xref: /reactos/dll/3rdparty/libjpeg/jcarith.c (revision 803b5e13)
1 /*
2  * jcarith.c
3  *
4  * Developed 1997-2019 by Guido Vollbeding.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains portable arithmetic entropy encoding routines for JPEG
9  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
10  *
11  * Both sequential and progressive modes are supported in this single module.
12  *
13  * Suspension is not currently supported in this module.
14  */
15 
16 #define JPEG_INTERNALS
17 #include "jinclude.h"
18 #include "jpeglib.h"
19 
20 
21 /* Expanded entropy encoder object for arithmetic encoding. */
22 
23 typedef struct {
24   struct jpeg_entropy_encoder pub; /* public fields */
25 
26   INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
27   INT32 a;               /* A register, normalized size of coding interval */
28   INT32 sc;        /* counter for stacked 0xFF values which might overflow */
29   INT32 zc;          /* counter for pending 0x00 output values which might *
30                           * be discarded at the end ("Pacman" termination) */
31   int ct;  /* bit shift counter, determines when next byte will be written */
32   int buffer;                /* buffer for most recent output byte != 0xFF */
33 
34   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
35   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
36 
37   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
38   int next_restart_num;		/* next restart number to write (0-7) */
39 
40   /* Pointers to statistics areas (these workspaces have image lifespan) */
41   unsigned char * dc_stats[NUM_ARITH_TBLS];
42   unsigned char * ac_stats[NUM_ARITH_TBLS];
43 
44   /* Statistics bin for coding with fixed probability 0.5 */
45   unsigned char fixed_bin[4];
46 } arith_entropy_encoder;
47 
48 typedef arith_entropy_encoder * arith_entropy_ptr;
49 
50 /* The following two definitions specify the allocation chunk size
51  * for the statistics area.
52  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
53  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
54  *
55  * We use a compact representation with 1 byte per statistics bin,
56  * thus the numbers directly represent byte sizes.
57  * This 1 byte per statistics bin contains the meaning of the MPS
58  * (more probable symbol) in the highest bit (mask 0x80), and the
59  * index into the probability estimation state machine table
60  * in the lower bits (mask 0x7F).
61  */
62 
63 #define DC_STAT_BINS 64
64 #define AC_STAT_BINS 256
65 
66 /* NOTE: Uncomment the following #define if you want to use the
67  * given formula for calculating the AC conditioning parameter Kx
68  * for spectral selection progressive coding in section G.1.3.2
69  * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
70  * Although the spec and P&M authors claim that this "has proven
71  * to give good results for 8 bit precision samples", I'm not
72  * convinced yet that this is really beneficial.
73  * Early tests gave only very marginal compression enhancements
74  * (a few - around 5 or so - bytes even for very large files),
75  * which would turn out rather negative if we'd suppress the
76  * DAC (Define Arithmetic Conditioning) marker segments for
77  * the default parameters in the future.
78  * Note that currently the marker writing module emits 12-byte
79  * DAC segments for a full-component scan in a color image.
80  * This is not worth worrying about IMHO. However, since the
81  * spec defines the default values to be used if the tables
82  * are omitted (unlike Huffman tables, which are required
83  * anyway), one might optimize this behaviour in the future,
84  * and then it would be disadvantageous to use custom tables if
85  * they don't provide sufficient gain to exceed the DAC size.
86  *
87  * On the other hand, I'd consider it as a reasonable result
88  * that the conditioning has no significant influence on the
89  * compression performance. This means that the basic
90  * statistical model is already rather stable.
91  *
92  * Thus, at the moment, we use the default conditioning values
93  * anyway, and do not use the custom formula.
94  *
95 #define CALCULATE_SPECTRAL_CONDITIONING
96  */
97 
98 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
99  * We assume that int right shift is unsigned if INT32 right shift is,
100  * which should be safe.
101  */
102 
103 #ifdef RIGHT_SHIFT_IS_UNSIGNED
104 #define ISHIFT_TEMPS	int ishift_temp;
105 #define IRIGHT_SHIFT(x,shft)  \
106 	((ishift_temp = (x)) < 0 ? \
107 	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
108 	 (ishift_temp >> (shft)))
109 #else
110 #define ISHIFT_TEMPS
111 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
112 #endif
113 
114 
115 LOCAL(void)
116 emit_byte (int val, j_compress_ptr cinfo)
117 /* Write next output byte; we do not support suspension in this module. */
118 {
119   struct jpeg_destination_mgr * dest = cinfo->dest;
120 
121   *dest->next_output_byte++ = (JOCTET) val;
122   if (--dest->free_in_buffer == 0)
123     if (! (*dest->empty_output_buffer) (cinfo))
124       ERREXIT(cinfo, JERR_CANT_SUSPEND);
125 }
126 
127 
128 /*
129  * Finish up at the end of an arithmetic-compressed scan.
130  */
131 
132 METHODDEF(void)
133 finish_pass (j_compress_ptr cinfo)
134 {
135   arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
136   INT32 temp;
137 
138   /* Section D.1.8: Termination of encoding */
139 
140   /* Find the e->c in the coding interval with the largest
141    * number of trailing zero bits */
142   if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
143     e->c = temp + 0x8000L;
144   else
145     e->c = temp;
146   /* Send remaining bytes to output */
147   e->c <<= e->ct;
148   if (e->c & 0xF8000000L) {
149     /* One final overflow has to be handled */
150     if (e->buffer >= 0) {
151       if (e->zc)
152 	do emit_byte(0x00, cinfo);
153 	while (--e->zc);
154       emit_byte(e->buffer + 1, cinfo);
155       if (e->buffer + 1 == 0xFF)
156 	emit_byte(0x00, cinfo);
157     }
158     e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
159     e->sc = 0;
160   } else {
161     if (e->buffer == 0)
162       ++e->zc;
163     else if (e->buffer >= 0) {
164       if (e->zc)
165 	do emit_byte(0x00, cinfo);
166 	while (--e->zc);
167       emit_byte(e->buffer, cinfo);
168     }
169     if (e->sc) {
170       if (e->zc)
171 	do emit_byte(0x00, cinfo);
172 	while (--e->zc);
173       do {
174 	emit_byte(0xFF, cinfo);
175 	emit_byte(0x00, cinfo);
176       } while (--e->sc);
177     }
178   }
179   /* Output final bytes only if they are not 0x00 */
180   if (e->c & 0x7FFF800L) {
181     if (e->zc)  /* output final pending zero bytes */
182       do emit_byte(0x00, cinfo);
183       while (--e->zc);
184     emit_byte((int) ((e->c >> 19) & 0xFF), cinfo);
185     if (((e->c >> 19) & 0xFF) == 0xFF)
186       emit_byte(0x00, cinfo);
187     if (e->c & 0x7F800L) {
188       emit_byte((int) ((e->c >> 11) & 0xFF), cinfo);
189       if (((e->c >> 11) & 0xFF) == 0xFF)
190 	emit_byte(0x00, cinfo);
191     }
192   }
193 }
194 
195 
196 /*
197  * The core arithmetic encoding routine (common in JPEG and JBIG).
198  * This needs to go as fast as possible.
199  * Machine-dependent optimization facilities
200  * are not utilized in this portable implementation.
201  * However, this code should be fairly efficient and
202  * may be a good base for further optimizations anyway.
203  *
204  * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
205  *
206  * Note: I've added full "Pacman" termination support to the
207  * byte output routines, which is equivalent to the optional
208  * Discard_final_zeros procedure (Figure D.15) in the spec.
209  * Thus, we always produce the shortest possible output
210  * stream compliant to the spec (no trailing zero bytes,
211  * except for FF stuffing).
212  *
213  * I've also introduced a new scheme for accessing
214  * the probability estimation state machine table,
215  * derived from Markus Kuhn's JBIG implementation.
216  */
217 
218 LOCAL(void)
219 arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
220 {
221   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
222   register unsigned char nl, nm;
223   register INT32 qe, temp;
224   register int sv;
225 
226   /* Fetch values from our compact representation of Table D.3(D.2):
227    * Qe values and probability estimation state machine
228    */
229   sv = *st;
230   qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
231   nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
232   nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
233 
234   /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
235   e->a -= qe;
236   if (val != (sv >> 7)) {
237     /* Encode the less probable symbol */
238     if (e->a >= qe) {
239       /* If the interval size (qe) for the less probable symbol (LPS)
240        * is larger than the interval size for the MPS, then exchange
241        * the two symbols for coding efficiency, otherwise code the LPS
242        * as usual: */
243       e->c += e->a;
244       e->a = qe;
245     }
246     *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
247   } else {
248     /* Encode the more probable symbol */
249     if (e->a >= 0x8000L)
250       return;  /* A >= 0x8000 -> ready, no renormalization required */
251     if (e->a < qe) {
252       /* If the interval size (qe) for the less probable symbol (LPS)
253        * is larger than the interval size for the MPS, then exchange
254        * the two symbols for coding efficiency: */
255       e->c += e->a;
256       e->a = qe;
257     }
258     *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
259   }
260 
261   /* Renormalization & data output per section D.1.6 */
262   do {
263     e->a <<= 1;
264     e->c <<= 1;
265     if (--e->ct == 0) {
266       /* Another byte is ready for output */
267       temp = e->c >> 19;
268       if (temp > 0xFF) {
269 	/* Handle overflow over all stacked 0xFF bytes */
270 	if (e->buffer >= 0) {
271 	  if (e->zc)
272 	    do emit_byte(0x00, cinfo);
273 	    while (--e->zc);
274 	  emit_byte(e->buffer + 1, cinfo);
275 	  if (e->buffer + 1 == 0xFF)
276 	    emit_byte(0x00, cinfo);
277 	}
278 	e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
279 	e->sc = 0;
280 	/* Note: The 3 spacer bits in the C register guarantee
281 	 * that the new buffer byte can't be 0xFF here
282 	 * (see page 160 in the P&M JPEG book). */
283 	/* New output byte, might overflow later */
284 	e->buffer = (int) (temp & 0xFF);
285       } else if (temp == 0xFF) {
286 	++e->sc;  /* stack 0xFF byte (which might overflow later) */
287       } else {
288 	/* Output all stacked 0xFF bytes, they will not overflow any more */
289 	if (e->buffer == 0)
290 	  ++e->zc;
291 	else if (e->buffer >= 0) {
292 	  if (e->zc)
293 	    do emit_byte(0x00, cinfo);
294 	    while (--e->zc);
295 	  emit_byte(e->buffer, cinfo);
296 	}
297 	if (e->sc) {
298 	  if (e->zc)
299 	    do emit_byte(0x00, cinfo);
300 	    while (--e->zc);
301 	  do {
302 	    emit_byte(0xFF, cinfo);
303 	    emit_byte(0x00, cinfo);
304 	  } while (--e->sc);
305 	}
306 	/* New output byte (can still overflow) */
307 	e->buffer = (int) (temp & 0xFF);
308       }
309       e->c &= 0x7FFFFL;
310       e->ct += 8;
311     }
312   } while (e->a < 0x8000L);
313 }
314 
315 
316 /*
317  * Emit a restart marker & resynchronize predictions.
318  */
319 
320 LOCAL(void)
321 emit_restart (j_compress_ptr cinfo, int restart_num)
322 {
323   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
324   int ci;
325   jpeg_component_info * compptr;
326 
327   finish_pass(cinfo);
328 
329   emit_byte(0xFF, cinfo);
330   emit_byte(JPEG_RST0 + restart_num, cinfo);
331 
332   /* Re-initialize statistics areas */
333   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
334     compptr = cinfo->cur_comp_info[ci];
335     /* DC needs no table for refinement scan */
336     if (cinfo->Ss == 0 && cinfo->Ah == 0) {
337       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
338       /* Reset DC predictions to 0 */
339       entropy->last_dc_val[ci] = 0;
340       entropy->dc_context[ci] = 0;
341     }
342     /* AC needs no table when not present */
343     if (cinfo->Se) {
344       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
345     }
346   }
347 
348   /* Reset arithmetic encoding variables */
349   entropy->c = 0;
350   entropy->a = 0x10000L;
351   entropy->sc = 0;
352   entropy->zc = 0;
353   entropy->ct = 11;
354   entropy->buffer = -1;  /* empty */
355 }
356 
357 
358 /*
359  * MCU encoding for DC initial scan (either spectral selection,
360  * or first pass of successive approximation).
361  */
362 
363 METHODDEF(boolean)
364 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
365 {
366   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
367   unsigned char *st;
368   int blkn, ci, tbl;
369   int v, v2, m;
370   ISHIFT_TEMPS
371 
372   /* Emit restart marker if needed */
373   if (cinfo->restart_interval) {
374     if (entropy->restarts_to_go == 0) {
375       emit_restart(cinfo, entropy->next_restart_num);
376       entropy->restarts_to_go = cinfo->restart_interval;
377       entropy->next_restart_num++;
378       entropy->next_restart_num &= 7;
379     }
380     entropy->restarts_to_go--;
381   }
382 
383   /* Encode the MCU data blocks */
384   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
385     ci = cinfo->MCU_membership[blkn];
386     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
387 
388     /* Compute the DC value after the required point transform by Al.
389      * This is simply an arithmetic right shift.
390      */
391     m = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
392 
393     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
394 
395     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
396     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
397 
398     /* Figure F.4: Encode_DC_DIFF */
399     if ((v = m - entropy->last_dc_val[ci]) == 0) {
400       arith_encode(cinfo, st, 0);
401       entropy->dc_context[ci] = 0;	/* zero diff category */
402     } else {
403       entropy->last_dc_val[ci] = m;
404       arith_encode(cinfo, st, 1);
405       /* Figure F.6: Encoding nonzero value v */
406       /* Figure F.7: Encoding the sign of v */
407       if (v > 0) {
408 	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
409 	st += 2;			/* Table F.4: SP = S0 + 2 */
410 	entropy->dc_context[ci] = 4;	/* small positive diff category */
411       } else {
412 	v = -v;
413 	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
414 	st += 3;			/* Table F.4: SN = S0 + 3 */
415 	entropy->dc_context[ci] = 8;	/* small negative diff category */
416       }
417       /* Figure F.8: Encoding the magnitude category of v */
418       m = 0;
419       if (v -= 1) {
420 	arith_encode(cinfo, st, 1);
421 	m = 1;
422 	v2 = v;
423 	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
424 	while (v2 >>= 1) {
425 	  arith_encode(cinfo, st, 1);
426 	  m <<= 1;
427 	  st += 1;
428 	}
429       }
430       arith_encode(cinfo, st, 0);
431       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
432       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
433 	entropy->dc_context[ci] = 0;	/* zero diff category */
434       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
435 	entropy->dc_context[ci] += 8;	/* large diff category */
436       /* Figure F.9: Encoding the magnitude bit pattern of v */
437       st += 14;
438       while (m >>= 1)
439 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
440     }
441   }
442 
443   return TRUE;
444 }
445 
446 
447 /*
448  * MCU encoding for AC initial scan (either spectral selection,
449  * or first pass of successive approximation).
450  */
451 
452 METHODDEF(boolean)
453 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
454 {
455   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
456   const int * natural_order;
457   JBLOCKROW block;
458   unsigned char *st;
459   int tbl, k, ke;
460   int v, v2, m;
461 
462   /* Emit restart marker if needed */
463   if (cinfo->restart_interval) {
464     if (entropy->restarts_to_go == 0) {
465       emit_restart(cinfo, entropy->next_restart_num);
466       entropy->restarts_to_go = cinfo->restart_interval;
467       entropy->next_restart_num++;
468       entropy->next_restart_num &= 7;
469     }
470     entropy->restarts_to_go--;
471   }
472 
473   natural_order = cinfo->natural_order;
474 
475   /* Encode the MCU data block */
476   block = MCU_data[0];
477   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
478 
479   /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
480 
481   /* Establish EOB (end-of-block) index */
482   ke = cinfo->Se;
483   do {
484     /* We must apply the point transform by Al.  For AC coefficients this
485      * is an integer division with rounding towards 0.  To do this portably
486      * in C, we shift after obtaining the absolute value.
487      */
488     if ((v = (*block)[natural_order[ke]]) >= 0) {
489       if (v >>= cinfo->Al) break;
490     } else {
491       v = -v;
492       if (v >>= cinfo->Al) break;
493     }
494   } while (--ke);
495 
496   /* Figure F.5: Encode_AC_Coefficients */
497   for (k = cinfo->Ss - 1; k < ke;) {
498     st = entropy->ac_stats[tbl] + 3 * k;
499     arith_encode(cinfo, st, 0);		/* EOB decision */
500     for (;;) {
501       if ((v = (*block)[natural_order[++k]]) >= 0) {
502 	if (v >>= cinfo->Al) {
503 	  arith_encode(cinfo, st + 1, 1);
504 	  arith_encode(cinfo, entropy->fixed_bin, 0);
505 	  break;
506 	}
507       } else {
508 	v = -v;
509 	if (v >>= cinfo->Al) {
510 	  arith_encode(cinfo, st + 1, 1);
511 	  arith_encode(cinfo, entropy->fixed_bin, 1);
512 	  break;
513 	}
514       }
515       arith_encode(cinfo, st + 1, 0);
516       st += 3;
517     }
518     st += 2;
519     /* Figure F.8: Encoding the magnitude category of v */
520     m = 0;
521     if (v -= 1) {
522       arith_encode(cinfo, st, 1);
523       m = 1;
524       v2 = v;
525       if (v2 >>= 1) {
526 	arith_encode(cinfo, st, 1);
527 	m <<= 1;
528 	st = entropy->ac_stats[tbl] +
529 	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
530 	while (v2 >>= 1) {
531 	  arith_encode(cinfo, st, 1);
532 	  m <<= 1;
533 	  st += 1;
534 	}
535       }
536     }
537     arith_encode(cinfo, st, 0);
538     /* Figure F.9: Encoding the magnitude bit pattern of v */
539     st += 14;
540     while (m >>= 1)
541       arith_encode(cinfo, st, (m & v) ? 1 : 0);
542   }
543   /* Encode EOB decision only if k < cinfo->Se */
544   if (k < cinfo->Se) {
545     st = entropy->ac_stats[tbl] + 3 * k;
546     arith_encode(cinfo, st, 1);
547   }
548 
549   return TRUE;
550 }
551 
552 
553 /*
554  * MCU encoding for DC successive approximation refinement scan.
555  * Note: we assume such scans can be multi-component,
556  * although the spec is not very clear on the point.
557  */
558 
559 METHODDEF(boolean)
560 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
561 {
562   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
563   unsigned char *st;
564   int Al, blkn;
565 
566   /* Emit restart marker if needed */
567   if (cinfo->restart_interval) {
568     if (entropy->restarts_to_go == 0) {
569       emit_restart(cinfo, entropy->next_restart_num);
570       entropy->restarts_to_go = cinfo->restart_interval;
571       entropy->next_restart_num++;
572       entropy->next_restart_num &= 7;
573     }
574     entropy->restarts_to_go--;
575   }
576 
577   st = entropy->fixed_bin;	/* use fixed probability estimation */
578   Al = cinfo->Al;
579 
580   /* Encode the MCU data blocks */
581   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
582     /* We simply emit the Al'th bit of the DC coefficient value. */
583     arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
584   }
585 
586   return TRUE;
587 }
588 
589 
590 /*
591  * MCU encoding for AC successive approximation refinement scan.
592  */
593 
594 METHODDEF(boolean)
595 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
596 {
597   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
598   const int * natural_order;
599   JBLOCKROW block;
600   unsigned char *st;
601   int tbl, k, ke, kex;
602   int v;
603 
604   /* Emit restart marker if needed */
605   if (cinfo->restart_interval) {
606     if (entropy->restarts_to_go == 0) {
607       emit_restart(cinfo, entropy->next_restart_num);
608       entropy->restarts_to_go = cinfo->restart_interval;
609       entropy->next_restart_num++;
610       entropy->next_restart_num &= 7;
611     }
612     entropy->restarts_to_go--;
613   }
614 
615   natural_order = cinfo->natural_order;
616 
617   /* Encode the MCU data block */
618   block = MCU_data[0];
619   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
620 
621   /* Section G.1.3.3: Encoding of AC coefficients */
622 
623   /* Establish EOB (end-of-block) index */
624   ke = cinfo->Se;
625   do {
626     /* We must apply the point transform by Al.  For AC coefficients this
627      * is an integer division with rounding towards 0.  To do this portably
628      * in C, we shift after obtaining the absolute value.
629      */
630     if ((v = (*block)[natural_order[ke]]) >= 0) {
631       if (v >>= cinfo->Al) break;
632     } else {
633       v = -v;
634       if (v >>= cinfo->Al) break;
635     }
636   } while (--ke);
637 
638   /* Establish EOBx (previous stage end-of-block) index */
639   for (kex = ke; kex > 0; kex--)
640     if ((v = (*block)[natural_order[kex]]) >= 0) {
641       if (v >>= cinfo->Ah) break;
642     } else {
643       v = -v;
644       if (v >>= cinfo->Ah) break;
645     }
646 
647   /* Figure G.10: Encode_AC_Coefficients_SA */
648   for (k = cinfo->Ss - 1; k < ke;) {
649     st = entropy->ac_stats[tbl] + 3 * k;
650     if (k >= kex)
651       arith_encode(cinfo, st, 0);	/* EOB decision */
652     for (;;) {
653       if ((v = (*block)[natural_order[++k]]) >= 0) {
654 	if (v >>= cinfo->Al) {
655 	  if (v >> 1)			/* previously nonzero coef */
656 	    arith_encode(cinfo, st + 2, (v & 1));
657 	  else {			/* newly nonzero coef */
658 	    arith_encode(cinfo, st + 1, 1);
659 	    arith_encode(cinfo, entropy->fixed_bin, 0);
660 	  }
661 	  break;
662 	}
663       } else {
664 	v = -v;
665 	if (v >>= cinfo->Al) {
666 	  if (v >> 1)			/* previously nonzero coef */
667 	    arith_encode(cinfo, st + 2, (v & 1));
668 	  else {			/* newly nonzero coef */
669 	    arith_encode(cinfo, st + 1, 1);
670 	    arith_encode(cinfo, entropy->fixed_bin, 1);
671 	  }
672 	  break;
673 	}
674       }
675       arith_encode(cinfo, st + 1, 0);
676       st += 3;
677     }
678   }
679   /* Encode EOB decision only if k < cinfo->Se */
680   if (k < cinfo->Se) {
681     st = entropy->ac_stats[tbl] + 3 * k;
682     arith_encode(cinfo, st, 1);
683   }
684 
685   return TRUE;
686 }
687 
688 
689 /*
690  * Encode and output one MCU's worth of arithmetic-compressed coefficients.
691  */
692 
693 METHODDEF(boolean)
694 encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
695 {
696   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
697   const int * natural_order;
698   JBLOCKROW block;
699   unsigned char *st;
700   int tbl, k, ke;
701   int v, v2, m;
702   int blkn, ci;
703   jpeg_component_info * compptr;
704 
705   /* Emit restart marker if needed */
706   if (cinfo->restart_interval) {
707     if (entropy->restarts_to_go == 0) {
708       emit_restart(cinfo, entropy->next_restart_num);
709       entropy->restarts_to_go = cinfo->restart_interval;
710       entropy->next_restart_num++;
711       entropy->next_restart_num &= 7;
712     }
713     entropy->restarts_to_go--;
714   }
715 
716   natural_order = cinfo->natural_order;
717 
718   /* Encode the MCU data blocks */
719   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
720     block = MCU_data[blkn];
721     ci = cinfo->MCU_membership[blkn];
722     compptr = cinfo->cur_comp_info[ci];
723 
724     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
725 
726     tbl = compptr->dc_tbl_no;
727 
728     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
729     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
730 
731     /* Figure F.4: Encode_DC_DIFF */
732     if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
733       arith_encode(cinfo, st, 0);
734       entropy->dc_context[ci] = 0;	/* zero diff category */
735     } else {
736       entropy->last_dc_val[ci] = (*block)[0];
737       arith_encode(cinfo, st, 1);
738       /* Figure F.6: Encoding nonzero value v */
739       /* Figure F.7: Encoding the sign of v */
740       if (v > 0) {
741 	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
742 	st += 2;			/* Table F.4: SP = S0 + 2 */
743 	entropy->dc_context[ci] = 4;	/* small positive diff category */
744       } else {
745 	v = -v;
746 	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
747 	st += 3;			/* Table F.4: SN = S0 + 3 */
748 	entropy->dc_context[ci] = 8;	/* small negative diff category */
749       }
750       /* Figure F.8: Encoding the magnitude category of v */
751       m = 0;
752       if (v -= 1) {
753 	arith_encode(cinfo, st, 1);
754 	m = 1;
755 	v2 = v;
756 	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
757 	while (v2 >>= 1) {
758 	  arith_encode(cinfo, st, 1);
759 	  m <<= 1;
760 	  st += 1;
761 	}
762       }
763       arith_encode(cinfo, st, 0);
764       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
765       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
766 	entropy->dc_context[ci] = 0;	/* zero diff category */
767       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
768 	entropy->dc_context[ci] += 8;	/* large diff category */
769       /* Figure F.9: Encoding the magnitude bit pattern of v */
770       st += 14;
771       while (m >>= 1)
772 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
773     }
774 
775     /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
776 
777     if ((ke = cinfo->lim_Se) == 0) continue;
778     tbl = compptr->ac_tbl_no;
779 
780     /* Establish EOB (end-of-block) index */
781     do {
782       if ((*block)[natural_order[ke]]) break;
783     } while (--ke);
784 
785     /* Figure F.5: Encode_AC_Coefficients */
786     for (k = 0; k < ke;) {
787       st = entropy->ac_stats[tbl] + 3 * k;
788       arith_encode(cinfo, st, 0);	/* EOB decision */
789       while ((v = (*block)[natural_order[++k]]) == 0) {
790 	arith_encode(cinfo, st + 1, 0);
791 	st += 3;
792       }
793       arith_encode(cinfo, st + 1, 1);
794       /* Figure F.6: Encoding nonzero value v */
795       /* Figure F.7: Encoding the sign of v */
796       if (v > 0) {
797 	arith_encode(cinfo, entropy->fixed_bin, 0);
798       } else {
799 	v = -v;
800 	arith_encode(cinfo, entropy->fixed_bin, 1);
801       }
802       st += 2;
803       /* Figure F.8: Encoding the magnitude category of v */
804       m = 0;
805       if (v -= 1) {
806 	arith_encode(cinfo, st, 1);
807 	m = 1;
808 	v2 = v;
809 	if (v2 >>= 1) {
810 	  arith_encode(cinfo, st, 1);
811 	  m <<= 1;
812 	  st = entropy->ac_stats[tbl] +
813 	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
814 	  while (v2 >>= 1) {
815 	    arith_encode(cinfo, st, 1);
816 	    m <<= 1;
817 	    st += 1;
818 	  }
819 	}
820       }
821       arith_encode(cinfo, st, 0);
822       /* Figure F.9: Encoding the magnitude bit pattern of v */
823       st += 14;
824       while (m >>= 1)
825 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
826     }
827     /* Encode EOB decision only if k < cinfo->lim_Se */
828     if (k < cinfo->lim_Se) {
829       st = entropy->ac_stats[tbl] + 3 * k;
830       arith_encode(cinfo, st, 1);
831     }
832   }
833 
834   return TRUE;
835 }
836 
837 
838 /*
839  * Initialize for an arithmetic-compressed scan.
840  */
841 
842 METHODDEF(void)
843 start_pass (j_compress_ptr cinfo, boolean gather_statistics)
844 {
845   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
846   int ci, tbl;
847   jpeg_component_info * compptr;
848 
849   if (gather_statistics)
850     /* Make sure to avoid that in the master control logic!
851      * We are fully adaptive here and need no extra
852      * statistics gathering pass!
853      */
854     ERREXIT(cinfo, JERR_NOT_COMPILED);
855 
856   /* We assume jcmaster.c already validated the progressive scan parameters. */
857 
858   /* Select execution routines */
859   if (cinfo->progressive_mode) {
860     if (cinfo->Ah == 0) {
861       if (cinfo->Ss == 0)
862 	entropy->pub.encode_mcu = encode_mcu_DC_first;
863       else
864 	entropy->pub.encode_mcu = encode_mcu_AC_first;
865     } else {
866       if (cinfo->Ss == 0)
867 	entropy->pub.encode_mcu = encode_mcu_DC_refine;
868       else
869 	entropy->pub.encode_mcu = encode_mcu_AC_refine;
870     }
871   } else
872     entropy->pub.encode_mcu = encode_mcu;
873 
874   /* Allocate & initialize requested statistics areas */
875   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
876     compptr = cinfo->cur_comp_info[ci];
877     /* DC needs no table for refinement scan */
878     if (cinfo->Ss == 0 && cinfo->Ah == 0) {
879       tbl = compptr->dc_tbl_no;
880       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
881 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
882       if (entropy->dc_stats[tbl] == NULL)
883 	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
884 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
885       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
886       /* Initialize DC predictions to 0 */
887       entropy->last_dc_val[ci] = 0;
888       entropy->dc_context[ci] = 0;
889     }
890     /* AC needs no table when not present */
891     if (cinfo->Se) {
892       tbl = compptr->ac_tbl_no;
893       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
894 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
895       if (entropy->ac_stats[tbl] == NULL)
896 	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
897 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
898       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
899 #ifdef CALCULATE_SPECTRAL_CONDITIONING
900       if (cinfo->progressive_mode)
901 	/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
902 	cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
903 #endif
904     }
905   }
906 
907   /* Initialize arithmetic encoding variables */
908   entropy->c = 0;
909   entropy->a = 0x10000L;
910   entropy->sc = 0;
911   entropy->zc = 0;
912   entropy->ct = 11;
913   entropy->buffer = -1;  /* empty */
914 
915   /* Initialize restart stuff */
916   entropy->restarts_to_go = cinfo->restart_interval;
917   entropy->next_restart_num = 0;
918 }
919 
920 
921 /*
922  * Module initialization routine for arithmetic entropy encoding.
923  */
924 
925 GLOBAL(void)
926 jinit_arith_encoder (j_compress_ptr cinfo)
927 {
928   arith_entropy_ptr entropy;
929   int i;
930 
931   entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small)
932     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_encoder));
933   cinfo->entropy = &entropy->pub;
934   entropy->pub.start_pass = start_pass;
935   entropy->pub.finish_pass = finish_pass;
936 
937   /* Mark tables unallocated */
938   for (i = 0; i < NUM_ARITH_TBLS; i++) {
939     entropy->dc_stats[i] = NULL;
940     entropy->ac_stats[i] = NULL;
941   }
942 
943   /* Initialize index for fixed probability estimation */
944   entropy->fixed_bin[0] = 113;
945 }
946