xref: /reactos/dll/3rdparty/libjpeg/jcparam.c (revision ede7a20a)
1 /*
2  * jcparam.c
3  *
4  * Copyright (C) 1991-1998, Thomas G. Lane.
5  * Modified 2003-2019 by Guido Vollbeding.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains optional default-setting code for the JPEG compressor.
10  * Applications do not have to use this file, but those that don't use it
11  * must know a lot more about the innards of the JPEG code.
12  */
13 
14 #define JPEG_INTERNALS
15 #include "jinclude.h"
16 #include "jpeglib.h"
17 
18 
19 /*
20  * Quantization table setup routines
21  */
22 
23 GLOBAL(void)
24 jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
25 		      const unsigned int *basic_table,
26 		      int scale_factor, boolean force_baseline)
27 /* Define a quantization table equal to the basic_table times
28  * a scale factor (given as a percentage).
29  * If force_baseline is TRUE, the computed quantization table entries
30  * are limited to 1..255 for JPEG baseline compatibility.
31  */
32 {
33   JQUANT_TBL ** qtblptr;
34   int i;
35   long temp;
36 
37   /* Safety check to ensure start_compress not called yet. */
38   if (cinfo->global_state != CSTATE_START)
39     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
40 
41   if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
42     ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
43 
44   qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
45 
46   if (*qtblptr == NULL)
47     *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
48 
49   for (i = 0; i < DCTSIZE2; i++) {
50     temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
51     /* limit the values to the valid range */
52     if (temp <= 0L) temp = 1L;
53     if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
54     if (force_baseline && temp > 255L)
55       temp = 255L;		/* limit to baseline range if requested */
56     (*qtblptr)->quantval[i] = (UINT16) temp;
57   }
58 
59   /* Initialize sent_table FALSE so table will be written to JPEG file. */
60   (*qtblptr)->sent_table = FALSE;
61 }
62 
63 
64 /* These are the sample quantization tables given in JPEG spec section K.1.
65  * The spec says that the values given produce "good" quality, and
66  * when divided by 2, "very good" quality.
67  */
68 static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
69   16,  11,  10,  16,  24,  40,  51,  61,
70   12,  12,  14,  19,  26,  58,  60,  55,
71   14,  13,  16,  24,  40,  57,  69,  56,
72   14,  17,  22,  29,  51,  87,  80,  62,
73   18,  22,  37,  56,  68, 109, 103,  77,
74   24,  35,  55,  64,  81, 104, 113,  92,
75   49,  64,  78,  87, 103, 121, 120, 101,
76   72,  92,  95,  98, 112, 100, 103,  99
77 };
78 static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
79   17,  18,  24,  47,  99,  99,  99,  99,
80   18,  21,  26,  66,  99,  99,  99,  99,
81   24,  26,  56,  99,  99,  99,  99,  99,
82   47,  66,  99,  99,  99,  99,  99,  99,
83   99,  99,  99,  99,  99,  99,  99,  99,
84   99,  99,  99,  99,  99,  99,  99,  99,
85   99,  99,  99,  99,  99,  99,  99,  99,
86   99,  99,  99,  99,  99,  99,  99,  99
87 };
88 
89 
90 GLOBAL(void)
91 jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
92 /* Set or change the 'quality' (quantization) setting, using default tables
93  * and straight percentage-scaling quality scales.
94  * This entry point allows different scalings for luminance and chrominance.
95  */
96 {
97   /* Set up two quantization tables using the specified scaling */
98   jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
99 		       cinfo->q_scale_factor[0], force_baseline);
100   jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
101 		       cinfo->q_scale_factor[1], force_baseline);
102 }
103 
104 
105 GLOBAL(void)
106 jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
107 			 boolean force_baseline)
108 /* Set or change the 'quality' (quantization) setting, using default tables
109  * and a straight percentage-scaling quality scale.  In most cases it's better
110  * to use jpeg_set_quality (below); this entry point is provided for
111  * applications that insist on a linear percentage scaling.
112  */
113 {
114   /* Set up two quantization tables using the specified scaling */
115   jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
116 		       scale_factor, force_baseline);
117   jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
118 		       scale_factor, force_baseline);
119 }
120 
121 
122 GLOBAL(int)
123 jpeg_quality_scaling (int quality)
124 /* Convert a user-specified quality rating to a percentage scaling factor
125  * for an underlying quantization table, using our recommended scaling curve.
126  * The input 'quality' factor should be 0 (terrible) to 100 (very good).
127  */
128 {
129   /* Safety limit on quality factor.  Convert 0 to 1 to avoid zero divide. */
130   if (quality <= 0) quality = 1;
131   if (quality > 100) quality = 100;
132 
133   /* The basic table is used as-is (scaling 100) for a quality of 50.
134    * Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
135    * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
136    * to make all the table entries 1 (hence, minimum quantization loss).
137    * Qualities 1..50 are converted to scaling percentage 5000/Q.
138    */
139   if (quality < 50)
140     quality = 5000 / quality;
141   else
142     quality = 200 - quality*2;
143 
144   return quality;
145 }
146 
147 
148 GLOBAL(void)
149 jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
150 /* Set or change the 'quality' (quantization) setting, using default tables.
151  * This is the standard quality-adjusting entry point for typical user
152  * interfaces; only those who want detailed control over quantization tables
153  * would use the preceding routines directly.
154  */
155 {
156   /* Convert user 0-100 rating to percentage scaling */
157   quality = jpeg_quality_scaling(quality);
158 
159   /* Set up standard quality tables */
160   jpeg_set_linear_quality(cinfo, quality, force_baseline);
161 }
162 
163 
164 /*
165  * Reset standard Huffman tables
166  */
167 
168 LOCAL(void)
169 std_huff_tables (j_compress_ptr cinfo)
170 {
171   if (cinfo->dc_huff_tbl_ptrs[0] != NULL)
172     (void) jpeg_std_huff_table((j_common_ptr) cinfo, TRUE, 0);
173 
174   if (cinfo->ac_huff_tbl_ptrs[0] != NULL)
175     (void) jpeg_std_huff_table((j_common_ptr) cinfo, FALSE, 0);
176 
177   if (cinfo->dc_huff_tbl_ptrs[1] != NULL)
178     (void) jpeg_std_huff_table((j_common_ptr) cinfo, TRUE, 1);
179 
180   if (cinfo->ac_huff_tbl_ptrs[1] != NULL)
181     (void) jpeg_std_huff_table((j_common_ptr) cinfo, FALSE, 1);
182 }
183 
184 
185 /*
186  * Default parameter setup for compression.
187  *
188  * Applications that don't choose to use this routine must do their
189  * own setup of all these parameters.  Alternately, you can call this
190  * to establish defaults and then alter parameters selectively.  This
191  * is the recommended approach since, if we add any new parameters,
192  * your code will still work (they'll be set to reasonable defaults).
193  */
194 
195 GLOBAL(void)
196 jpeg_set_defaults (j_compress_ptr cinfo)
197 {
198   int i;
199 
200   /* Safety check to ensure start_compress not called yet. */
201   if (cinfo->global_state != CSTATE_START)
202     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
203 
204   /* Allocate comp_info array large enough for maximum component count.
205    * Array is made permanent in case application wants to compress
206    * multiple images at same param settings.
207    */
208   if (cinfo->comp_info == NULL)
209     cinfo->comp_info = (jpeg_component_info *)
210       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
211 				  MAX_COMPONENTS * SIZEOF(jpeg_component_info));
212 
213   /* Initialize everything not dependent on the color space */
214 
215   cinfo->scale_num = 1;		/* 1:1 scaling */
216   cinfo->scale_denom = 1;
217   cinfo->data_precision = BITS_IN_JSAMPLE;
218   /* Set up two quantization tables using default quality of 75 */
219   jpeg_set_quality(cinfo, 75, TRUE);
220   /* Reset standard Huffman tables */
221   std_huff_tables(cinfo);
222 
223   /* Initialize default arithmetic coding conditioning */
224   for (i = 0; i < NUM_ARITH_TBLS; i++) {
225     cinfo->arith_dc_L[i] = 0;
226     cinfo->arith_dc_U[i] = 1;
227     cinfo->arith_ac_K[i] = 5;
228   }
229 
230   /* Default is no multiple-scan output */
231   cinfo->scan_info = NULL;
232   cinfo->num_scans = 0;
233 
234   /* Expect normal source image, not raw downsampled data */
235   cinfo->raw_data_in = FALSE;
236 
237   /* The standard Huffman tables are only valid for 8-bit data precision.
238    * If the precision is higher, use arithmetic coding.
239    * (Alternatively, using Huffman coding would be possible with forcing
240    * optimization on so that usable tables will be computed, or by
241    * supplying default tables that are valid for the desired precision.)
242    * Otherwise, use Huffman coding by default.
243    */
244   cinfo->arith_code = cinfo->data_precision > 8 ? TRUE : FALSE;
245 
246   /* By default, don't do extra passes to optimize entropy coding */
247   cinfo->optimize_coding = FALSE;
248 
249   /* By default, use the simpler non-cosited sampling alignment */
250   cinfo->CCIR601_sampling = FALSE;
251 
252   /* By default, apply fancy downsampling */
253   cinfo->do_fancy_downsampling = TRUE;
254 
255   /* No input smoothing */
256   cinfo->smoothing_factor = 0;
257 
258   /* DCT algorithm preference */
259   cinfo->dct_method = JDCT_DEFAULT;
260 
261   /* No restart markers */
262   cinfo->restart_interval = 0;
263   cinfo->restart_in_rows = 0;
264 
265   /* Fill in default JFIF marker parameters.  Note that whether the marker
266    * will actually be written is determined by jpeg_set_colorspace.
267    *
268    * By default, the library emits JFIF version code 1.01.
269    * An application that wants to emit JFIF 1.02 extension markers should set
270    * JFIF_minor_version to 2.  We could probably get away with just defaulting
271    * to 1.02, but there may still be some decoders in use that will complain
272    * about that; saying 1.01 should minimize compatibility problems.
273    *
274    * For wide gamut colorspaces (BG_RGB and BG_YCC), the major version will be
275    * overridden by jpeg_set_colorspace and set to 2.
276    */
277   cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
278   cinfo->JFIF_minor_version = 1;
279   cinfo->density_unit = 0;	/* Pixel size is unknown by default */
280   cinfo->X_density = 1;		/* Pixel aspect ratio is square by default */
281   cinfo->Y_density = 1;
282 
283   /* No color transform */
284   cinfo->color_transform = JCT_NONE;
285 
286   /* Choose JPEG colorspace based on input space, set defaults accordingly */
287 
288   jpeg_default_colorspace(cinfo);
289 }
290 
291 
292 /*
293  * Select an appropriate JPEG colorspace for in_color_space.
294  */
295 
296 GLOBAL(void)
297 jpeg_default_colorspace (j_compress_ptr cinfo)
298 {
299   switch (cinfo->in_color_space) {
300   case JCS_UNKNOWN:
301     jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
302     break;
303   case JCS_GRAYSCALE:
304     jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
305     break;
306   case JCS_RGB:
307     jpeg_set_colorspace(cinfo, JCS_YCbCr);
308     break;
309   case JCS_YCbCr:
310     jpeg_set_colorspace(cinfo, JCS_YCbCr);
311     break;
312   case JCS_CMYK:
313     jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
314     break;
315   case JCS_YCCK:
316     jpeg_set_colorspace(cinfo, JCS_YCCK);
317     break;
318   case JCS_BG_RGB:
319     /* No translation for now -- conversion to BG_YCC not yet supportet */
320     jpeg_set_colorspace(cinfo, JCS_BG_RGB);
321     break;
322   case JCS_BG_YCC:
323     jpeg_set_colorspace(cinfo, JCS_BG_YCC);
324     break;
325   default:
326     ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
327   }
328 }
329 
330 
331 /*
332  * Set the JPEG colorspace, and choose colorspace-dependent default values.
333  */
334 
335 GLOBAL(void)
336 jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
337 {
338   jpeg_component_info * compptr;
339   int ci;
340 
341 #define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl)  \
342   (compptr = &cinfo->comp_info[index], \
343    compptr->component_id = (id), \
344    compptr->h_samp_factor = (hsamp), \
345    compptr->v_samp_factor = (vsamp), \
346    compptr->quant_tbl_no = (quant), \
347    compptr->dc_tbl_no = (dctbl), \
348    compptr->ac_tbl_no = (actbl) )
349 
350   /* Safety check to ensure start_compress not called yet. */
351   if (cinfo->global_state != CSTATE_START)
352     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
353 
354   /* For all colorspaces, we use Q and Huff tables 0 for luminance components,
355    * tables 1 for chrominance components.
356    */
357 
358   cinfo->jpeg_color_space = colorspace;
359 
360   cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
361   cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
362 
363   switch (colorspace) {
364   case JCS_UNKNOWN:
365     cinfo->num_components = cinfo->input_components;
366     if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
367       ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
368 	       MAX_COMPONENTS);
369     for (ci = 0; ci < cinfo->num_components; ci++) {
370       SET_COMP(ci, ci, 1,1, 0, 0,0);
371     }
372     break;
373   case JCS_GRAYSCALE:
374     cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
375     cinfo->num_components = 1;
376     /* JFIF specifies component ID 1 */
377     SET_COMP(0, 0x01, 1,1, 0, 0,0);
378     break;
379   case JCS_RGB:
380     cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
381     cinfo->num_components = 3;
382     SET_COMP(0, 0x52 /* 'R' */, 1,1, 0,
383 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
384 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
385     SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
386     SET_COMP(2, 0x42 /* 'B' */, 1,1, 0,
387 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
388 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
389     break;
390   case JCS_YCbCr:
391     cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
392     cinfo->num_components = 3;
393     /* JFIF specifies component IDs 1,2,3 */
394     /* We default to 2x2 subsamples of chrominance */
395     SET_COMP(0, 0x01, 2,2, 0, 0,0);
396     SET_COMP(1, 0x02, 1,1, 1, 1,1);
397     SET_COMP(2, 0x03, 1,1, 1, 1,1);
398     break;
399   case JCS_CMYK:
400     cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
401     cinfo->num_components = 4;
402     SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
403     SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
404     SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
405     SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
406     break;
407   case JCS_YCCK:
408     cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
409     cinfo->num_components = 4;
410     SET_COMP(0, 0x01, 2,2, 0, 0,0);
411     SET_COMP(1, 0x02, 1,1, 1, 1,1);
412     SET_COMP(2, 0x03, 1,1, 1, 1,1);
413     SET_COMP(3, 0x04, 2,2, 0, 0,0);
414     break;
415   case JCS_BG_RGB:
416     cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
417     cinfo->JFIF_major_version = 2;   /* Set JFIF major version = 2 */
418     cinfo->num_components = 3;
419     /* Add offset 0x20 to the normal R/G/B component IDs */
420     SET_COMP(0, 0x72 /* 'r' */, 1,1, 0,
421 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
422 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
423     SET_COMP(1, 0x67 /* 'g' */, 1,1, 0, 0,0);
424     SET_COMP(2, 0x62 /* 'b' */, 1,1, 0,
425 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
426 		cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
427     break;
428   case JCS_BG_YCC:
429     cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
430     cinfo->JFIF_major_version = 2;   /* Set JFIF major version = 2 */
431     cinfo->num_components = 3;
432     /* Add offset 0x20 to the normal Cb/Cr component IDs */
433     /* We default to 2x2 subsamples of chrominance */
434     SET_COMP(0, 0x01, 2,2, 0, 0,0);
435     SET_COMP(1, 0x22, 1,1, 1, 1,1);
436     SET_COMP(2, 0x23, 1,1, 1, 1,1);
437     break;
438   default:
439     ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
440   }
441 }
442 
443 
444 #ifdef C_PROGRESSIVE_SUPPORTED
445 
446 LOCAL(jpeg_scan_info *)
447 fill_a_scan (jpeg_scan_info * scanptr, int ci,
448 	     int Ss, int Se, int Ah, int Al)
449 /* Support routine: generate one scan for specified component */
450 {
451   scanptr->comps_in_scan = 1;
452   scanptr->component_index[0] = ci;
453   scanptr->Ss = Ss;
454   scanptr->Se = Se;
455   scanptr->Ah = Ah;
456   scanptr->Al = Al;
457   scanptr++;
458   return scanptr;
459 }
460 
461 LOCAL(jpeg_scan_info *)
462 fill_scans (jpeg_scan_info * scanptr, int ncomps,
463 	    int Ss, int Se, int Ah, int Al)
464 /* Support routine: generate one scan for each component */
465 {
466   int ci;
467 
468   for (ci = 0; ci < ncomps; ci++) {
469     scanptr->comps_in_scan = 1;
470     scanptr->component_index[0] = ci;
471     scanptr->Ss = Ss;
472     scanptr->Se = Se;
473     scanptr->Ah = Ah;
474     scanptr->Al = Al;
475     scanptr++;
476   }
477   return scanptr;
478 }
479 
480 LOCAL(jpeg_scan_info *)
481 fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
482 /* Support routine: generate interleaved DC scan if possible, else N scans */
483 {
484   int ci;
485 
486   if (ncomps <= MAX_COMPS_IN_SCAN) {
487     /* Single interleaved DC scan */
488     scanptr->comps_in_scan = ncomps;
489     for (ci = 0; ci < ncomps; ci++)
490       scanptr->component_index[ci] = ci;
491     scanptr->Ss = scanptr->Se = 0;
492     scanptr->Ah = Ah;
493     scanptr->Al = Al;
494     scanptr++;
495   } else {
496     /* Noninterleaved DC scan for each component */
497     scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
498   }
499   return scanptr;
500 }
501 
502 
503 /*
504  * Create a recommended progressive-JPEG script.
505  * cinfo->num_components and cinfo->jpeg_color_space must be correct.
506  */
507 
508 GLOBAL(void)
509 jpeg_simple_progression (j_compress_ptr cinfo)
510 {
511   int ncomps = cinfo->num_components;
512   int nscans;
513   jpeg_scan_info * scanptr;
514 
515   /* Safety check to ensure start_compress not called yet. */
516   if (cinfo->global_state != CSTATE_START)
517     ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
518 
519   /* Figure space needed for script.  Calculation must match code below! */
520   if (ncomps == 3 &&
521       (cinfo->jpeg_color_space == JCS_YCbCr ||
522        cinfo->jpeg_color_space == JCS_BG_YCC)) {
523     /* Custom script for YCC color images. */
524     nscans = 10;
525   } else {
526     /* All-purpose script for other color spaces. */
527     if (ncomps > MAX_COMPS_IN_SCAN)
528       nscans = 6 * ncomps;	/* 2 DC + 4 AC scans per component */
529     else
530       nscans = 2 + 4 * ncomps;	/* 2 DC scans; 4 AC scans per component */
531   }
532 
533   /* Allocate space for script.
534    * We need to put it in the permanent pool in case the application performs
535    * multiple compressions without changing the settings.  To avoid a memory
536    * leak if jpeg_simple_progression is called repeatedly for the same JPEG
537    * object, we try to re-use previously allocated space, and we allocate
538    * enough space to handle YCC even if initially asked for grayscale.
539    */
540   if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
541     cinfo->script_space_size = MAX(nscans, 10);
542     cinfo->script_space = (jpeg_scan_info *)
543       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
544 			cinfo->script_space_size * SIZEOF(jpeg_scan_info));
545   }
546   scanptr = cinfo->script_space;
547   cinfo->scan_info = scanptr;
548   cinfo->num_scans = nscans;
549 
550   if (ncomps == 3 &&
551       (cinfo->jpeg_color_space == JCS_YCbCr ||
552        cinfo->jpeg_color_space == JCS_BG_YCC)) {
553     /* Custom script for YCC color images. */
554     /* Initial DC scan */
555     scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
556     /* Initial AC scan: get some luma data out in a hurry */
557     scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
558     /* Chroma data is too small to be worth expending many scans on */
559     scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
560     scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
561     /* Complete spectral selection for luma AC */
562     scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
563     /* Refine next bit of luma AC */
564     scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
565     /* Finish DC successive approximation */
566     scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
567     /* Finish AC successive approximation */
568     scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
569     scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
570     /* Luma bottom bit comes last since it's usually largest scan */
571     scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
572   } else {
573     /* All-purpose script for other color spaces. */
574     /* Successive approximation first pass */
575     scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
576     scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
577     scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
578     /* Successive approximation second pass */
579     scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
580     /* Successive approximation final pass */
581     scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
582     scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
583   }
584 }
585 
586 #endif /* C_PROGRESSIVE_SUPPORTED */
587