1 /* 2 * jcsample.c 3 * 4 * Copyright (C) 1991-1996, Thomas G. Lane. 5 * This file is part of the Independent JPEG Group's software. 6 * For conditions of distribution and use, see the accompanying README file. 7 * 8 * This file contains downsampling routines. 9 * 10 * Downsampling input data is counted in "row groups". A row group 11 * is defined to be max_v_samp_factor pixel rows of each component, 12 * from which the downsampler produces v_samp_factor sample rows. 13 * A single row group is processed in each call to the downsampler module. 14 * 15 * The downsampler is responsible for edge-expansion of its output data 16 * to fill an integral number of DCT blocks horizontally. The source buffer 17 * may be modified if it is helpful for this purpose (the source buffer is 18 * allocated wide enough to correspond to the desired output width). 19 * The caller (the prep controller) is responsible for vertical padding. 20 * 21 * The downsampler may request "context rows" by setting need_context_rows 22 * during startup. In this case, the input arrays will contain at least 23 * one row group's worth of pixels above and below the passed-in data; 24 * the caller will create dummy rows at image top and bottom by replicating 25 * the first or last real pixel row. 26 * 27 * An excellent reference for image resampling is 28 * Digital Image Warping, George Wolberg, 1990. 29 * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. 30 * 31 * The downsampling algorithm used here is a simple average of the source 32 * pixels covered by the output pixel. The hi-falutin sampling literature 33 * refers to this as a "box filter". In general the characteristics of a box 34 * filter are not very good, but for the specific cases we normally use (1:1 35 * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not 36 * nearly so bad. If you intend to use other sampling ratios, you'd be well 37 * advised to improve this code. 38 * 39 * A simple input-smoothing capability is provided. This is mainly intended 40 * for cleaning up color-dithered GIF input files (if you find it inadequate, 41 * we suggest using an external filtering program such as pnmconvol). When 42 * enabled, each input pixel P is replaced by a weighted sum of itself and its 43 * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, 44 * where SF = (smoothing_factor / 1024). 45 * Currently, smoothing is only supported for 2h2v sampling factors. 46 */ 47 48 #define JPEG_INTERNALS 49 #include "jinclude.h" 50 #include "jpeglib.h" 51 52 53 /* Pointer to routine to downsample a single component */ 54 typedef JMETHOD(void, downsample1_ptr, 55 (j_compress_ptr cinfo, jpeg_component_info * compptr, 56 JSAMPARRAY input_data, JSAMPARRAY output_data)); 57 58 /* Private subobject */ 59 60 typedef struct { 61 struct jpeg_downsampler pub; /* public fields */ 62 63 /* Downsampling method pointers, one per component */ 64 downsample1_ptr methods[MAX_COMPONENTS]; 65 66 /* Height of an output row group for each component. */ 67 int rowgroup_height[MAX_COMPONENTS]; 68 69 /* These arrays save pixel expansion factors so that int_downsample need not 70 * recompute them each time. They are unused for other downsampling methods. 71 */ 72 UINT8 h_expand[MAX_COMPONENTS]; 73 UINT8 v_expand[MAX_COMPONENTS]; 74 } my_downsampler; 75 76 typedef my_downsampler * my_downsample_ptr; 77 78 79 /* 80 * Initialize for a downsampling pass. 81 */ 82 83 METHODDEF(void) 84 start_pass_downsample (j_compress_ptr cinfo) 85 { 86 /* no work for now */ 87 } 88 89 90 /* 91 * Expand a component horizontally from width input_cols to width output_cols, 92 * by duplicating the rightmost samples. 93 */ 94 95 LOCAL(void) 96 expand_right_edge (JSAMPARRAY image_data, int num_rows, 97 JDIMENSION input_cols, JDIMENSION output_cols) 98 { 99 register JSAMPROW ptr; 100 register JSAMPLE pixval; 101 register int count; 102 int row; 103 int numcols = (int) (output_cols - input_cols); 104 105 if (numcols > 0) { 106 for (row = 0; row < num_rows; row++) { 107 ptr = image_data[row] + input_cols; 108 pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ 109 for (count = numcols; count > 0; count--) 110 *ptr++ = pixval; 111 } 112 } 113 } 114 115 116 /* 117 * Do downsampling for a whole row group (all components). 118 * 119 * In this version we simply downsample each component independently. 120 */ 121 122 METHODDEF(void) 123 sep_downsample (j_compress_ptr cinfo, 124 JSAMPIMAGE input_buf, JDIMENSION in_row_index, 125 JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) 126 { 127 my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; 128 int ci; 129 jpeg_component_info * compptr; 130 JSAMPARRAY in_ptr, out_ptr; 131 132 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 133 ci++, compptr++) { 134 in_ptr = input_buf[ci] + in_row_index; 135 out_ptr = output_buf[ci] + 136 (out_row_group_index * downsample->rowgroup_height[ci]); 137 (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); 138 } 139 } 140 141 142 /* 143 * Downsample pixel values of a single component. 144 * One row group is processed per call. 145 * This version handles arbitrary integral sampling ratios, without smoothing. 146 * Note that this version is not actually used for customary sampling ratios. 147 */ 148 149 METHODDEF(void) 150 int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, 151 JSAMPARRAY input_data, JSAMPARRAY output_data) 152 { 153 my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; 154 int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; 155 JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ 156 JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; 157 JSAMPROW inptr, outptr; 158 INT32 outvalue; 159 160 h_expand = downsample->h_expand[compptr->component_index]; 161 v_expand = downsample->v_expand[compptr->component_index]; 162 numpix = h_expand * v_expand; 163 numpix2 = numpix/2; 164 165 /* Expand input data enough to let all the output samples be generated 166 * by the standard loop. Special-casing padded output would be more 167 * efficient. 168 */ 169 expand_right_edge(input_data, cinfo->max_v_samp_factor, 170 cinfo->image_width, output_cols * h_expand); 171 172 inrow = outrow = 0; 173 while (inrow < cinfo->max_v_samp_factor) { 174 outptr = output_data[outrow]; 175 for (outcol = 0, outcol_h = 0; outcol < output_cols; 176 outcol++, outcol_h += h_expand) { 177 outvalue = 0; 178 for (v = 0; v < v_expand; v++) { 179 inptr = input_data[inrow+v] + outcol_h; 180 for (h = 0; h < h_expand; h++) { 181 outvalue += (INT32) GETJSAMPLE(*inptr++); 182 } 183 } 184 *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); 185 } 186 inrow += v_expand; 187 outrow++; 188 } 189 } 190 191 192 /* 193 * Downsample pixel values of a single component. 194 * This version handles the special case of a full-size component, 195 * without smoothing. 196 */ 197 198 METHODDEF(void) 199 fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, 200 JSAMPARRAY input_data, JSAMPARRAY output_data) 201 { 202 /* Copy the data */ 203 jcopy_sample_rows(input_data, 0, output_data, 0, 204 cinfo->max_v_samp_factor, cinfo->image_width); 205 /* Edge-expand */ 206 expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width, 207 compptr->width_in_blocks * compptr->DCT_h_scaled_size); 208 } 209 210 211 /* 212 * Downsample pixel values of a single component. 213 * This version handles the common case of 2:1 horizontal and 1:1 vertical, 214 * without smoothing. 215 * 216 * A note about the "bias" calculations: when rounding fractional values to 217 * integer, we do not want to always round 0.5 up to the next integer. 218 * If we did that, we'd introduce a noticeable bias towards larger values. 219 * Instead, this code is arranged so that 0.5 will be rounded up or down at 220 * alternate pixel locations (a simple ordered dither pattern). 221 */ 222 223 METHODDEF(void) 224 h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, 225 JSAMPARRAY input_data, JSAMPARRAY output_data) 226 { 227 int inrow; 228 JDIMENSION outcol; 229 JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; 230 register JSAMPROW inptr, outptr; 231 register int bias; 232 233 /* Expand input data enough to let all the output samples be generated 234 * by the standard loop. Special-casing padded output would be more 235 * efficient. 236 */ 237 expand_right_edge(input_data, cinfo->max_v_samp_factor, 238 cinfo->image_width, output_cols * 2); 239 240 for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { 241 outptr = output_data[inrow]; 242 inptr = input_data[inrow]; 243 bias = 0; /* bias = 0,1,0,1,... for successive samples */ 244 for (outcol = 0; outcol < output_cols; outcol++) { 245 *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) 246 + bias) >> 1); 247 bias ^= 1; /* 0=>1, 1=>0 */ 248 inptr += 2; 249 } 250 } 251 } 252 253 254 /* 255 * Downsample pixel values of a single component. 256 * This version handles the standard case of 2:1 horizontal and 2:1 vertical, 257 * without smoothing. 258 */ 259 260 METHODDEF(void) 261 h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, 262 JSAMPARRAY input_data, JSAMPARRAY output_data) 263 { 264 int inrow, outrow; 265 JDIMENSION outcol; 266 JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; 267 register JSAMPROW inptr0, inptr1, outptr; 268 register int bias; 269 270 /* Expand input data enough to let all the output samples be generated 271 * by the standard loop. Special-casing padded output would be more 272 * efficient. 273 */ 274 expand_right_edge(input_data, cinfo->max_v_samp_factor, 275 cinfo->image_width, output_cols * 2); 276 277 inrow = outrow = 0; 278 while (inrow < cinfo->max_v_samp_factor) { 279 outptr = output_data[outrow]; 280 inptr0 = input_data[inrow]; 281 inptr1 = input_data[inrow+1]; 282 bias = 1; /* bias = 1,2,1,2,... for successive samples */ 283 for (outcol = 0; outcol < output_cols; outcol++) { 284 *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + 285 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) 286 + bias) >> 2); 287 bias ^= 3; /* 1=>2, 2=>1 */ 288 inptr0 += 2; inptr1 += 2; 289 } 290 inrow += 2; 291 outrow++; 292 } 293 } 294 295 296 #ifdef INPUT_SMOOTHING_SUPPORTED 297 298 /* 299 * Downsample pixel values of a single component. 300 * This version handles the standard case of 2:1 horizontal and 2:1 vertical, 301 * with smoothing. One row of context is required. 302 */ 303 304 METHODDEF(void) 305 h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, 306 JSAMPARRAY input_data, JSAMPARRAY output_data) 307 { 308 int inrow, outrow; 309 JDIMENSION colctr; 310 JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; 311 register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; 312 INT32 membersum, neighsum, memberscale, neighscale; 313 314 /* Expand input data enough to let all the output samples be generated 315 * by the standard loop. Special-casing padded output would be more 316 * efficient. 317 */ 318 expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, 319 cinfo->image_width, output_cols * 2); 320 321 /* We don't bother to form the individual "smoothed" input pixel values; 322 * we can directly compute the output which is the average of the four 323 * smoothed values. Each of the four member pixels contributes a fraction 324 * (1-8*SF) to its own smoothed image and a fraction SF to each of the three 325 * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final 326 * output. The four corner-adjacent neighbor pixels contribute a fraction 327 * SF to just one smoothed pixel, or SF/4 to the final output; while the 328 * eight edge-adjacent neighbors contribute SF to each of two smoothed 329 * pixels, or SF/2 overall. In order to use integer arithmetic, these 330 * factors are scaled by 2^16 = 65536. 331 * Also recall that SF = smoothing_factor / 1024. 332 */ 333 334 memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ 335 neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ 336 337 inrow = outrow = 0; 338 while (inrow < cinfo->max_v_samp_factor) { 339 outptr = output_data[outrow]; 340 inptr0 = input_data[inrow]; 341 inptr1 = input_data[inrow+1]; 342 above_ptr = input_data[inrow-1]; 343 below_ptr = input_data[inrow+2]; 344 345 /* Special case for first column: pretend column -1 is same as column 0 */ 346 membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + 347 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); 348 neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + 349 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + 350 GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + 351 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); 352 neighsum += neighsum; 353 neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + 354 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); 355 membersum = membersum * memberscale + neighsum * neighscale; 356 *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); 357 inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; 358 359 for (colctr = output_cols - 2; colctr > 0; colctr--) { 360 /* sum of pixels directly mapped to this output element */ 361 membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + 362 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); 363 /* sum of edge-neighbor pixels */ 364 neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + 365 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + 366 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + 367 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); 368 /* The edge-neighbors count twice as much as corner-neighbors */ 369 neighsum += neighsum; 370 /* Add in the corner-neighbors */ 371 neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + 372 GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); 373 /* form final output scaled up by 2^16 */ 374 membersum = membersum * memberscale + neighsum * neighscale; 375 /* round, descale and output it */ 376 *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); 377 inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; 378 } 379 380 /* Special case for last column */ 381 membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + 382 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); 383 neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + 384 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + 385 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + 386 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); 387 neighsum += neighsum; 388 neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + 389 GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); 390 membersum = membersum * memberscale + neighsum * neighscale; 391 *outptr = (JSAMPLE) ((membersum + 32768) >> 16); 392 393 inrow += 2; 394 outrow++; 395 } 396 } 397 398 399 /* 400 * Downsample pixel values of a single component. 401 * This version handles the special case of a full-size component, 402 * with smoothing. One row of context is required. 403 */ 404 405 METHODDEF(void) 406 fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, 407 JSAMPARRAY input_data, JSAMPARRAY output_data) 408 { 409 int inrow; 410 JDIMENSION colctr; 411 JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; 412 register JSAMPROW inptr, above_ptr, below_ptr, outptr; 413 INT32 membersum, neighsum, memberscale, neighscale; 414 int colsum, lastcolsum, nextcolsum; 415 416 /* Expand input data enough to let all the output samples be generated 417 * by the standard loop. Special-casing padded output would be more 418 * efficient. 419 */ 420 expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, 421 cinfo->image_width, output_cols); 422 423 /* Each of the eight neighbor pixels contributes a fraction SF to the 424 * smoothed pixel, while the main pixel contributes (1-8*SF). In order 425 * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. 426 * Also recall that SF = smoothing_factor / 1024. 427 */ 428 429 memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ 430 neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ 431 432 for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { 433 outptr = output_data[inrow]; 434 inptr = input_data[inrow]; 435 above_ptr = input_data[inrow-1]; 436 below_ptr = input_data[inrow+1]; 437 438 /* Special case for first column */ 439 colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + 440 GETJSAMPLE(*inptr); 441 membersum = GETJSAMPLE(*inptr++); 442 nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + 443 GETJSAMPLE(*inptr); 444 neighsum = colsum + (colsum - membersum) + nextcolsum; 445 membersum = membersum * memberscale + neighsum * neighscale; 446 *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); 447 lastcolsum = colsum; colsum = nextcolsum; 448 449 for (colctr = output_cols - 2; colctr > 0; colctr--) { 450 membersum = GETJSAMPLE(*inptr++); 451 above_ptr++; below_ptr++; 452 nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + 453 GETJSAMPLE(*inptr); 454 neighsum = lastcolsum + (colsum - membersum) + nextcolsum; 455 membersum = membersum * memberscale + neighsum * neighscale; 456 *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); 457 lastcolsum = colsum; colsum = nextcolsum; 458 } 459 460 /* Special case for last column */ 461 membersum = GETJSAMPLE(*inptr); 462 neighsum = lastcolsum + (colsum - membersum) + colsum; 463 membersum = membersum * memberscale + neighsum * neighscale; 464 *outptr = (JSAMPLE) ((membersum + 32768) >> 16); 465 466 } 467 } 468 469 #endif /* INPUT_SMOOTHING_SUPPORTED */ 470 471 472 /* 473 * Module initialization routine for downsampling. 474 * Note that we must select a routine for each component. 475 */ 476 477 GLOBAL(void) 478 jinit_downsampler (j_compress_ptr cinfo) 479 { 480 my_downsample_ptr downsample; 481 int ci; 482 jpeg_component_info * compptr; 483 boolean smoothok = TRUE; 484 int h_in_group, v_in_group, h_out_group, v_out_group; 485 486 downsample = (my_downsample_ptr) 487 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 488 SIZEOF(my_downsampler)); 489 cinfo->downsample = (struct jpeg_downsampler *) downsample; 490 downsample->pub.start_pass = start_pass_downsample; 491 downsample->pub.downsample = sep_downsample; 492 downsample->pub.need_context_rows = FALSE; 493 494 if (cinfo->CCIR601_sampling) 495 ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); 496 497 /* Verify we can handle the sampling factors, and set up method pointers */ 498 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 499 ci++, compptr++) { 500 /* Compute size of an "output group" for DCT scaling. This many samples 501 * are to be converted from max_h_samp_factor * max_v_samp_factor pixels. 502 */ 503 h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) / 504 cinfo->min_DCT_h_scaled_size; 505 v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / 506 cinfo->min_DCT_v_scaled_size; 507 h_in_group = cinfo->max_h_samp_factor; 508 v_in_group = cinfo->max_v_samp_factor; 509 downsample->rowgroup_height[ci] = v_out_group; /* save for use later */ 510 if (h_in_group == h_out_group && v_in_group == v_out_group) { 511 #ifdef INPUT_SMOOTHING_SUPPORTED 512 if (cinfo->smoothing_factor) { 513 downsample->methods[ci] = fullsize_smooth_downsample; 514 downsample->pub.need_context_rows = TRUE; 515 } else 516 #endif 517 downsample->methods[ci] = fullsize_downsample; 518 } else if (h_in_group == h_out_group * 2 && 519 v_in_group == v_out_group) { 520 smoothok = FALSE; 521 downsample->methods[ci] = h2v1_downsample; 522 } else if (h_in_group == h_out_group * 2 && 523 v_in_group == v_out_group * 2) { 524 #ifdef INPUT_SMOOTHING_SUPPORTED 525 if (cinfo->smoothing_factor) { 526 downsample->methods[ci] = h2v2_smooth_downsample; 527 downsample->pub.need_context_rows = TRUE; 528 } else 529 #endif 530 downsample->methods[ci] = h2v2_downsample; 531 } else if ((h_in_group % h_out_group) == 0 && 532 (v_in_group % v_out_group) == 0) { 533 smoothok = FALSE; 534 downsample->methods[ci] = int_downsample; 535 downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group); 536 downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group); 537 } else 538 ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); 539 } 540 541 #ifdef INPUT_SMOOTHING_SUPPORTED 542 if (cinfo->smoothing_factor && !smoothok) 543 TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); 544 #endif 545 } 546