1 /* 2 * jdhuff.c 3 * 4 * Copyright (C) 1991-1997, Thomas G. Lane. 5 * Modified 2006-2019 by Guido Vollbeding. 6 * This file is part of the Independent JPEG Group's software. 7 * For conditions of distribution and use, see the accompanying README file. 8 * 9 * This file contains Huffman entropy decoding routines. 10 * Both sequential and progressive modes are supported in this single module. 11 * 12 * Much of the complexity here has to do with supporting input suspension. 13 * If the data source module demands suspension, we want to be able to back 14 * up to the start of the current MCU. To do this, we copy state variables 15 * into local working storage, and update them back to the permanent 16 * storage only upon successful completion of an MCU. 17 */ 18 19 #define JPEG_INTERNALS 20 #include "jinclude.h" 21 #include "jpeglib.h" 22 23 24 /* Derived data constructed for each Huffman table */ 25 26 #define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */ 27 28 typedef struct { 29 /* Basic tables: (element [0] of each array is unused) */ 30 INT32 maxcode[18]; /* largest code of length k (-1 if none) */ 31 /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */ 32 INT32 valoffset[17]; /* huffval[] offset for codes of length k */ 33 /* valoffset[k] = huffval[] index of 1st symbol of code length k, less 34 * the smallest code of length k; so given a code of length k, the 35 * corresponding symbol is huffval[code + valoffset[k]] 36 */ 37 38 /* Link to public Huffman table (needed only in jpeg_huff_decode) */ 39 JHUFF_TBL *pub; 40 41 /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of 42 * the input data stream. If the next Huffman code is no more 43 * than HUFF_LOOKAHEAD bits long, we can obtain its length and 44 * the corresponding symbol directly from these tables. 45 */ 46 int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */ 47 UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */ 48 } d_derived_tbl; 49 50 51 /* 52 * Fetching the next N bits from the input stream is a time-critical operation 53 * for the Huffman decoders. We implement it with a combination of inline 54 * macros and out-of-line subroutines. Note that N (the number of bits 55 * demanded at one time) never exceeds 15 for JPEG use. 56 * 57 * We read source bytes into get_buffer and dole out bits as needed. 58 * If get_buffer already contains enough bits, they are fetched in-line 59 * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough 60 * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer 61 * as full as possible (not just to the number of bits needed; this 62 * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer). 63 * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension. 64 * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains 65 * at least the requested number of bits --- dummy zeroes are inserted if 66 * necessary. 67 */ 68 69 typedef INT32 bit_buf_type; /* type of bit-extraction buffer */ 70 #define BIT_BUF_SIZE 32 /* size of buffer in bits */ 71 72 /* If long is > 32 bits on your machine, and shifting/masking longs is 73 * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE 74 * appropriately should be a win. Unfortunately we can't define the size 75 * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8) 76 * because not all machines measure sizeof in 8-bit bytes. 77 */ 78 79 typedef struct { /* Bitreading state saved across MCUs */ 80 bit_buf_type get_buffer; /* current bit-extraction buffer */ 81 int bits_left; /* # of unused bits in it */ 82 } bitread_perm_state; 83 84 typedef struct { /* Bitreading working state within an MCU */ 85 /* Current data source location */ 86 /* We need a copy, rather than munging the original, in case of suspension */ 87 const JOCTET * next_input_byte; /* => next byte to read from source */ 88 size_t bytes_in_buffer; /* # of bytes remaining in source buffer */ 89 /* Bit input buffer --- note these values are kept in register variables, 90 * not in this struct, inside the inner loops. 91 */ 92 bit_buf_type get_buffer; /* current bit-extraction buffer */ 93 int bits_left; /* # of unused bits in it */ 94 /* Pointer needed by jpeg_fill_bit_buffer. */ 95 j_decompress_ptr cinfo; /* back link to decompress master record */ 96 } bitread_working_state; 97 98 /* Macros to declare and load/save bitread local variables. */ 99 #define BITREAD_STATE_VARS \ 100 register bit_buf_type get_buffer; \ 101 register int bits_left; \ 102 bitread_working_state br_state 103 104 #define BITREAD_LOAD_STATE(cinfop,permstate) \ 105 br_state.cinfo = cinfop; \ 106 br_state.next_input_byte = cinfop->src->next_input_byte; \ 107 br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \ 108 get_buffer = permstate.get_buffer; \ 109 bits_left = permstate.bits_left; 110 111 #define BITREAD_SAVE_STATE(cinfop,permstate) \ 112 cinfop->src->next_input_byte = br_state.next_input_byte; \ 113 cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \ 114 permstate.get_buffer = get_buffer; \ 115 permstate.bits_left = bits_left 116 117 /* 118 * These macros provide the in-line portion of bit fetching. 119 * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer 120 * before using GET_BITS, PEEK_BITS, or DROP_BITS. 121 * The variables get_buffer and bits_left are assumed to be locals, 122 * but the state struct might not be (jpeg_huff_decode needs this). 123 * CHECK_BIT_BUFFER(state,n,action); 124 * Ensure there are N bits in get_buffer; if suspend, take action. 125 * val = GET_BITS(n); 126 * Fetch next N bits. 127 * val = PEEK_BITS(n); 128 * Fetch next N bits without removing them from the buffer. 129 * DROP_BITS(n); 130 * Discard next N bits. 131 * The value N should be a simple variable, not an expression, because it 132 * is evaluated multiple times. 133 */ 134 135 #define CHECK_BIT_BUFFER(state,nbits,action) \ 136 { if (bits_left < (nbits)) { \ 137 if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \ 138 { action; } \ 139 get_buffer = (state).get_buffer; bits_left = (state).bits_left; } } 140 141 #define GET_BITS(nbits) \ 142 (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits)) 143 144 #define PEEK_BITS(nbits) \ 145 (((int) (get_buffer >> (bits_left - (nbits)))) & BIT_MASK(nbits)) 146 147 #define DROP_BITS(nbits) \ 148 (bits_left -= (nbits)) 149 150 151 /* 152 * Code for extracting next Huffman-coded symbol from input bit stream. 153 * Again, this is time-critical and we make the main paths be macros. 154 * 155 * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits 156 * without looping. Usually, more than 95% of the Huffman codes will be 8 157 * or fewer bits long. The few overlength codes are handled with a loop, 158 * which need not be inline code. 159 * 160 * Notes about the HUFF_DECODE macro: 161 * 1. Near the end of the data segment, we may fail to get enough bits 162 * for a lookahead. In that case, we do it the hard way. 163 * 2. If the lookahead table contains no entry, the next code must be 164 * more than HUFF_LOOKAHEAD bits long. 165 * 3. jpeg_huff_decode returns -1 if forced to suspend. 166 */ 167 168 #define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \ 169 { register int nb, look; \ 170 if (bits_left < HUFF_LOOKAHEAD) { \ 171 if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \ 172 get_buffer = state.get_buffer; bits_left = state.bits_left; \ 173 if (bits_left < HUFF_LOOKAHEAD) { \ 174 nb = 1; goto slowlabel; \ 175 } \ 176 } \ 177 look = PEEK_BITS(HUFF_LOOKAHEAD); \ 178 if ((nb = htbl->look_nbits[look]) != 0) { \ 179 DROP_BITS(nb); \ 180 result = htbl->look_sym[look]; \ 181 } else { \ 182 nb = HUFF_LOOKAHEAD+1; \ 183 slowlabel: \ 184 if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \ 185 { failaction; } \ 186 get_buffer = state.get_buffer; bits_left = state.bits_left; \ 187 } \ 188 } 189 190 191 /* 192 * Expanded entropy decoder object for Huffman decoding. 193 * 194 * The savable_state subrecord contains fields that change within an MCU, 195 * but must not be updated permanently until we complete the MCU. 196 */ 197 198 typedef struct { 199 unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ 200 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ 201 } savable_state; 202 203 /* This macro is to work around compilers with missing or broken 204 * structure assignment. You'll need to fix this code if you have 205 * such a compiler and you change MAX_COMPS_IN_SCAN. 206 */ 207 208 #ifndef NO_STRUCT_ASSIGN 209 #define ASSIGN_STATE(dest,src) ((dest) = (src)) 210 #else 211 #if MAX_COMPS_IN_SCAN == 4 212 #define ASSIGN_STATE(dest,src) \ 213 ((dest).EOBRUN = (src).EOBRUN, \ 214 (dest).last_dc_val[0] = (src).last_dc_val[0], \ 215 (dest).last_dc_val[1] = (src).last_dc_val[1], \ 216 (dest).last_dc_val[2] = (src).last_dc_val[2], \ 217 (dest).last_dc_val[3] = (src).last_dc_val[3]) 218 #endif 219 #endif 220 221 222 typedef struct { 223 struct jpeg_entropy_decoder pub; /* public fields */ 224 225 /* These fields are loaded into local variables at start of each MCU. 226 * In case of suspension, we exit WITHOUT updating them. 227 */ 228 bitread_perm_state bitstate; /* Bit buffer at start of MCU */ 229 savable_state saved; /* Other state at start of MCU */ 230 231 /* These fields are NOT loaded into local working state. */ 232 boolean insufficient_data; /* set TRUE after emitting warning */ 233 unsigned int restarts_to_go; /* MCUs left in this restart interval */ 234 235 /* Following two fields used only in progressive mode */ 236 237 /* Pointers to derived tables (these workspaces have image lifespan) */ 238 d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; 239 240 d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ 241 242 /* Following fields used only in sequential mode */ 243 244 /* Pointers to derived tables (these workspaces have image lifespan) */ 245 d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; 246 d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; 247 248 /* Precalculated info set up by start_pass for use in decode_mcu: */ 249 250 /* Pointers to derived tables to be used for each block within an MCU */ 251 d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; 252 d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; 253 /* Whether we care about the DC and AC coefficient values for each block */ 254 int coef_limit[D_MAX_BLOCKS_IN_MCU]; 255 } huff_entropy_decoder; 256 257 typedef huff_entropy_decoder * huff_entropy_ptr; 258 259 260 static const int jpeg_zigzag_order[8][8] = { 261 { 0, 1, 5, 6, 14, 15, 27, 28 }, 262 { 2, 4, 7, 13, 16, 26, 29, 42 }, 263 { 3, 8, 12, 17, 25, 30, 41, 43 }, 264 { 9, 11, 18, 24, 31, 40, 44, 53 }, 265 { 10, 19, 23, 32, 39, 45, 52, 54 }, 266 { 20, 22, 33, 38, 46, 51, 55, 60 }, 267 { 21, 34, 37, 47, 50, 56, 59, 61 }, 268 { 35, 36, 48, 49, 57, 58, 62, 63 } 269 }; 270 271 static const int jpeg_zigzag_order7[7][7] = { 272 { 0, 1, 5, 6, 14, 15, 27 }, 273 { 2, 4, 7, 13, 16, 26, 28 }, 274 { 3, 8, 12, 17, 25, 29, 38 }, 275 { 9, 11, 18, 24, 30, 37, 39 }, 276 { 10, 19, 23, 31, 36, 40, 45 }, 277 { 20, 22, 32, 35, 41, 44, 46 }, 278 { 21, 33, 34, 42, 43, 47, 48 } 279 }; 280 281 static const int jpeg_zigzag_order6[6][6] = { 282 { 0, 1, 5, 6, 14, 15 }, 283 { 2, 4, 7, 13, 16, 25 }, 284 { 3, 8, 12, 17, 24, 26 }, 285 { 9, 11, 18, 23, 27, 32 }, 286 { 10, 19, 22, 28, 31, 33 }, 287 { 20, 21, 29, 30, 34, 35 } 288 }; 289 290 static const int jpeg_zigzag_order5[5][5] = { 291 { 0, 1, 5, 6, 14 }, 292 { 2, 4, 7, 13, 15 }, 293 { 3, 8, 12, 16, 21 }, 294 { 9, 11, 17, 20, 22 }, 295 { 10, 18, 19, 23, 24 } 296 }; 297 298 static const int jpeg_zigzag_order4[4][4] = { 299 { 0, 1, 5, 6 }, 300 { 2, 4, 7, 12 }, 301 { 3, 8, 11, 13 }, 302 { 9, 10, 14, 15 } 303 }; 304 305 static const int jpeg_zigzag_order3[3][3] = { 306 { 0, 1, 5 }, 307 { 2, 4, 6 }, 308 { 3, 7, 8 } 309 }; 310 311 static const int jpeg_zigzag_order2[2][2] = { 312 { 0, 1 }, 313 { 2, 3 } 314 }; 315 316 317 /* 318 * Compute the derived values for a Huffman table. 319 * This routine also performs some validation checks on the table. 320 */ 321 322 LOCAL(void) 323 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, 324 d_derived_tbl ** pdtbl) 325 { 326 JHUFF_TBL *htbl; 327 d_derived_tbl *dtbl; 328 int p, i, l, si, numsymbols; 329 int lookbits, ctr; 330 char huffsize[257]; 331 unsigned int huffcode[257]; 332 unsigned int code; 333 334 /* Note that huffsize[] and huffcode[] are filled in code-length order, 335 * paralleling the order of the symbols themselves in htbl->huffval[]. 336 */ 337 338 /* Find the input Huffman table */ 339 if (tblno < 0 || tblno >= NUM_HUFF_TBLS) 340 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); 341 htbl = 342 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; 343 if (htbl == NULL) 344 htbl = jpeg_std_huff_table((j_common_ptr) cinfo, isDC, tblno); 345 346 /* Allocate a workspace if we haven't already done so. */ 347 if (*pdtbl == NULL) 348 *pdtbl = (d_derived_tbl *) (*cinfo->mem->alloc_small) 349 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(d_derived_tbl)); 350 dtbl = *pdtbl; 351 dtbl->pub = htbl; /* fill in back link */ 352 353 /* Figure C.1: make table of Huffman code length for each symbol */ 354 355 p = 0; 356 for (l = 1; l <= 16; l++) { 357 i = (int) htbl->bits[l]; 358 if (i < 0 || p + i > 256) /* protect against table overrun */ 359 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); 360 while (i--) 361 huffsize[p++] = (char) l; 362 } 363 huffsize[p] = 0; 364 numsymbols = p; 365 366 /* Figure C.2: generate the codes themselves */ 367 /* We also validate that the counts represent a legal Huffman code tree. */ 368 369 code = 0; 370 si = huffsize[0]; 371 p = 0; 372 while (huffsize[p]) { 373 while (((int) huffsize[p]) == si) { 374 huffcode[p++] = code; 375 code++; 376 } 377 /* code is now 1 more than the last code used for codelength si; but 378 * it must still fit in si bits, since no code is allowed to be all ones. 379 */ 380 if (((INT32) code) >= (((INT32) 1) << si)) 381 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); 382 code <<= 1; 383 si++; 384 } 385 386 /* Figure F.15: generate decoding tables for bit-sequential decoding */ 387 388 p = 0; 389 for (l = 1; l <= 16; l++) { 390 if (htbl->bits[l]) { 391 /* valoffset[l] = huffval[] index of 1st symbol of code length l, 392 * minus the minimum code of length l 393 */ 394 dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; 395 p += htbl->bits[l]; 396 dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ 397 } else { 398 dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ 399 } 400 } 401 dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ 402 403 /* Compute lookahead tables to speed up decoding. 404 * First we set all the table entries to 0, indicating "too long"; 405 * then we iterate through the Huffman codes that are short enough and 406 * fill in all the entries that correspond to bit sequences starting 407 * with that code. 408 */ 409 410 MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); 411 412 p = 0; 413 for (l = 1; l <= HUFF_LOOKAHEAD; l++) { 414 for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { 415 /* l = current code's length, p = its index in huffcode[] & huffval[]. */ 416 /* Generate left-justified code followed by all possible bit sequences */ 417 lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); 418 for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { 419 dtbl->look_nbits[lookbits] = l; 420 dtbl->look_sym[lookbits] = htbl->huffval[p]; 421 lookbits++; 422 } 423 } 424 } 425 426 /* Validate symbols as being reasonable. 427 * For AC tables, we make no check, but accept all byte values 0..255. 428 * For DC tables, we require the symbols to be in range 0..15. 429 * (Tighter bounds could be applied depending on the data depth and mode, 430 * but this is sufficient to ensure safe decoding.) 431 */ 432 if (isDC) { 433 for (i = 0; i < numsymbols; i++) { 434 int sym = htbl->huffval[i]; 435 if (sym < 0 || sym > 15) 436 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); 437 } 438 } 439 } 440 441 442 /* 443 * Out-of-line code for bit fetching. 444 * Note: current values of get_buffer and bits_left are passed as parameters, 445 * but are returned in the corresponding fields of the state struct. 446 * 447 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width 448 * of get_buffer to be used. (On machines with wider words, an even larger 449 * buffer could be used.) However, on some machines 32-bit shifts are 450 * quite slow and take time proportional to the number of places shifted. 451 * (This is true with most PC compilers, for instance.) In this case it may 452 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the 453 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. 454 */ 455 456 #ifdef SLOW_SHIFT_32 457 #define MIN_GET_BITS 15 /* minimum allowable value */ 458 #else 459 #define MIN_GET_BITS (BIT_BUF_SIZE-7) 460 #endif 461 462 463 LOCAL(boolean) 464 jpeg_fill_bit_buffer (bitread_working_state * state, 465 register bit_buf_type get_buffer, register int bits_left, 466 int nbits) 467 /* Load up the bit buffer to a depth of at least nbits */ 468 { 469 /* Copy heavily used state fields into locals (hopefully registers) */ 470 register const JOCTET * next_input_byte = state->next_input_byte; 471 register size_t bytes_in_buffer = state->bytes_in_buffer; 472 j_decompress_ptr cinfo = state->cinfo; 473 474 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ 475 /* (It is assumed that no request will be for more than that many bits.) */ 476 /* We fail to do so only if we hit a marker or are forced to suspend. */ 477 478 if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ 479 while (bits_left < MIN_GET_BITS) { 480 register int c; 481 482 /* Attempt to read a byte */ 483 if (bytes_in_buffer == 0) { 484 if (! (*cinfo->src->fill_input_buffer) (cinfo)) 485 return FALSE; 486 next_input_byte = cinfo->src->next_input_byte; 487 bytes_in_buffer = cinfo->src->bytes_in_buffer; 488 } 489 bytes_in_buffer--; 490 c = GETJOCTET(*next_input_byte++); 491 492 /* If it's 0xFF, check and discard stuffed zero byte */ 493 if (c == 0xFF) { 494 /* Loop here to discard any padding FF's on terminating marker, 495 * so that we can save a valid unread_marker value. NOTE: we will 496 * accept multiple FF's followed by a 0 as meaning a single FF data 497 * byte. This data pattern is not valid according to the standard. 498 */ 499 do { 500 if (bytes_in_buffer == 0) { 501 if (! (*cinfo->src->fill_input_buffer) (cinfo)) 502 return FALSE; 503 next_input_byte = cinfo->src->next_input_byte; 504 bytes_in_buffer = cinfo->src->bytes_in_buffer; 505 } 506 bytes_in_buffer--; 507 c = GETJOCTET(*next_input_byte++); 508 } while (c == 0xFF); 509 510 if (c == 0) { 511 /* Found FF/00, which represents an FF data byte */ 512 c = 0xFF; 513 } else { 514 /* Oops, it's actually a marker indicating end of compressed data. 515 * Save the marker code for later use. 516 * Fine point: it might appear that we should save the marker into 517 * bitread working state, not straight into permanent state. But 518 * once we have hit a marker, we cannot need to suspend within the 519 * current MCU, because we will read no more bytes from the data 520 * source. So it is OK to update permanent state right away. 521 */ 522 cinfo->unread_marker = c; 523 /* See if we need to insert some fake zero bits. */ 524 goto no_more_bytes; 525 } 526 } 527 528 /* OK, load c into get_buffer */ 529 get_buffer = (get_buffer << 8) | c; 530 bits_left += 8; 531 } /* end while */ 532 } else { 533 no_more_bytes: 534 /* We get here if we've read the marker that terminates the compressed 535 * data segment. There should be enough bits in the buffer register 536 * to satisfy the request; if so, no problem. 537 */ 538 if (nbits > bits_left) { 539 /* Uh-oh. Report corrupted data to user and stuff zeroes into 540 * the data stream, so that we can produce some kind of image. 541 * We use a nonvolatile flag to ensure that only one warning message 542 * appears per data segment. 543 */ 544 if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) { 545 WARNMS(cinfo, JWRN_HIT_MARKER); 546 ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE; 547 } 548 /* Fill the buffer with zero bits */ 549 get_buffer <<= MIN_GET_BITS - bits_left; 550 bits_left = MIN_GET_BITS; 551 } 552 } 553 554 /* Unload the local registers */ 555 state->next_input_byte = next_input_byte; 556 state->bytes_in_buffer = bytes_in_buffer; 557 state->get_buffer = get_buffer; 558 state->bits_left = bits_left; 559 560 return TRUE; 561 } 562 563 564 /* 565 * Figure F.12: extend sign bit. 566 * On some machines, a shift and sub will be faster than a table lookup. 567 */ 568 569 #ifdef AVOID_TABLES 570 571 #define BIT_MASK(nbits) ((1<<(nbits))-1) 572 #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x)) 573 574 #else 575 576 #define BIT_MASK(nbits) bmask[nbits] 577 #define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x)) 578 579 static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */ 580 { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 581 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF }; 582 583 #endif /* AVOID_TABLES */ 584 585 586 /* 587 * Out-of-line code for Huffman code decoding. 588 */ 589 590 LOCAL(int) 591 jpeg_huff_decode (bitread_working_state * state, 592 register bit_buf_type get_buffer, register int bits_left, 593 d_derived_tbl * htbl, int min_bits) 594 { 595 register int l = min_bits; 596 register INT32 code; 597 598 /* HUFF_DECODE has determined that the code is at least min_bits */ 599 /* bits long, so fetch that many bits in one swoop. */ 600 601 CHECK_BIT_BUFFER(*state, l, return -1); 602 code = GET_BITS(l); 603 604 /* Collect the rest of the Huffman code one bit at a time. */ 605 /* This is per Figure F.16 in the JPEG spec. */ 606 607 while (code > htbl->maxcode[l]) { 608 code <<= 1; 609 CHECK_BIT_BUFFER(*state, 1, return -1); 610 code |= GET_BITS(1); 611 l++; 612 } 613 614 /* Unload the local registers */ 615 state->get_buffer = get_buffer; 616 state->bits_left = bits_left; 617 618 /* With garbage input we may reach the sentinel value l = 17. */ 619 620 if (l > 16) { 621 WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); 622 return 0; /* fake a zero as the safest result */ 623 } 624 625 return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; 626 } 627 628 629 /* 630 * Finish up at the end of a Huffman-compressed scan. 631 */ 632 633 METHODDEF(void) 634 finish_pass_huff (j_decompress_ptr cinfo) 635 { 636 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 637 638 /* Throw away any unused bits remaining in bit buffer; */ 639 /* include any full bytes in next_marker's count of discarded bytes */ 640 cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; 641 entropy->bitstate.bits_left = 0; 642 } 643 644 645 /* 646 * Check for a restart marker & resynchronize decoder. 647 * Returns FALSE if must suspend. 648 */ 649 650 LOCAL(boolean) 651 process_restart (j_decompress_ptr cinfo) 652 { 653 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 654 int ci; 655 656 finish_pass_huff(cinfo); 657 658 /* Advance past the RSTn marker */ 659 if (! (*cinfo->marker->read_restart_marker) (cinfo)) 660 return FALSE; 661 662 /* Re-initialize DC predictions to 0 */ 663 for (ci = 0; ci < cinfo->comps_in_scan; ci++) 664 entropy->saved.last_dc_val[ci] = 0; 665 /* Re-init EOB run count, too */ 666 entropy->saved.EOBRUN = 0; 667 668 /* Reset restart counter */ 669 entropy->restarts_to_go = cinfo->restart_interval; 670 671 /* Reset out-of-data flag, unless read_restart_marker left us smack up 672 * against a marker. In that case we will end up treating the next data 673 * segment as empty, and we can avoid producing bogus output pixels by 674 * leaving the flag set. 675 */ 676 if (cinfo->unread_marker == 0) 677 entropy->insufficient_data = FALSE; 678 679 return TRUE; 680 } 681 682 683 /* 684 * Huffman MCU decoding. 685 * Each of these routines decodes and returns one MCU's worth of 686 * Huffman-compressed coefficients. 687 * The coefficients are reordered from zigzag order into natural array order, 688 * but are not dequantized. 689 * 690 * The i'th block of the MCU is stored into the block pointed to by 691 * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. 692 * (Wholesale zeroing is usually a little faster than retail...) 693 * 694 * We return FALSE if data source requested suspension. In that case no 695 * changes have been made to permanent state. (Exception: some output 696 * coefficients may already have been assigned. This is harmless for 697 * spectral selection, since we'll just re-assign them on the next call. 698 * Successive approximation AC refinement has to be more careful, however.) 699 */ 700 701 /* 702 * MCU decoding for DC initial scan (either spectral selection, 703 * or first pass of successive approximation). 704 */ 705 706 METHODDEF(boolean) 707 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 708 { 709 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 710 int Al = cinfo->Al; 711 register int s, r; 712 int blkn, ci; 713 JBLOCKROW block; 714 BITREAD_STATE_VARS; 715 savable_state state; 716 d_derived_tbl * tbl; 717 jpeg_component_info * compptr; 718 719 /* Process restart marker if needed; may have to suspend */ 720 if (cinfo->restart_interval) { 721 if (entropy->restarts_to_go == 0) 722 if (! process_restart(cinfo)) 723 return FALSE; 724 } 725 726 /* If we've run out of data, just leave the MCU set to zeroes. 727 * This way, we return uniform gray for the remainder of the segment. 728 */ 729 if (! entropy->insufficient_data) { 730 731 /* Load up working state */ 732 BITREAD_LOAD_STATE(cinfo, entropy->bitstate); 733 ASSIGN_STATE(state, entropy->saved); 734 735 /* Outer loop handles each block in the MCU */ 736 737 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 738 block = MCU_data[blkn]; 739 ci = cinfo->MCU_membership[blkn]; 740 compptr = cinfo->cur_comp_info[ci]; 741 tbl = entropy->derived_tbls[compptr->dc_tbl_no]; 742 743 /* Decode a single block's worth of coefficients */ 744 745 /* Section F.2.2.1: decode the DC coefficient difference */ 746 HUFF_DECODE(s, br_state, tbl, return FALSE, label1); 747 if (s) { 748 CHECK_BIT_BUFFER(br_state, s, return FALSE); 749 r = GET_BITS(s); 750 s = HUFF_EXTEND(r, s); 751 } 752 753 /* Convert DC difference to actual value, update last_dc_val */ 754 s += state.last_dc_val[ci]; 755 state.last_dc_val[ci] = s; 756 /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ 757 (*block)[0] = (JCOEF) (s << Al); 758 } 759 760 /* Completed MCU, so update state */ 761 BITREAD_SAVE_STATE(cinfo, entropy->bitstate); 762 ASSIGN_STATE(entropy->saved, state); 763 } 764 765 /* Account for restart interval if using restarts */ 766 if (cinfo->restart_interval) 767 entropy->restarts_to_go--; 768 769 return TRUE; 770 } 771 772 773 /* 774 * MCU decoding for AC initial scan (either spectral selection, 775 * or first pass of successive approximation). 776 */ 777 778 METHODDEF(boolean) 779 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 780 { 781 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 782 register int s, k, r; 783 unsigned int EOBRUN; 784 int Se, Al; 785 const int * natural_order; 786 JBLOCKROW block; 787 BITREAD_STATE_VARS; 788 d_derived_tbl * tbl; 789 790 /* Process restart marker if needed; may have to suspend */ 791 if (cinfo->restart_interval) { 792 if (entropy->restarts_to_go == 0) 793 if (! process_restart(cinfo)) 794 return FALSE; 795 } 796 797 /* If we've run out of data, just leave the MCU set to zeroes. 798 * This way, we return uniform gray for the remainder of the segment. 799 */ 800 if (! entropy->insufficient_data) { 801 802 /* Load up working state. 803 * We can avoid loading/saving bitread state if in an EOB run. 804 */ 805 EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ 806 807 /* There is always only one block per MCU */ 808 809 if (EOBRUN) /* if it's a band of zeroes... */ 810 EOBRUN--; /* ...process it now (we do nothing) */ 811 else { 812 BITREAD_LOAD_STATE(cinfo, entropy->bitstate); 813 Se = cinfo->Se; 814 Al = cinfo->Al; 815 natural_order = cinfo->natural_order; 816 block = MCU_data[0]; 817 tbl = entropy->ac_derived_tbl; 818 819 for (k = cinfo->Ss; k <= Se; k++) { 820 HUFF_DECODE(s, br_state, tbl, return FALSE, label2); 821 r = s >> 4; 822 s &= 15; 823 if (s) { 824 k += r; 825 CHECK_BIT_BUFFER(br_state, s, return FALSE); 826 r = GET_BITS(s); 827 s = HUFF_EXTEND(r, s); 828 /* Scale and output coefficient in natural (dezigzagged) order */ 829 (*block)[natural_order[k]] = (JCOEF) (s << Al); 830 } else { 831 if (r != 15) { /* EOBr, run length is 2^r + appended bits */ 832 if (r) { /* EOBr, r > 0 */ 833 EOBRUN = 1 << r; 834 CHECK_BIT_BUFFER(br_state, r, return FALSE); 835 r = GET_BITS(r); 836 EOBRUN += r; 837 EOBRUN--; /* this band is processed at this moment */ 838 } 839 break; /* force end-of-band */ 840 } 841 k += 15; /* ZRL: skip 15 zeroes in band */ 842 } 843 } 844 845 BITREAD_SAVE_STATE(cinfo, entropy->bitstate); 846 } 847 848 /* Completed MCU, so update state */ 849 entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ 850 } 851 852 /* Account for restart interval if using restarts */ 853 if (cinfo->restart_interval) 854 entropy->restarts_to_go--; 855 856 return TRUE; 857 } 858 859 860 /* 861 * MCU decoding for DC successive approximation refinement scan. 862 * Note: we assume such scans can be multi-component, 863 * although the spec is not very clear on the point. 864 */ 865 866 METHODDEF(boolean) 867 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 868 { 869 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 870 JCOEF p1; 871 int blkn; 872 BITREAD_STATE_VARS; 873 874 /* Process restart marker if needed; may have to suspend */ 875 if (cinfo->restart_interval) { 876 if (entropy->restarts_to_go == 0) 877 if (! process_restart(cinfo)) 878 return FALSE; 879 } 880 881 /* Not worth the cycles to check insufficient_data here, 882 * since we will not change the data anyway if we read zeroes. 883 */ 884 885 /* Load up working state */ 886 BITREAD_LOAD_STATE(cinfo, entropy->bitstate); 887 888 p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ 889 890 /* Outer loop handles each block in the MCU */ 891 892 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 893 /* Encoded data is simply the next bit of the two's-complement DC value */ 894 CHECK_BIT_BUFFER(br_state, 1, return FALSE); 895 if (GET_BITS(1)) 896 MCU_data[blkn][0][0] |= p1; 897 /* Note: since we use |=, repeating the assignment later is safe */ 898 } 899 900 /* Completed MCU, so update state */ 901 BITREAD_SAVE_STATE(cinfo, entropy->bitstate); 902 903 /* Account for restart interval if using restarts */ 904 if (cinfo->restart_interval) 905 entropy->restarts_to_go--; 906 907 return TRUE; 908 } 909 910 911 /* 912 * MCU decoding for AC successive approximation refinement scan. 913 */ 914 915 METHODDEF(boolean) 916 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 917 { 918 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 919 register int s, k, r; 920 unsigned int EOBRUN; 921 int Se; 922 JCOEF p1, m1; 923 const int * natural_order; 924 JBLOCKROW block; 925 JCOEFPTR thiscoef; 926 BITREAD_STATE_VARS; 927 d_derived_tbl * tbl; 928 int num_newnz; 929 int newnz_pos[DCTSIZE2]; 930 931 /* Process restart marker if needed; may have to suspend */ 932 if (cinfo->restart_interval) { 933 if (entropy->restarts_to_go == 0) 934 if (! process_restart(cinfo)) 935 return FALSE; 936 } 937 938 /* If we've run out of data, don't modify the MCU. 939 */ 940 if (! entropy->insufficient_data) { 941 942 Se = cinfo->Se; 943 p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ 944 m1 = -p1; /* -1 in the bit position being coded */ 945 natural_order = cinfo->natural_order; 946 947 /* Load up working state */ 948 BITREAD_LOAD_STATE(cinfo, entropy->bitstate); 949 EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ 950 951 /* There is always only one block per MCU */ 952 block = MCU_data[0]; 953 tbl = entropy->ac_derived_tbl; 954 955 /* If we are forced to suspend, we must undo the assignments to any newly 956 * nonzero coefficients in the block, because otherwise we'd get confused 957 * next time about which coefficients were already nonzero. 958 * But we need not undo addition of bits to already-nonzero coefficients; 959 * instead, we can test the current bit to see if we already did it. 960 */ 961 num_newnz = 0; 962 963 /* initialize coefficient loop counter to start of band */ 964 k = cinfo->Ss; 965 966 if (EOBRUN == 0) { 967 do { 968 HUFF_DECODE(s, br_state, tbl, goto undoit, label3); 969 r = s >> 4; 970 s &= 15; 971 if (s) { 972 if (s != 1) /* size of new coef should always be 1 */ 973 WARNMS(cinfo, JWRN_HUFF_BAD_CODE); 974 CHECK_BIT_BUFFER(br_state, 1, goto undoit); 975 if (GET_BITS(1)) 976 s = p1; /* newly nonzero coef is positive */ 977 else 978 s = m1; /* newly nonzero coef is negative */ 979 } else { 980 if (r != 15) { 981 EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ 982 if (r) { 983 CHECK_BIT_BUFFER(br_state, r, goto undoit); 984 r = GET_BITS(r); 985 EOBRUN += r; 986 } 987 break; /* rest of block is handled by EOB logic */ 988 } 989 /* note s = 0 for processing ZRL */ 990 } 991 /* Advance over already-nonzero coefs and r still-zero coefs, 992 * appending correction bits to the nonzeroes. A correction bit is 1 993 * if the absolute value of the coefficient must be increased. 994 */ 995 do { 996 thiscoef = *block + natural_order[k]; 997 if (*thiscoef) { 998 CHECK_BIT_BUFFER(br_state, 1, goto undoit); 999 if (GET_BITS(1)) { 1000 if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ 1001 if (*thiscoef >= 0) 1002 *thiscoef += p1; 1003 else 1004 *thiscoef += m1; 1005 } 1006 } 1007 } else { 1008 if (--r < 0) 1009 break; /* reached target zero coefficient */ 1010 } 1011 k++; 1012 } while (k <= Se); 1013 if (s) { 1014 int pos = natural_order[k]; 1015 /* Output newly nonzero coefficient */ 1016 (*block)[pos] = (JCOEF) s; 1017 /* Remember its position in case we have to suspend */ 1018 newnz_pos[num_newnz++] = pos; 1019 } 1020 k++; 1021 } while (k <= Se); 1022 } 1023 1024 if (EOBRUN) { 1025 /* Scan any remaining coefficient positions after the end-of-band 1026 * (the last newly nonzero coefficient, if any). Append a correction 1027 * bit to each already-nonzero coefficient. A correction bit is 1 1028 * if the absolute value of the coefficient must be increased. 1029 */ 1030 do { 1031 thiscoef = *block + natural_order[k]; 1032 if (*thiscoef) { 1033 CHECK_BIT_BUFFER(br_state, 1, goto undoit); 1034 if (GET_BITS(1)) { 1035 if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ 1036 if (*thiscoef >= 0) 1037 *thiscoef += p1; 1038 else 1039 *thiscoef += m1; 1040 } 1041 } 1042 } 1043 k++; 1044 } while (k <= Se); 1045 /* Count one block completed in EOB run */ 1046 EOBRUN--; 1047 } 1048 1049 /* Completed MCU, so update state */ 1050 BITREAD_SAVE_STATE(cinfo, entropy->bitstate); 1051 entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ 1052 } 1053 1054 /* Account for restart interval if using restarts */ 1055 if (cinfo->restart_interval) 1056 entropy->restarts_to_go--; 1057 1058 return TRUE; 1059 1060 undoit: 1061 /* Re-zero any output coefficients that we made newly nonzero */ 1062 while (num_newnz) 1063 (*block)[newnz_pos[--num_newnz]] = 0; 1064 1065 return FALSE; 1066 } 1067 1068 1069 /* 1070 * Decode one MCU's worth of Huffman-compressed coefficients, 1071 * partial blocks. 1072 */ 1073 1074 METHODDEF(boolean) 1075 decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 1076 { 1077 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 1078 const int * natural_order; 1079 int Se, blkn; 1080 BITREAD_STATE_VARS; 1081 savable_state state; 1082 1083 /* Process restart marker if needed; may have to suspend */ 1084 if (cinfo->restart_interval) { 1085 if (entropy->restarts_to_go == 0) 1086 if (! process_restart(cinfo)) 1087 return FALSE; 1088 } 1089 1090 /* If we've run out of data, just leave the MCU set to zeroes. 1091 * This way, we return uniform gray for the remainder of the segment. 1092 */ 1093 if (! entropy->insufficient_data) { 1094 1095 natural_order = cinfo->natural_order; 1096 Se = cinfo->lim_Se; 1097 1098 /* Load up working state */ 1099 BITREAD_LOAD_STATE(cinfo, entropy->bitstate); 1100 ASSIGN_STATE(state, entropy->saved); 1101 1102 /* Outer loop handles each block in the MCU */ 1103 1104 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 1105 JBLOCKROW block = MCU_data[blkn]; 1106 d_derived_tbl * htbl; 1107 register int s, k, r; 1108 int coef_limit, ci; 1109 1110 /* Decode a single block's worth of coefficients */ 1111 1112 /* Section F.2.2.1: decode the DC coefficient difference */ 1113 htbl = entropy->dc_cur_tbls[blkn]; 1114 HUFF_DECODE(s, br_state, htbl, return FALSE, label1); 1115 1116 htbl = entropy->ac_cur_tbls[blkn]; 1117 k = 1; 1118 coef_limit = entropy->coef_limit[blkn]; 1119 if (coef_limit) { 1120 /* Convert DC difference to actual value, update last_dc_val */ 1121 if (s) { 1122 CHECK_BIT_BUFFER(br_state, s, return FALSE); 1123 r = GET_BITS(s); 1124 s = HUFF_EXTEND(r, s); 1125 } 1126 ci = cinfo->MCU_membership[blkn]; 1127 s += state.last_dc_val[ci]; 1128 state.last_dc_val[ci] = s; 1129 /* Output the DC coefficient */ 1130 (*block)[0] = (JCOEF) s; 1131 1132 /* Section F.2.2.2: decode the AC coefficients */ 1133 /* Since zeroes are skipped, output area must be cleared beforehand */ 1134 for (; k < coef_limit; k++) { 1135 HUFF_DECODE(s, br_state, htbl, return FALSE, label2); 1136 1137 r = s >> 4; 1138 s &= 15; 1139 1140 if (s) { 1141 k += r; 1142 CHECK_BIT_BUFFER(br_state, s, return FALSE); 1143 r = GET_BITS(s); 1144 s = HUFF_EXTEND(r, s); 1145 /* Output coefficient in natural (dezigzagged) order. 1146 * Note: the extra entries in natural_order[] will save us 1147 * if k > Se, which could happen if the data is corrupted. 1148 */ 1149 (*block)[natural_order[k]] = (JCOEF) s; 1150 } else { 1151 if (r != 15) 1152 goto EndOfBlock; 1153 k += 15; 1154 } 1155 } 1156 } else { 1157 if (s) { 1158 CHECK_BIT_BUFFER(br_state, s, return FALSE); 1159 DROP_BITS(s); 1160 } 1161 } 1162 1163 /* Section F.2.2.2: decode the AC coefficients */ 1164 /* In this path we just discard the values */ 1165 for (; k <= Se; k++) { 1166 HUFF_DECODE(s, br_state, htbl, return FALSE, label3); 1167 1168 r = s >> 4; 1169 s &= 15; 1170 1171 if (s) { 1172 k += r; 1173 CHECK_BIT_BUFFER(br_state, s, return FALSE); 1174 DROP_BITS(s); 1175 } else { 1176 if (r != 15) 1177 break; 1178 k += 15; 1179 } 1180 } 1181 1182 EndOfBlock: ; 1183 } 1184 1185 /* Completed MCU, so update state */ 1186 BITREAD_SAVE_STATE(cinfo, entropy->bitstate); 1187 ASSIGN_STATE(entropy->saved, state); 1188 } 1189 1190 /* Account for restart interval if using restarts */ 1191 if (cinfo->restart_interval) 1192 entropy->restarts_to_go--; 1193 1194 return TRUE; 1195 } 1196 1197 1198 /* 1199 * Decode one MCU's worth of Huffman-compressed coefficients, 1200 * full-size blocks. 1201 */ 1202 1203 METHODDEF(boolean) 1204 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) 1205 { 1206 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 1207 int blkn; 1208 BITREAD_STATE_VARS; 1209 savable_state state; 1210 1211 /* Process restart marker if needed; may have to suspend */ 1212 if (cinfo->restart_interval) { 1213 if (entropy->restarts_to_go == 0) 1214 if (! process_restart(cinfo)) 1215 return FALSE; 1216 } 1217 1218 /* If we've run out of data, just leave the MCU set to zeroes. 1219 * This way, we return uniform gray for the remainder of the segment. 1220 */ 1221 if (! entropy->insufficient_data) { 1222 1223 /* Load up working state */ 1224 BITREAD_LOAD_STATE(cinfo, entropy->bitstate); 1225 ASSIGN_STATE(state, entropy->saved); 1226 1227 /* Outer loop handles each block in the MCU */ 1228 1229 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 1230 JBLOCKROW block = MCU_data[blkn]; 1231 d_derived_tbl * htbl; 1232 register int s, k, r; 1233 int coef_limit, ci; 1234 1235 /* Decode a single block's worth of coefficients */ 1236 1237 /* Section F.2.2.1: decode the DC coefficient difference */ 1238 htbl = entropy->dc_cur_tbls[blkn]; 1239 HUFF_DECODE(s, br_state, htbl, return FALSE, label1); 1240 1241 htbl = entropy->ac_cur_tbls[blkn]; 1242 k = 1; 1243 coef_limit = entropy->coef_limit[blkn]; 1244 if (coef_limit) { 1245 /* Convert DC difference to actual value, update last_dc_val */ 1246 if (s) { 1247 CHECK_BIT_BUFFER(br_state, s, return FALSE); 1248 r = GET_BITS(s); 1249 s = HUFF_EXTEND(r, s); 1250 } 1251 ci = cinfo->MCU_membership[blkn]; 1252 s += state.last_dc_val[ci]; 1253 state.last_dc_val[ci] = s; 1254 /* Output the DC coefficient */ 1255 (*block)[0] = (JCOEF) s; 1256 1257 /* Section F.2.2.2: decode the AC coefficients */ 1258 /* Since zeroes are skipped, output area must be cleared beforehand */ 1259 for (; k < coef_limit; k++) { 1260 HUFF_DECODE(s, br_state, htbl, return FALSE, label2); 1261 1262 r = s >> 4; 1263 s &= 15; 1264 1265 if (s) { 1266 k += r; 1267 CHECK_BIT_BUFFER(br_state, s, return FALSE); 1268 r = GET_BITS(s); 1269 s = HUFF_EXTEND(r, s); 1270 /* Output coefficient in natural (dezigzagged) order. 1271 * Note: the extra entries in jpeg_natural_order[] will save us 1272 * if k >= DCTSIZE2, which could happen if the data is corrupted. 1273 */ 1274 (*block)[jpeg_natural_order[k]] = (JCOEF) s; 1275 } else { 1276 if (r != 15) 1277 goto EndOfBlock; 1278 k += 15; 1279 } 1280 } 1281 } else { 1282 if (s) { 1283 CHECK_BIT_BUFFER(br_state, s, return FALSE); 1284 DROP_BITS(s); 1285 } 1286 } 1287 1288 /* Section F.2.2.2: decode the AC coefficients */ 1289 /* In this path we just discard the values */ 1290 for (; k < DCTSIZE2; k++) { 1291 HUFF_DECODE(s, br_state, htbl, return FALSE, label3); 1292 1293 r = s >> 4; 1294 s &= 15; 1295 1296 if (s) { 1297 k += r; 1298 CHECK_BIT_BUFFER(br_state, s, return FALSE); 1299 DROP_BITS(s); 1300 } else { 1301 if (r != 15) 1302 break; 1303 k += 15; 1304 } 1305 } 1306 1307 EndOfBlock: ; 1308 } 1309 1310 /* Completed MCU, so update state */ 1311 BITREAD_SAVE_STATE(cinfo, entropy->bitstate); 1312 ASSIGN_STATE(entropy->saved, state); 1313 } 1314 1315 /* Account for restart interval if using restarts */ 1316 if (cinfo->restart_interval) 1317 entropy->restarts_to_go--; 1318 1319 return TRUE; 1320 } 1321 1322 1323 /* 1324 * Initialize for a Huffman-compressed scan. 1325 */ 1326 1327 METHODDEF(void) 1328 start_pass_huff_decoder (j_decompress_ptr cinfo) 1329 { 1330 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; 1331 int ci, blkn, tbl, i; 1332 jpeg_component_info * compptr; 1333 1334 if (cinfo->progressive_mode) { 1335 /* Validate progressive scan parameters */ 1336 if (cinfo->Ss == 0) { 1337 if (cinfo->Se != 0) 1338 goto bad; 1339 } else { 1340 /* need not check Ss/Se < 0 since they came from unsigned bytes */ 1341 if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) 1342 goto bad; 1343 /* AC scans may have only one component */ 1344 if (cinfo->comps_in_scan != 1) 1345 goto bad; 1346 } 1347 if (cinfo->Ah != 0) { 1348 /* Successive approximation refinement scan: must have Al = Ah-1. */ 1349 if (cinfo->Ah-1 != cinfo->Al) 1350 goto bad; 1351 } 1352 if (cinfo->Al > 13) { /* need not check for < 0 */ 1353 /* Arguably the maximum Al value should be less than 13 for 8-bit 1354 * precision, but the spec doesn't say so, and we try to be liberal 1355 * about what we accept. Note: large Al values could result in 1356 * out-of-range DC coefficients during early scans, leading to bizarre 1357 * displays due to overflows in the IDCT math. But we won't crash. 1358 */ 1359 bad: 1360 ERREXIT4(cinfo, JERR_BAD_PROGRESSION, 1361 cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); 1362 } 1363 /* Update progression status, and verify that scan order is legal. 1364 * Note that inter-scan inconsistencies are treated as warnings 1365 * not fatal errors ... not clear if this is right way to behave. 1366 */ 1367 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 1368 int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; 1369 int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; 1370 if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ 1371 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); 1372 for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { 1373 int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; 1374 if (cinfo->Ah != expected) 1375 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); 1376 coef_bit_ptr[coefi] = cinfo->Al; 1377 } 1378 } 1379 1380 /* Select MCU decoding routine */ 1381 if (cinfo->Ah == 0) { 1382 if (cinfo->Ss == 0) 1383 entropy->pub.decode_mcu = decode_mcu_DC_first; 1384 else 1385 entropy->pub.decode_mcu = decode_mcu_AC_first; 1386 } else { 1387 if (cinfo->Ss == 0) 1388 entropy->pub.decode_mcu = decode_mcu_DC_refine; 1389 else 1390 entropy->pub.decode_mcu = decode_mcu_AC_refine; 1391 } 1392 1393 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 1394 compptr = cinfo->cur_comp_info[ci]; 1395 /* Make sure requested tables are present, and compute derived tables. 1396 * We may build same derived table more than once, but it's not expensive. 1397 */ 1398 if (cinfo->Ss == 0) { 1399 if (cinfo->Ah == 0) { /* DC refinement needs no table */ 1400 tbl = compptr->dc_tbl_no; 1401 jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, 1402 & entropy->derived_tbls[tbl]); 1403 } 1404 } else { 1405 tbl = compptr->ac_tbl_no; 1406 jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, 1407 & entropy->derived_tbls[tbl]); 1408 /* remember the single active table */ 1409 entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; 1410 } 1411 /* Initialize DC predictions to 0 */ 1412 entropy->saved.last_dc_val[ci] = 0; 1413 } 1414 1415 /* Initialize private state variables */ 1416 entropy->saved.EOBRUN = 0; 1417 } else { 1418 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. 1419 * This ought to be an error condition, but we make it a warning because 1420 * there are some baseline files out there with all zeroes in these bytes. 1421 */ 1422 if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || 1423 ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) && 1424 cinfo->Se != cinfo->lim_Se)) 1425 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); 1426 1427 /* Select MCU decoding routine */ 1428 /* We retain the hard-coded case for full-size blocks. 1429 * This is not necessary, but it appears that this version is slightly 1430 * more performant in the given implementation. 1431 * With an improved implementation we would prefer a single optimized 1432 * function. 1433 */ 1434 if (cinfo->lim_Se != DCTSIZE2-1) 1435 entropy->pub.decode_mcu = decode_mcu_sub; 1436 else 1437 entropy->pub.decode_mcu = decode_mcu; 1438 1439 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 1440 compptr = cinfo->cur_comp_info[ci]; 1441 /* Compute derived values for Huffman tables */ 1442 /* We may do this more than once for a table, but it's not expensive */ 1443 tbl = compptr->dc_tbl_no; 1444 jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, 1445 & entropy->dc_derived_tbls[tbl]); 1446 if (cinfo->lim_Se) { /* AC needs no table when not present */ 1447 tbl = compptr->ac_tbl_no; 1448 jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, 1449 & entropy->ac_derived_tbls[tbl]); 1450 } 1451 /* Initialize DC predictions to 0 */ 1452 entropy->saved.last_dc_val[ci] = 0; 1453 } 1454 1455 /* Precalculate decoding info for each block in an MCU of this scan */ 1456 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { 1457 ci = cinfo->MCU_membership[blkn]; 1458 compptr = cinfo->cur_comp_info[ci]; 1459 /* Precalculate which table to use for each block */ 1460 entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; 1461 entropy->ac_cur_tbls[blkn] = /* AC needs no table when not present */ 1462 cinfo->lim_Se ? entropy->ac_derived_tbls[compptr->ac_tbl_no] : NULL; 1463 /* Decide whether we really care about the coefficient values */ 1464 if (compptr->component_needed) { 1465 ci = compptr->DCT_v_scaled_size; 1466 i = compptr->DCT_h_scaled_size; 1467 switch (cinfo->lim_Se) { 1468 case (1*1-1): 1469 entropy->coef_limit[blkn] = 1; 1470 break; 1471 case (2*2-1): 1472 if (ci <= 0 || ci > 2) ci = 2; 1473 if (i <= 0 || i > 2) i = 2; 1474 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1]; 1475 break; 1476 case (3*3-1): 1477 if (ci <= 0 || ci > 3) ci = 3; 1478 if (i <= 0 || i > 3) i = 3; 1479 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1]; 1480 break; 1481 case (4*4-1): 1482 if (ci <= 0 || ci > 4) ci = 4; 1483 if (i <= 0 || i > 4) i = 4; 1484 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1]; 1485 break; 1486 case (5*5-1): 1487 if (ci <= 0 || ci > 5) ci = 5; 1488 if (i <= 0 || i > 5) i = 5; 1489 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1]; 1490 break; 1491 case (6*6-1): 1492 if (ci <= 0 || ci > 6) ci = 6; 1493 if (i <= 0 || i > 6) i = 6; 1494 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1]; 1495 break; 1496 case (7*7-1): 1497 if (ci <= 0 || ci > 7) ci = 7; 1498 if (i <= 0 || i > 7) i = 7; 1499 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1]; 1500 break; 1501 default: 1502 if (ci <= 0 || ci > 8) ci = 8; 1503 if (i <= 0 || i > 8) i = 8; 1504 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1]; 1505 } 1506 } else { 1507 entropy->coef_limit[blkn] = 0; 1508 } 1509 } 1510 } 1511 1512 /* Initialize bitread state variables */ 1513 entropy->bitstate.bits_left = 0; 1514 entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ 1515 entropy->insufficient_data = FALSE; 1516 1517 /* Initialize restart counter */ 1518 entropy->restarts_to_go = cinfo->restart_interval; 1519 } 1520 1521 1522 /* 1523 * Module initialization routine for Huffman entropy decoding. 1524 */ 1525 1526 GLOBAL(void) 1527 jinit_huff_decoder (j_decompress_ptr cinfo) 1528 { 1529 huff_entropy_ptr entropy; 1530 int i; 1531 1532 entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) 1533 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_decoder)); 1534 cinfo->entropy = &entropy->pub; 1535 entropy->pub.start_pass = start_pass_huff_decoder; 1536 entropy->pub.finish_pass = finish_pass_huff; 1537 1538 if (cinfo->progressive_mode) { 1539 /* Create progression status table */ 1540 int *coef_bit_ptr, ci; 1541 cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small) 1542 ((j_common_ptr) cinfo, JPOOL_IMAGE, 1543 cinfo->num_components * DCTSIZE2 * SIZEOF(int)); 1544 coef_bit_ptr = & cinfo->coef_bits[0][0]; 1545 for (ci = 0; ci < cinfo->num_components; ci++) 1546 for (i = 0; i < DCTSIZE2; i++) 1547 *coef_bit_ptr++ = -1; 1548 1549 /* Mark derived tables unallocated */ 1550 for (i = 0; i < NUM_HUFF_TBLS; i++) { 1551 entropy->derived_tbls[i] = NULL; 1552 } 1553 } else { 1554 /* Mark derived tables unallocated */ 1555 for (i = 0; i < NUM_HUFF_TBLS; i++) { 1556 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; 1557 } 1558 } 1559 } 1560