1 /* 2 * jcmaster.c 3 * 4 * Copyright (C) 1991-1997, Thomas G. Lane. 5 * Modified 2003-2019 by Guido Vollbeding. 6 * This file is part of the Independent JPEG Group's software. 7 * For conditions of distribution and use, see the accompanying README file. 8 * 9 * This file contains master control logic for the JPEG compressor. 10 * These routines are concerned with parameter validation, initial setup, 11 * and inter-pass control (determining the number of passes and the work 12 * to be done in each pass). 13 */ 14 15 #define JPEG_INTERNALS 16 #include "jinclude.h" 17 #include "jpeglib.h" 18 19 20 /* Private state */ 21 22 typedef enum { 23 main_pass, /* input data, also do first output step */ 24 huff_opt_pass, /* Huffman code optimization pass */ 25 output_pass /* data output pass */ 26 } c_pass_type; 27 28 typedef struct { 29 struct jpeg_comp_master pub; /* public fields */ 30 31 c_pass_type pass_type; /* the type of the current pass */ 32 33 int pass_number; /* # of passes completed */ 34 int total_passes; /* total # of passes needed */ 35 36 int scan_number; /* current index in scan_info[] */ 37 } my_comp_master; 38 39 typedef my_comp_master * my_master_ptr; 40 41 42 /* 43 * Support routines that do various essential calculations. 44 */ 45 46 LOCAL(void) 47 initial_setup (j_compress_ptr cinfo) 48 /* Do computations that are needed before master selection phase */ 49 { 50 int ci, ssize; 51 jpeg_component_info *compptr; 52 53 /* Sanity check on block_size */ 54 if (cinfo->block_size < 1 || cinfo->block_size > 16) 55 ERREXIT2(cinfo, JERR_BAD_DCTSIZE, cinfo->block_size, cinfo->block_size); 56 57 /* Derive natural_order from block_size */ 58 switch (cinfo->block_size) { 59 case 2: cinfo->natural_order = jpeg_natural_order2; break; 60 case 3: cinfo->natural_order = jpeg_natural_order3; break; 61 case 4: cinfo->natural_order = jpeg_natural_order4; break; 62 case 5: cinfo->natural_order = jpeg_natural_order5; break; 63 case 6: cinfo->natural_order = jpeg_natural_order6; break; 64 case 7: cinfo->natural_order = jpeg_natural_order7; break; 65 default: cinfo->natural_order = jpeg_natural_order; 66 } 67 68 /* Derive lim_Se from block_size */ 69 cinfo->lim_Se = cinfo->block_size < DCTSIZE ? 70 cinfo->block_size * cinfo->block_size - 1 : DCTSIZE2-1; 71 72 /* Sanity check on image dimensions */ 73 if (cinfo->jpeg_height <= 0 || cinfo->jpeg_width <= 0 || 74 cinfo->num_components <= 0) 75 ERREXIT(cinfo, JERR_EMPTY_IMAGE); 76 77 /* Make sure image isn't bigger than I can handle */ 78 if ((long) cinfo->jpeg_height > (long) JPEG_MAX_DIMENSION || 79 (long) cinfo->jpeg_width > (long) JPEG_MAX_DIMENSION) 80 ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); 81 82 /* Only 8 to 12 bits data precision are supported for DCT based JPEG */ 83 if (cinfo->data_precision < 8 || cinfo->data_precision > 12) 84 ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); 85 86 /* Check that number of components won't exceed internal array sizes */ 87 if (cinfo->num_components > MAX_COMPONENTS) 88 ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, 89 MAX_COMPONENTS); 90 91 /* Compute maximum sampling factors; check factor validity */ 92 cinfo->max_h_samp_factor = 1; 93 cinfo->max_v_samp_factor = 1; 94 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 95 ci++, compptr++) { 96 if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || 97 compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) 98 ERREXIT(cinfo, JERR_BAD_SAMPLING); 99 cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, 100 compptr->h_samp_factor); 101 cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, 102 compptr->v_samp_factor); 103 } 104 105 /* Compute dimensions of components */ 106 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 107 ci++, compptr++) { 108 /* Fill in the correct component_index value; don't rely on application */ 109 compptr->component_index = ci; 110 /* In selecting the actual DCT scaling for each component, we try to 111 * scale down the chroma components via DCT scaling rather than downsampling. 112 * This saves time if the downsampler gets to use 1:1 scaling. 113 * Note this code adapts subsampling ratios which are powers of 2. 114 */ 115 ssize = 1; 116 #ifdef DCT_SCALING_SUPPORTED 117 if (! cinfo->raw_data_in) 118 while (cinfo->min_DCT_h_scaled_size * ssize <= 119 (cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) && 120 (cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 121 0) { 122 ssize = ssize * 2; 123 } 124 #endif 125 compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize; 126 ssize = 1; 127 #ifdef DCT_SCALING_SUPPORTED 128 if (! cinfo->raw_data_in) 129 while (cinfo->min_DCT_v_scaled_size * ssize <= 130 (cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) && 131 (cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 132 0) { 133 ssize = ssize * 2; 134 } 135 #endif 136 compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize; 137 138 /* We don't support DCT ratios larger than 2. */ 139 if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2) 140 compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2; 141 else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2) 142 compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2; 143 144 /* Size in DCT blocks */ 145 compptr->width_in_blocks = (JDIMENSION) 146 jdiv_round_up((long) cinfo->jpeg_width * (long) compptr->h_samp_factor, 147 (long) (cinfo->max_h_samp_factor * cinfo->block_size)); 148 compptr->height_in_blocks = (JDIMENSION) 149 jdiv_round_up((long) cinfo->jpeg_height * (long) compptr->v_samp_factor, 150 (long) (cinfo->max_v_samp_factor * cinfo->block_size)); 151 /* Size in samples */ 152 compptr->downsampled_width = (JDIMENSION) 153 jdiv_round_up((long) cinfo->jpeg_width * 154 (long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size), 155 (long) (cinfo->max_h_samp_factor * cinfo->block_size)); 156 compptr->downsampled_height = (JDIMENSION) 157 jdiv_round_up((long) cinfo->jpeg_height * 158 (long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size), 159 (long) (cinfo->max_v_samp_factor * cinfo->block_size)); 160 /* Don't need quantization scale after DCT, 161 * until color conversion says otherwise. 162 */ 163 compptr->component_needed = FALSE; 164 } 165 166 /* Compute number of fully interleaved MCU rows (number of times that 167 * main controller will call coefficient controller). 168 */ 169 cinfo->total_iMCU_rows = (JDIMENSION) 170 jdiv_round_up((long) cinfo->jpeg_height, 171 (long) (cinfo->max_v_samp_factor * cinfo->block_size)); 172 } 173 174 175 #ifdef C_MULTISCAN_FILES_SUPPORTED 176 177 LOCAL(void) 178 validate_script (j_compress_ptr cinfo) 179 /* Verify that the scan script in cinfo->scan_info[] is valid; also 180 * determine whether it uses progressive JPEG, and set cinfo->progressive_mode. 181 */ 182 { 183 const jpeg_scan_info * scanptr; 184 int scanno, ncomps, ci, coefi, thisi; 185 int Ss, Se, Ah, Al; 186 boolean component_sent[MAX_COMPONENTS]; 187 #ifdef C_PROGRESSIVE_SUPPORTED 188 int * last_bitpos_ptr; 189 int last_bitpos[MAX_COMPONENTS][DCTSIZE2]; 190 /* -1 until that coefficient has been seen; then last Al for it */ 191 #endif 192 193 if (cinfo->num_scans <= 0) 194 ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0); 195 196 /* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1; 197 * for progressive JPEG, no scan can have this. 198 */ 199 scanptr = cinfo->scan_info; 200 if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) { 201 #ifdef C_PROGRESSIVE_SUPPORTED 202 cinfo->progressive_mode = TRUE; 203 last_bitpos_ptr = & last_bitpos[0][0]; 204 for (ci = 0; ci < cinfo->num_components; ci++) 205 for (coefi = 0; coefi < DCTSIZE2; coefi++) 206 *last_bitpos_ptr++ = -1; 207 #else 208 ERREXIT(cinfo, JERR_NOT_COMPILED); 209 #endif 210 } else { 211 cinfo->progressive_mode = FALSE; 212 for (ci = 0; ci < cinfo->num_components; ci++) 213 component_sent[ci] = FALSE; 214 } 215 216 for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) { 217 /* Validate component indexes */ 218 ncomps = scanptr->comps_in_scan; 219 if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN) 220 ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN); 221 for (ci = 0; ci < ncomps; ci++) { 222 thisi = scanptr->component_index[ci]; 223 if (thisi < 0 || thisi >= cinfo->num_components) 224 ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); 225 /* Components must appear in SOF order within each scan */ 226 if (ci > 0 && thisi <= scanptr->component_index[ci-1]) 227 ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); 228 } 229 /* Validate progression parameters */ 230 Ss = scanptr->Ss; 231 Se = scanptr->Se; 232 Ah = scanptr->Ah; 233 Al = scanptr->Al; 234 if (cinfo->progressive_mode) { 235 #ifdef C_PROGRESSIVE_SUPPORTED 236 /* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that 237 * seems wrong: the upper bound ought to depend on data precision. 238 * Perhaps they really meant 0..N+1 for N-bit precision. 239 * Here we allow 0..10 for 8-bit data; Al larger than 10 results in 240 * out-of-range reconstructed DC values during the first DC scan, 241 * which might cause problems for some decoders. 242 */ 243 if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 || 244 Ah < 0 || Ah > (cinfo->data_precision > 8 ? 13 : 10) || 245 Al < 0 || Al > (cinfo->data_precision > 8 ? 13 : 10)) 246 ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); 247 if (Ss == 0) { 248 if (Se != 0) /* DC and AC together not OK */ 249 ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); 250 } else { 251 if (ncomps != 1) /* AC scans must be for only one component */ 252 ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); 253 } 254 for (ci = 0; ci < ncomps; ci++) { 255 last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0]; 256 if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */ 257 ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); 258 for (coefi = Ss; coefi <= Se; coefi++) { 259 if (last_bitpos_ptr[coefi] < 0) { 260 /* first scan of this coefficient */ 261 if (Ah != 0) 262 ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); 263 } else { 264 /* not first scan */ 265 if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1) 266 ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); 267 } 268 last_bitpos_ptr[coefi] = Al; 269 } 270 } 271 #endif 272 } else { 273 /* For sequential JPEG, all progression parameters must be these: */ 274 if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0) 275 ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); 276 /* Make sure components are not sent twice */ 277 for (ci = 0; ci < ncomps; ci++) { 278 thisi = scanptr->component_index[ci]; 279 if (component_sent[thisi]) 280 ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); 281 component_sent[thisi] = TRUE; 282 } 283 } 284 } 285 286 /* Now verify that everything got sent. */ 287 if (cinfo->progressive_mode) { 288 #ifdef C_PROGRESSIVE_SUPPORTED 289 /* For progressive mode, we only check that at least some DC data 290 * got sent for each component; the spec does not require that all bits 291 * of all coefficients be transmitted. Would it be wiser to enforce 292 * transmission of all coefficient bits?? 293 */ 294 for (ci = 0; ci < cinfo->num_components; ci++) { 295 if (last_bitpos[ci][0] < 0) 296 ERREXIT(cinfo, JERR_MISSING_DATA); 297 } 298 #endif 299 } else { 300 for (ci = 0; ci < cinfo->num_components; ci++) { 301 if (! component_sent[ci]) 302 ERREXIT(cinfo, JERR_MISSING_DATA); 303 } 304 } 305 } 306 307 308 LOCAL(void) 309 reduce_script (j_compress_ptr cinfo) 310 /* Adapt scan script for use with reduced block size; 311 * assume that script has been validated before. 312 */ 313 { 314 jpeg_scan_info * scanptr; 315 int idxout, idxin; 316 317 /* Circumvent const declaration for this function */ 318 scanptr = (jpeg_scan_info *) cinfo->scan_info; 319 idxout = 0; 320 321 for (idxin = 0; idxin < cinfo->num_scans; idxin++) { 322 /* After skipping, idxout becomes smaller than idxin */ 323 if (idxin != idxout) 324 /* Copy rest of data; 325 * note we stay in given chunk of allocated memory. 326 */ 327 scanptr[idxout] = scanptr[idxin]; 328 if (scanptr[idxout].Ss > cinfo->lim_Se) 329 /* Entire scan out of range - skip this entry */ 330 continue; 331 if (scanptr[idxout].Se > cinfo->lim_Se) 332 /* Limit scan to end of block */ 333 scanptr[idxout].Se = cinfo->lim_Se; 334 idxout++; 335 } 336 337 cinfo->num_scans = idxout; 338 } 339 340 #endif /* C_MULTISCAN_FILES_SUPPORTED */ 341 342 343 LOCAL(void) 344 select_scan_parameters (j_compress_ptr cinfo) 345 /* Set up the scan parameters for the current scan */ 346 { 347 int ci; 348 349 #ifdef C_MULTISCAN_FILES_SUPPORTED 350 if (cinfo->scan_info != NULL) { 351 /* Prepare for current scan --- the script is already validated */ 352 my_master_ptr master = (my_master_ptr) cinfo->master; 353 const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number; 354 355 cinfo->comps_in_scan = scanptr->comps_in_scan; 356 for (ci = 0; ci < scanptr->comps_in_scan; ci++) { 357 cinfo->cur_comp_info[ci] = 358 &cinfo->comp_info[scanptr->component_index[ci]]; 359 } 360 if (cinfo->progressive_mode) { 361 cinfo->Ss = scanptr->Ss; 362 cinfo->Se = scanptr->Se; 363 cinfo->Ah = scanptr->Ah; 364 cinfo->Al = scanptr->Al; 365 return; 366 } 367 } 368 else 369 #endif 370 { 371 /* Prepare for single sequential-JPEG scan containing all components */ 372 if (cinfo->num_components > MAX_COMPS_IN_SCAN) 373 ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, 374 MAX_COMPS_IN_SCAN); 375 cinfo->comps_in_scan = cinfo->num_components; 376 for (ci = 0; ci < cinfo->num_components; ci++) { 377 cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci]; 378 } 379 } 380 cinfo->Ss = 0; 381 cinfo->Se = cinfo->block_size * cinfo->block_size - 1; 382 cinfo->Ah = 0; 383 cinfo->Al = 0; 384 } 385 386 387 LOCAL(void) 388 per_scan_setup (j_compress_ptr cinfo) 389 /* Do computations that are needed before processing a JPEG scan */ 390 /* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */ 391 { 392 int ci, mcublks, tmp; 393 jpeg_component_info *compptr; 394 395 if (cinfo->comps_in_scan == 1) { 396 397 /* Noninterleaved (single-component) scan */ 398 compptr = cinfo->cur_comp_info[0]; 399 400 /* Overall image size in MCUs */ 401 cinfo->MCUs_per_row = compptr->width_in_blocks; 402 cinfo->MCU_rows_in_scan = compptr->height_in_blocks; 403 404 /* For noninterleaved scan, always one block per MCU */ 405 compptr->MCU_width = 1; 406 compptr->MCU_height = 1; 407 compptr->MCU_blocks = 1; 408 compptr->MCU_sample_width = compptr->DCT_h_scaled_size; 409 compptr->last_col_width = 1; 410 /* For noninterleaved scans, it is convenient to define last_row_height 411 * as the number of block rows present in the last iMCU row. 412 */ 413 tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); 414 if (tmp == 0) tmp = compptr->v_samp_factor; 415 compptr->last_row_height = tmp; 416 417 /* Prepare array describing MCU composition */ 418 cinfo->blocks_in_MCU = 1; 419 cinfo->MCU_membership[0] = 0; 420 421 } else { 422 423 /* Interleaved (multi-component) scan */ 424 if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) 425 ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, 426 MAX_COMPS_IN_SCAN); 427 428 /* Overall image size in MCUs */ 429 cinfo->MCUs_per_row = (JDIMENSION) 430 jdiv_round_up((long) cinfo->jpeg_width, 431 (long) (cinfo->max_h_samp_factor * cinfo->block_size)); 432 cinfo->MCU_rows_in_scan = (JDIMENSION) 433 jdiv_round_up((long) cinfo->jpeg_height, 434 (long) (cinfo->max_v_samp_factor * cinfo->block_size)); 435 436 cinfo->blocks_in_MCU = 0; 437 438 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 439 compptr = cinfo->cur_comp_info[ci]; 440 /* Sampling factors give # of blocks of component in each MCU */ 441 compptr->MCU_width = compptr->h_samp_factor; 442 compptr->MCU_height = compptr->v_samp_factor; 443 compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; 444 compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size; 445 /* Figure number of non-dummy blocks in last MCU column & row */ 446 tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); 447 if (tmp == 0) tmp = compptr->MCU_width; 448 compptr->last_col_width = tmp; 449 tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); 450 if (tmp == 0) tmp = compptr->MCU_height; 451 compptr->last_row_height = tmp; 452 /* Prepare array describing MCU composition */ 453 mcublks = compptr->MCU_blocks; 454 if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU) 455 ERREXIT(cinfo, JERR_BAD_MCU_SIZE); 456 while (mcublks-- > 0) { 457 cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; 458 } 459 } 460 461 } 462 463 /* Convert restart specified in rows to actual MCU count. */ 464 /* Note that count must fit in 16 bits, so we provide limiting. */ 465 if (cinfo->restart_in_rows > 0) { 466 long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row; 467 cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L); 468 } 469 } 470 471 472 /* 473 * Per-pass setup. 474 * This is called at the beginning of each pass. We determine which modules 475 * will be active during this pass and give them appropriate start_pass calls. 476 * We also set is_last_pass to indicate whether any more passes will be 477 * required. 478 */ 479 480 METHODDEF(void) 481 prepare_for_pass (j_compress_ptr cinfo) 482 { 483 my_master_ptr master = (my_master_ptr) cinfo->master; 484 485 switch (master->pass_type) { 486 case main_pass: 487 /* Initial pass: will collect input data, and do either Huffman 488 * optimization or data output for the first scan. 489 */ 490 select_scan_parameters(cinfo); 491 per_scan_setup(cinfo); 492 if (! cinfo->raw_data_in) { 493 (*cinfo->cconvert->start_pass) (cinfo); 494 (*cinfo->downsample->start_pass) (cinfo); 495 (*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU); 496 } 497 (*cinfo->fdct->start_pass) (cinfo); 498 (*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding); 499 (*cinfo->coef->start_pass) (cinfo, 500 (master->total_passes > 1 ? 501 JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); 502 (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); 503 if (cinfo->optimize_coding) { 504 /* No immediate data output; postpone writing frame/scan headers */ 505 master->pub.call_pass_startup = FALSE; 506 } else { 507 /* Will write frame/scan headers at first jpeg_write_scanlines call */ 508 master->pub.call_pass_startup = TRUE; 509 } 510 break; 511 #ifdef ENTROPY_OPT_SUPPORTED 512 case huff_opt_pass: 513 /* Do Huffman optimization for a scan after the first one. */ 514 select_scan_parameters(cinfo); 515 per_scan_setup(cinfo); 516 if (cinfo->Ss != 0 || cinfo->Ah == 0) { 517 (*cinfo->entropy->start_pass) (cinfo, TRUE); 518 (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); 519 master->pub.call_pass_startup = FALSE; 520 break; 521 } 522 /* Special case: Huffman DC refinement scans need no Huffman table 523 * and therefore we can skip the optimization pass for them. 524 */ 525 master->pass_type = output_pass; 526 master->pass_number++; 527 /*FALLTHROUGH*/ 528 #endif 529 case output_pass: 530 /* Do a data-output pass. */ 531 /* We need not repeat per-scan setup if prior optimization pass did it. */ 532 if (! cinfo->optimize_coding) { 533 select_scan_parameters(cinfo); 534 per_scan_setup(cinfo); 535 } 536 (*cinfo->entropy->start_pass) (cinfo, FALSE); 537 (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); 538 /* We emit frame/scan headers now */ 539 if (master->scan_number == 0) 540 (*cinfo->marker->write_frame_header) (cinfo); 541 (*cinfo->marker->write_scan_header) (cinfo); 542 master->pub.call_pass_startup = FALSE; 543 break; 544 default: 545 ERREXIT(cinfo, JERR_NOT_COMPILED); 546 } 547 548 master->pub.is_last_pass = (master->pass_number == master->total_passes-1); 549 550 /* Set up progress monitor's pass info if present */ 551 if (cinfo->progress != NULL) { 552 cinfo->progress->completed_passes = master->pass_number; 553 cinfo->progress->total_passes = master->total_passes; 554 } 555 } 556 557 558 /* 559 * Special start-of-pass hook. 560 * This is called by jpeg_write_scanlines if call_pass_startup is TRUE. 561 * In single-pass processing, we need this hook because we don't want to 562 * write frame/scan headers during jpeg_start_compress; we want to let the 563 * application write COM markers etc. between jpeg_start_compress and the 564 * jpeg_write_scanlines loop. 565 * In multi-pass processing, this routine is not used. 566 */ 567 568 METHODDEF(void) 569 pass_startup (j_compress_ptr cinfo) 570 { 571 cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */ 572 573 (*cinfo->marker->write_frame_header) (cinfo); 574 (*cinfo->marker->write_scan_header) (cinfo); 575 } 576 577 578 /* 579 * Finish up at end of pass. 580 */ 581 582 METHODDEF(void) 583 finish_pass_master (j_compress_ptr cinfo) 584 { 585 my_master_ptr master = (my_master_ptr) cinfo->master; 586 587 /* The entropy coder always needs an end-of-pass call, 588 * either to analyze statistics or to flush its output buffer. 589 */ 590 (*cinfo->entropy->finish_pass) (cinfo); 591 592 /* Update state for next pass */ 593 switch (master->pass_type) { 594 case main_pass: 595 /* next pass is either output of scan 0 (after optimization) 596 * or output of scan 1 (if no optimization). 597 */ 598 master->pass_type = output_pass; 599 if (! cinfo->optimize_coding) 600 master->scan_number++; 601 break; 602 case huff_opt_pass: 603 /* next pass is always output of current scan */ 604 master->pass_type = output_pass; 605 break; 606 case output_pass: 607 /* next pass is either optimization or output of next scan */ 608 if (cinfo->optimize_coding) 609 master->pass_type = huff_opt_pass; 610 master->scan_number++; 611 break; 612 } 613 614 master->pass_number++; 615 } 616 617 618 /* 619 * Initialize master compression control. 620 */ 621 622 GLOBAL(void) 623 jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only) 624 { 625 my_master_ptr master; 626 627 master = (my_master_ptr) (*cinfo->mem->alloc_small) 628 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_comp_master)); 629 cinfo->master = &master->pub; 630 master->pub.prepare_for_pass = prepare_for_pass; 631 master->pub.pass_startup = pass_startup; 632 master->pub.finish_pass = finish_pass_master; 633 master->pub.is_last_pass = FALSE; 634 635 /* Validate parameters, determine derived values */ 636 initial_setup(cinfo); 637 638 if (cinfo->scan_info != NULL) { 639 #ifdef C_MULTISCAN_FILES_SUPPORTED 640 validate_script(cinfo); 641 if (cinfo->block_size < DCTSIZE) 642 reduce_script(cinfo); 643 #else 644 ERREXIT(cinfo, JERR_NOT_COMPILED); 645 #endif 646 } else { 647 cinfo->progressive_mode = FALSE; 648 cinfo->num_scans = 1; 649 } 650 651 if (cinfo->optimize_coding) 652 cinfo->arith_code = FALSE; /* disable arithmetic coding */ 653 else if (! cinfo->arith_code && 654 (cinfo->progressive_mode || 655 (cinfo->block_size > 1 && cinfo->block_size < DCTSIZE))) 656 /* TEMPORARY HACK ??? */ 657 /* assume default tables no good for progressive or reduced AC mode */ 658 cinfo->optimize_coding = TRUE; /* force Huffman optimization */ 659 660 /* Initialize my private state */ 661 if (transcode_only) { 662 /* no main pass in transcoding */ 663 if (cinfo->optimize_coding) 664 master->pass_type = huff_opt_pass; 665 else 666 master->pass_type = output_pass; 667 } else { 668 /* for normal compression, first pass is always this type: */ 669 master->pass_type = main_pass; 670 } 671 master->scan_number = 0; 672 master->pass_number = 0; 673 if (cinfo->optimize_coding) 674 master->total_passes = cinfo->num_scans * 2; 675 else 676 master->total_passes = cinfo->num_scans; 677 } 678