out] = 0;
1907 
1908     /*
1909      * b) The reference's path component is appended to the buffer
1910      *    string.
1911      */
1912     if (ref->path != NULL && ref->path[0] != 0) {
1913         indx = 0;
1914         /*
1915          * Ensure the path includes a '/'
1916          */
1917         if ((out == 0) && (bas->server != NULL)) {
1918             res->path[out++] = '/';
1919         }
1920         while (ref->path[indx] != 0) {
1921             res->path[out++] = ref->path[indx++];
1922         }
1923     }
1924     res->path[out] = 0;
1925 
1926     /*
1927      * Steps c) to h) are really path normalization steps
1928      */
1929     normalize_uri_path(res->path);
1930 
1931 step_7:
1932 
1933     /*
1934      * 7) The resulting URI components, including any inherited from the
1935      *    base URI, are recombined to give the absolute form of the URI
1936      *    reference.
1937      */
1938     val = uri_to_string(res);
1939 
1940 done:
1941     uri_free(ref);
1942     uri_free(bas);
1943     uri_free(res);
1944     return val;
1945 }
1946 
1947 /**
1948  * uri_resolve_relative:
1949  * @URI:  the URI reference under consideration
1950  * @base:  the base value
1951  *
1952  * Expresses the URI of the reference in terms relative to the
1953  * base.  Some examples of this operation include:
1954  *     base = "http://site1.com/docs/book1.html"
1955  *        URI input                        URI returned
1956  *     docs/pic1.gif                    pic1.gif
1957  *     docs/img/pic1.gif                img/pic1.gif
1958  *     img/pic1.gif                     ../img/pic1.gif
1959  *     http://site1.com/docs/pic1.gif   pic1.gif
1960  *     http://site2.com/docs/pic1.gif   http://site2.com/docs/pic1.gif
1961  *
1962  *     base = "docs/book1.html"
1963  *        URI input                        URI returned
1964  *     docs/pic1.gif                    pic1.gif
1965  *     docs/img/pic1.gif                img/pic1.gif
1966  *     img/pic1.gif                     ../img/pic1.gif
1967  *     http://site1.com/docs/pic1.gif   http://site1.com/docs/pic1.gif
1968  *
1969  *
1970  * Note: if the URI reference is really weird or complicated, it may be
1971  *       worthwhile to first convert it into a "nice" one by calling
1972  *       uri_resolve (using 'base') before calling this routine,
1973  *       since this routine (for reasonable efficiency) assumes URI has
1974  *       already been through some validation.
1975  *
1976  * Returns a new URI string (to be freed by the caller) or NULL in case
1977  * error.
1978  */
1979 char *uri_resolve_relative(const char *uri, const char *base)
1980 {
1981     char *val = NULL;
1982     int ret;
1983     int ix;
1984     int pos = 0;
1985     int nbslash = 0;
1986     int len;
1987     URI *ref = NULL;
1988     URI *bas = NULL;
1989     char *bptr, *uptr, *vptr;
1990     int remove_path = 0;
1991 
1992     if ((uri == NULL) || (*uri == 0)) {
1993         return NULL;
1994     }
1995 
1996     /*
1997      * First parse URI into a standard form
1998      */
1999     ref = uri_new();
2000     /* If URI not already in "relative" form */
2001     if (uri[0] != '.') {
2002         ret = uri_parse_into(ref, uri);
2003         if (ret != 0) {
2004             goto done; /* Error in URI, return NULL */
2005         }
2006     } else {
2007         ref->path = g_strdup(uri);
2008     }
2009 
2010     /*
2011      * Next parse base into the same standard form
2012      */
2013     if ((base == NULL) || (*base == 0)) {
2014         val = g_strdup(uri);
2015         goto done;
2016     }
2017     bas = uri_new();
2018     if (base[0] != '.') {
2019         ret = uri_parse_into(bas, base);
2020         if (ret != 0) {
2021             goto done; /* Error in base, return NULL */
2022         }
2023     } else {
2024         bas->path = g_strdup(base);
2025     }
2026 
2027     /*
2028      * If the scheme / server on the URI differs from the base,
2029      * just return the URI
2030      */
2031     if ((ref->scheme != NULL) &&
2032         ((bas->scheme == NULL) || (strcmp(bas->scheme, ref->scheme)) ||
2033          (strcmp(bas->server, ref->server)))) {
2034         val = g_strdup(uri);
2035         goto done;
2036     }
2037     if (bas->path == ref->path ||
2038         (bas->path && ref->path && !strcmp(bas->path, ref->path))) {
2039         val = g_strdup("");
2040         goto done;
2041     }
2042     if (bas->path == NULL) {
2043         val = g_strdup(ref->path);
2044         goto done;
2045     }
2046     if (ref->path == NULL) {
2047         ref->path = (char *)"/";
2048         remove_path = 1;
2049     }
2050 
2051     /*
2052      * At this point (at last!) we can compare the two paths
2053      *
2054      * First we take care of the special case where either of the
2055      * two path components may be missing (bug 316224)
2056      */
2057     if (bas->path == NULL) {
2058         if (ref->path != NULL) {
2059             uptr = ref->path;
2060             if (*uptr == '/') {
2061                 uptr++;
2062             }
2063             /* exception characters from uri_to_string */
2064             val = uri_string_escape(uptr, "/;&=+$,");
2065         }
2066         goto done;
2067     }
2068     bptr = bas->path;
2069     if (ref->path == NULL) {
2070         for (ix = 0; bptr[ix] != 0; ix++) {
2071             if (bptr[ix] == '/') {
2072                 nbslash++;
2073             }
2074         }
2075         uptr = NULL;
2076         len = 1; /* this is for a string terminator only */
2077     } else {
2078         /*
2079          * Next we compare the two strings and find where they first differ
2080          */
2081         if ((ref->path[pos] == '.') && (ref->path[pos + 1] == '/')) {
2082             pos += 2;
2083         }
2084         if ((*bptr == '.') && (bptr[1] == '/')) {
2085             bptr += 2;
2086         } else if ((*bptr == '/') && (ref->path[pos] != '/')) {
2087             bptr++;
2088         }
2089         while ((bptr[pos] == ref->path[pos]) && (bptr[pos] != 0)) {
2090             pos++;
2091         }
2092 
2093         if (bptr[pos] == ref->path[pos]) {
2094             val = g_strdup("");
2095             goto done; /* (I can't imagine why anyone would do this) */
2096         }
2097 
2098         /*
2099          * In URI, "back up" to the last '/' encountered.  This will be the
2100          * beginning of the "unique" suffix of URI
2101          */
2102         ix = pos;
2103         if ((ref->path[ix] == '/') && (ix > 0)) {
2104             ix--;
2105         } else if ((ref->path[ix] == 0) && (ix > 1)
2106                 && (ref->path[ix - 1] == '/')) {
2107             ix -= 2;
2108         }
2109         for (; ix > 0; ix--) {
2110             if (ref->path[ix] == '/') {
2111                 break;
2112             }
2113         }
2114         if (ix == 0) {
2115             uptr = ref->path;
2116         } else {
2117             ix++;
2118             uptr = &ref->path[ix];
2119         }
2120 
2121         /*
2122          * In base, count the number of '/' from the differing point
2123          */
2124         if (bptr[pos] != ref->path[pos]) { /* check for trivial URI == base */
2125             for (; bptr[ix] != 0; ix++) {
2126                 if (bptr[ix] == '/') {
2127                     nbslash++;
2128                 }
2129             }
2130         }
2131         len = strlen(uptr) + 1;
2132     }
2133 
2134     if (nbslash == 0) {
2135         if (uptr != NULL) {
2136             /* exception characters from uri_to_string */
2137             val = uri_string_escape(uptr, "/;&=+$,");
2138         }
2139         goto done;
2140     }
2141 
2142     /*
2143      * Allocate just enough space for the returned string -
2144      * length of the remainder of the URI, plus enough space
2145      * for the "../" groups, plus one for the terminator
2146      */
2147     val = g_malloc(len + 3 * nbslash);
2148     vptr = val;
2149     /*
2150      * Put in as many "../" as needed
2151      */
2152     for (; nbslash > 0; nbslash--) {
2153         *vptr++ = '.';
2154         *vptr++ = '.';
2155         *vptr++ = '/';
2156     }
2157     /*
2158      * Finish up with the end of the URI
2159      */
2160     if (uptr != NULL) {
2161         if ((vptr > val) && (len > 0) && (uptr[0] == '/') &&
2162             (vptr[-1] == '/')) {
2163             memcpy(vptr, uptr + 1, len - 1);
2164             vptr[len - 2] = 0;
2165         } else {
2166             memcpy(vptr, uptr, len);
2167             vptr[len - 1] = 0;
2168         }
2169     } else {
2170         vptr[len - 1] = 0;
2171     }
2172 
2173     /* escape the freshly-built path */
2174     vptr = val;
2175     /* exception characters from uri_to_string */
2176     val = uri_string_escape(vptr, "/;&=+$,");
2177     g_free(vptr);
2178 
2179 done:
2180     /*
2181      * Free the working variables
2182      */
2183     if (remove_path != 0) {
2184         ref->path = NULL;
2185     }
2186     uri_free(ref);
2187     uri_free(bas);
2188 
2189     return val;
2190 }
2191 
2192 /*
2193  * Utility functions to help parse and assemble query strings.
2194  */
2195 
2196 struct QueryParams *query_params_new(int init_alloc)
2197 {
2198     struct QueryParams *ps;
2199 
2200     if (init_alloc <= 0) {
2201         init_alloc = 1;
2202     }
2203 
2204     ps = g_new(QueryParams, 1);
2205     ps->n = 0;
2206     ps->alloc = init_alloc;
2207     ps->p = g_new(QueryParam, ps->alloc);
2208 
2209     return ps;
2210 }
2211 
2212 /* Ensure there is space to store at least one more parameter
2213  * at the end of the set.
2214  */
2215 static int query_params_append(struct QueryParams *ps, const char *name,
2216                                const char *value)
2217 {
2218     if (ps->n >= ps->alloc) {
2219         ps->p = g_renew(QueryParam, ps->p, ps->alloc * 2);
2220         ps->alloc *= 2;
2221     }
2222 
2223     ps->p[ps->n].name = g_strdup(name);
2224     ps->p[ps->n].value = g_strdup(value);
2225     ps->p[ps->n].ignore = 0;
2226     ps->n++;
2227 
2228     return 0;
2229 }
2230 
2231 void query_params_free(struct QueryParams *ps)
2232 {
2233     int i;
2234 
2235     for (i = 0; i < ps->n; ++i) {
2236         g_free(ps->p[i].name);
2237         g_free(ps->p[i].value);
2238     }
2239     g_free(ps->p);
2240     g_free(ps);
2241 }
2242 
2243 struct QueryParams *query_params_parse(const char *query)
2244 {
2245     struct QueryParams *ps;
2246     const char *end, *eq;
2247 
2248     ps = query_params_new(0);
2249     if (!query || query[0] == '\0') {
2250         return ps;
2251     }
2252 
2253     while (*query) {
2254         char *name = NULL, *value = NULL;
2255 
2256         /* Find the next separator, or end of the string. */
2257         end = strchr(query, '&');
2258         if (!end) {
2259             end = qemu_strchrnul(query, ';');
2260         }
2261 
2262         /* Find the first '=' character between here and end. */
2263         eq = strchr(query, '=');
2264         if (eq && eq >= end) {
2265             eq = NULL;
2266         }
2267 
2268         /* Empty section (eg. "&&"). */
2269         if (end == query) {
2270             goto next;
2271         }
2272 
2273         /* If there is no '=' character, then we have just "name"
2274          * and consistent with CGI.pm we assume value is "".
2275          */
2276         else if (!eq) {
2277             name = uri_string_unescape(query, end - query, NULL);
2278             value = NULL;
2279         }
2280         /* Or if we have "name=" here (works around annoying
2281          * problem when calling uri_string_unescape with len = 0).
2282          */
2283         else if (eq + 1 == end) {
2284             name = uri_string_unescape(query, eq - query, NULL);
2285             value = g_new0(char, 1);
2286         }
2287         /* If the '=' character is at the beginning then we have
2288          * "=value" and consistent with CGI.pm we _ignore_ this.
2289          */
2290         else if (query == eq) {
2291             goto next;
2292         }
2293 
2294         /* Otherwise it's "name=value". */
2295         else {
2296             name = uri_string_unescape(query, eq - query, NULL);
2297             value = uri_string_unescape(eq + 1, end - (eq + 1), NULL);
2298         }
2299 
2300         /* Append to the parameter set. */
2301         query_params_append(ps, name, value);
2302         g_free(name);
2303         g_free(value);
2304 
2305     next:
2306         query = end;
2307         if (*query) {
2308             query++; /* skip '&' separator */
2309         }
2310     }
2311 
2312     return ps;
2313 }
2314