1 /* 2 * jdmainct.c 3 * 4 * Copyright (C) 1994-1996, Thomas G. Lane. 5 * Modified 2002-2016 by Guido Vollbeding. 6 * This file is part of the Independent JPEG Group's software. 7 * For conditions of distribution and use, see the accompanying README file. 8 * 9 * This file contains the main buffer controller for decompression. 10 * The main buffer lies between the JPEG decompressor proper and the 11 * post-processor; it holds downsampled data in the JPEG colorspace. 12 * 13 * Note that this code is bypassed in raw-data mode, since the application 14 * supplies the equivalent of the main buffer in that case. 15 */ 16 17 #define JPEG_INTERNALS 18 #include "jinclude.h" 19 #include "jpeglib.h" 20 21 22 /* 23 * In the current system design, the main buffer need never be a full-image 24 * buffer; any full-height buffers will be found inside the coefficient or 25 * postprocessing controllers. Nonetheless, the main controller is not 26 * trivial. Its responsibility is to provide context rows for upsampling/ 27 * rescaling, and doing this in an efficient fashion is a bit tricky. 28 * 29 * Postprocessor input data is counted in "row groups". A row group is 30 * defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size) 31 * sample rows of each component. (We require DCT_scaled_size values to be 32 * chosen such that these numbers are integers. In practice DCT_scaled_size 33 * values will likely be powers of two, so we actually have the stronger 34 * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.) 35 * Upsampling will typically produce max_v_samp_factor pixel rows from each 36 * row group (times any additional scale factor that the upsampler is 37 * applying). 38 * 39 * The coefficient controller will deliver data to us one iMCU row at a time; 40 * each iMCU row contains v_samp_factor * DCT_v_scaled_size sample rows, or 41 * exactly min_DCT_v_scaled_size row groups. (This amount of data corresponds 42 * to one row of MCUs when the image is fully interleaved.) Note that the 43 * number of sample rows varies across components, but the number of row 44 * groups does not. Some garbage sample rows may be included in the last iMCU 45 * row at the bottom of the image. 46 * 47 * Depending on the vertical scaling algorithm used, the upsampler may need 48 * access to the sample row(s) above and below its current input row group. 49 * The upsampler is required to set need_context_rows TRUE at global selection 50 * time if so. When need_context_rows is FALSE, this controller can simply 51 * obtain one iMCU row at a time from the coefficient controller and dole it 52 * out as row groups to the postprocessor. 53 * 54 * When need_context_rows is TRUE, this controller guarantees that the buffer 55 * passed to postprocessing contains at least one row group's worth of samples 56 * above and below the row group(s) being processed. Note that the context 57 * rows "above" the first passed row group appear at negative row offsets in 58 * the passed buffer. At the top and bottom of the image, the required 59 * context rows are manufactured by duplicating the first or last real sample 60 * row; this avoids having special cases in the upsampling inner loops. 61 * 62 * The amount of context is fixed at one row group just because that's a 63 * convenient number for this controller to work with. The existing 64 * upsamplers really only need one sample row of context. An upsampler 65 * supporting arbitrary output rescaling might wish for more than one row 66 * group of context when shrinking the image; tough, we don't handle that. 67 * (This is justified by the assumption that downsizing will be handled mostly 68 * by adjusting the DCT_scaled_size values, so that the actual scale factor at 69 * the upsample step needn't be much less than one.) 70 * 71 * To provide the desired context, we have to retain the last two row groups 72 * of one iMCU row while reading in the next iMCU row. (The last row group 73 * can't be processed until we have another row group for its below-context, 74 * and so we have to save the next-to-last group too for its above-context.) 75 * We could do this most simply by copying data around in our buffer, but 76 * that'd be very slow. We can avoid copying any data by creating a rather 77 * strange pointer structure. Here's how it works. We allocate a workspace 78 * consisting of M+2 row groups (where M = min_DCT_v_scaled_size is the number 79 * of row groups per iMCU row). We create two sets of redundant pointers to 80 * the workspace. Labeling the physical row groups 0 to M+1, the synthesized 81 * pointer lists look like this: 82 * M+1 M-1 83 * master pointer --> 0 master pointer --> 0 84 * 1 1 85 * ... ... 86 * M-3 M-3 87 * M-2 M 88 * M-1 M+1 89 * M M-2 90 * M+1 M-1 91 * 0 0 92 * We read alternate iMCU rows using each master pointer; thus the last two 93 * row groups of the previous iMCU row remain un-overwritten in the workspace. 94 * The pointer lists are set up so that the required context rows appear to 95 * be adjacent to the proper places when we pass the pointer lists to the 96 * upsampler. 97 * 98 * The above pictures describe the normal state of the pointer lists. 99 * At top and bottom of the image, we diddle the pointer lists to duplicate 100 * the first or last sample row as necessary (this is cheaper than copying 101 * sample rows around). 102 * 103 * This scheme breaks down if M < 2, ie, min_DCT_v_scaled_size is 1. In that 104 * situation each iMCU row provides only one row group so the buffering logic 105 * must be different (eg, we must read two iMCU rows before we can emit the 106 * first row group). For now, we simply do not support providing context 107 * rows when min_DCT_v_scaled_size is 1. That combination seems unlikely to 108 * be worth providing --- if someone wants a 1/8th-size preview, they probably 109 * want it quick and dirty, so a context-free upsampler is sufficient. 110 */ 111 112 113 /* Private buffer controller object */ 114 115 typedef struct { 116 struct jpeg_d_main_controller pub; /* public fields */ 117 118 /* Pointer to allocated workspace (M or M+2 row groups). */ 119 JSAMPARRAY buffer[MAX_COMPONENTS]; 120 121 JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */ 122 JDIMENSION rowgroups_avail; /* row groups available to postprocessor */ 123 124 /* Remaining fields are only used in the context case. */ 125 126 boolean buffer_full; /* Have we gotten an iMCU row from decoder? */ 127 128 /* These are the master pointers to the funny-order pointer lists. */ 129 JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */ 130 131 int whichptr; /* indicates which pointer set is now in use */ 132 int context_state; /* process_data state machine status */ 133 JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */ 134 } my_main_controller; 135 136 typedef my_main_controller * my_main_ptr; 137 138 /* context_state values: */ 139 #define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */ 140 #define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */ 141 #define CTX_POSTPONED_ROW 2 /* feeding postponed row group */ 142 143 144 /* Forward declarations */ 145 METHODDEF(void) process_data_simple_main 146 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, 147 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); 148 METHODDEF(void) process_data_context_main 149 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, 150 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); 151 #ifdef QUANT_2PASS_SUPPORTED 152 METHODDEF(void) process_data_crank_post 153 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, 154 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); 155 #endif 156 157 158 LOCAL(void) 159 alloc_funny_pointers (j_decompress_ptr cinfo) 160 /* Allocate space for the funny pointer lists. 161 * This is done only once, not once per pass. 162 */ 163 { 164 my_main_ptr mainp = (my_main_ptr) cinfo->main; 165 int ci, rgroup; 166 int M = cinfo->min_DCT_v_scaled_size; 167 jpeg_component_info *compptr; 168 JSAMPARRAY xbuf; 169 170 /* Get top-level space for component array pointers. 171 * We alloc both arrays with one call to save a few cycles. 172 */ 173 mainp->xbuffer[0] = (JSAMPIMAGE) 174 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 175 cinfo->num_components * 2 * SIZEOF(JSAMPARRAY)); 176 mainp->xbuffer[1] = mainp->xbuffer[0] + cinfo->num_components; 177 178 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 179 ci++, compptr++) { 180 rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / 181 cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ 182 /* Get space for pointer lists --- M+4 row groups in each list. 183 * We alloc both pointer lists with one call to save a few cycles. 184 */ 185 xbuf = (JSAMPARRAY) 186 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 187 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW)); 188 xbuf += rgroup; /* want one row group at negative offsets */ 189 mainp->xbuffer[0][ci] = xbuf; 190 xbuf += rgroup * (M + 4); 191 mainp->xbuffer[1][ci] = xbuf; 192 } 193 } 194 195 196 LOCAL(void) 197 make_funny_pointers (j_decompress_ptr cinfo) 198 /* Create the funny pointer lists discussed in the comments above. 199 * The actual workspace is already allocated (in mainp->buffer), 200 * and the space for the pointer lists is allocated too. 201 * This routine just fills in the curiously ordered lists. 202 * This will be repeated at the beginning of each pass. 203 */ 204 { 205 my_main_ptr mainp = (my_main_ptr) cinfo->main; 206 int ci, i, rgroup; 207 int M = cinfo->min_DCT_v_scaled_size; 208 jpeg_component_info *compptr; 209 JSAMPARRAY buf, xbuf0, xbuf1; 210 211 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 212 ci++, compptr++) { 213 rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / 214 cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ 215 xbuf0 = mainp->xbuffer[0][ci]; 216 xbuf1 = mainp->xbuffer[1][ci]; 217 /* First copy the workspace pointers as-is */ 218 buf = mainp->buffer[ci]; 219 for (i = 0; i < rgroup * (M + 2); i++) { 220 xbuf0[i] = xbuf1[i] = buf[i]; 221 } 222 /* In the second list, put the last four row groups in swapped order */ 223 for (i = 0; i < rgroup * 2; i++) { 224 xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i]; 225 xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i]; 226 } 227 /* The wraparound pointers at top and bottom will be filled later 228 * (see set_wraparound_pointers, below). Initially we want the "above" 229 * pointers to duplicate the first actual data line. This only needs 230 * to happen in xbuffer[0]. 231 */ 232 for (i = 0; i < rgroup; i++) { 233 xbuf0[i - rgroup] = xbuf0[0]; 234 } 235 } 236 } 237 238 239 LOCAL(void) 240 set_wraparound_pointers (j_decompress_ptr cinfo) 241 /* Set up the "wraparound" pointers at top and bottom of the pointer lists. 242 * This changes the pointer list state from top-of-image to the normal state. 243 */ 244 { 245 my_main_ptr mainp = (my_main_ptr) cinfo->main; 246 int ci, i, rgroup; 247 int M = cinfo->min_DCT_v_scaled_size; 248 jpeg_component_info *compptr; 249 JSAMPARRAY xbuf0, xbuf1; 250 251 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 252 ci++, compptr++) { 253 rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / 254 cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ 255 xbuf0 = mainp->xbuffer[0][ci]; 256 xbuf1 = mainp->xbuffer[1][ci]; 257 for (i = 0; i < rgroup; i++) { 258 xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i]; 259 xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i]; 260 xbuf0[rgroup*(M+2) + i] = xbuf0[i]; 261 xbuf1[rgroup*(M+2) + i] = xbuf1[i]; 262 } 263 } 264 } 265 266 267 LOCAL(void) 268 set_bottom_pointers (j_decompress_ptr cinfo) 269 /* Change the pointer lists to duplicate the last sample row at the bottom 270 * of the image. whichptr indicates which xbuffer holds the final iMCU row. 271 * Also sets rowgroups_avail to indicate number of nondummy row groups in row. 272 */ 273 { 274 my_main_ptr mainp = (my_main_ptr) cinfo->main; 275 int ci, i, rgroup, iMCUheight, rows_left; 276 jpeg_component_info *compptr; 277 JSAMPARRAY xbuf; 278 279 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 280 ci++, compptr++) { 281 /* Count sample rows in one iMCU row and in one row group */ 282 iMCUheight = compptr->v_samp_factor * compptr->DCT_v_scaled_size; 283 rgroup = iMCUheight / cinfo->min_DCT_v_scaled_size; 284 /* Count nondummy sample rows remaining for this component */ 285 rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight); 286 if (rows_left == 0) rows_left = iMCUheight; 287 /* Count nondummy row groups. Should get same answer for each component, 288 * so we need only do it once. 289 */ 290 if (ci == 0) { 291 mainp->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1); 292 } 293 /* Duplicate the last real sample row rgroup*2 times; this pads out the 294 * last partial rowgroup and ensures at least one full rowgroup of context. 295 */ 296 xbuf = mainp->xbuffer[mainp->whichptr][ci]; 297 for (i = 0; i < rgroup * 2; i++) { 298 xbuf[rows_left + i] = xbuf[rows_left-1]; 299 } 300 } 301 } 302 303 304 /* 305 * Initialize for a processing pass. 306 */ 307 308 METHODDEF(void) 309 start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) 310 { 311 my_main_ptr mainp = (my_main_ptr) cinfo->main; 312 313 switch (pass_mode) { 314 case JBUF_PASS_THRU: 315 if (cinfo->upsample->need_context_rows) { 316 mainp->pub.process_data = process_data_context_main; 317 make_funny_pointers(cinfo); /* Create the xbuffer[] lists */ 318 mainp->whichptr = 0; /* Read first iMCU row into xbuffer[0] */ 319 mainp->context_state = CTX_PREPARE_FOR_IMCU; 320 mainp->iMCU_row_ctr = 0; 321 mainp->buffer_full = FALSE; /* Mark buffer empty */ 322 } else { 323 /* Simple case with no context needed */ 324 mainp->pub.process_data = process_data_simple_main; 325 mainp->rowgroup_ctr = mainp->rowgroups_avail; /* Mark buffer empty */ 326 } 327 break; 328 #ifdef QUANT_2PASS_SUPPORTED 329 case JBUF_CRANK_DEST: 330 /* For last pass of 2-pass quantization, just crank the postprocessor */ 331 mainp->pub.process_data = process_data_crank_post; 332 break; 333 #endif 334 default: 335 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); 336 break; 337 } 338 } 339 340 341 /* 342 * Process some data. 343 * This handles the simple case where no context is required. 344 */ 345 346 METHODDEF(void) 347 process_data_simple_main (j_decompress_ptr cinfo, 348 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, 349 JDIMENSION out_rows_avail) 350 { 351 my_main_ptr mainp = (my_main_ptr) cinfo->main; 352 353 /* Read input data if we haven't filled the main buffer yet */ 354 if (mainp->rowgroup_ctr >= mainp->rowgroups_avail) { 355 if (! (*cinfo->coef->decompress_data) (cinfo, mainp->buffer)) 356 return; /* suspension forced, can do nothing more */ 357 mainp->rowgroup_ctr = 0; /* OK, we have an iMCU row to work with */ 358 } 359 360 /* Note: at the bottom of the image, we may pass extra garbage row groups 361 * to the postprocessor. The postprocessor has to check for bottom 362 * of image anyway (at row resolution), so no point in us doing it too. 363 */ 364 365 /* Feed the postprocessor */ 366 (*cinfo->post->post_process_data) (cinfo, mainp->buffer, 367 &mainp->rowgroup_ctr, mainp->rowgroups_avail, 368 output_buf, out_row_ctr, out_rows_avail); 369 } 370 371 372 /* 373 * Process some data. 374 * This handles the case where context rows must be provided. 375 */ 376 377 METHODDEF(void) 378 process_data_context_main (j_decompress_ptr cinfo, 379 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, 380 JDIMENSION out_rows_avail) 381 { 382 my_main_ptr mainp = (my_main_ptr) cinfo->main; 383 384 /* Read input data if we haven't filled the main buffer yet */ 385 if (! mainp->buffer_full) { 386 if (! (*cinfo->coef->decompress_data) (cinfo, 387 mainp->xbuffer[mainp->whichptr])) 388 return; /* suspension forced, can do nothing more */ 389 mainp->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ 390 mainp->iMCU_row_ctr++; /* count rows received */ 391 } 392 393 /* Postprocessor typically will not swallow all the input data it is handed 394 * in one call (due to filling the output buffer first). Must be prepared 395 * to exit and restart. This switch lets us keep track of how far we got. 396 * Note that each case falls through to the next on successful completion. 397 */ 398 switch (mainp->context_state) { 399 case CTX_POSTPONED_ROW: 400 /* Call postprocessor using previously set pointers for postponed row */ 401 (*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr], 402 &mainp->rowgroup_ctr, mainp->rowgroups_avail, 403 output_buf, out_row_ctr, out_rows_avail); 404 if (mainp->rowgroup_ctr < mainp->rowgroups_avail) 405 return; /* Need to suspend */ 406 mainp->context_state = CTX_PREPARE_FOR_IMCU; 407 if (*out_row_ctr >= out_rows_avail) 408 return; /* Postprocessor exactly filled output buf */ 409 /*FALLTHROUGH*/ 410 case CTX_PREPARE_FOR_IMCU: 411 /* Prepare to process first M-1 row groups of this iMCU row */ 412 mainp->rowgroup_ctr = 0; 413 mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1); 414 /* Check for bottom of image: if so, tweak pointers to "duplicate" 415 * the last sample row, and adjust rowgroups_avail to ignore padding rows. 416 */ 417 if (mainp->iMCU_row_ctr == cinfo->total_iMCU_rows) 418 set_bottom_pointers(cinfo); 419 mainp->context_state = CTX_PROCESS_IMCU; 420 /*FALLTHROUGH*/ 421 case CTX_PROCESS_IMCU: 422 /* Call postprocessor using previously set pointers */ 423 (*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr], 424 &mainp->rowgroup_ctr, mainp->rowgroups_avail, 425 output_buf, out_row_ctr, out_rows_avail); 426 if (mainp->rowgroup_ctr < mainp->rowgroups_avail) 427 return; /* Need to suspend */ 428 /* After the first iMCU, change wraparound pointers to normal state */ 429 if (mainp->iMCU_row_ctr == 1) 430 set_wraparound_pointers(cinfo); 431 /* Prepare to load new iMCU row using other xbuffer list */ 432 mainp->whichptr ^= 1; /* 0=>1 or 1=>0 */ 433 mainp->buffer_full = FALSE; 434 /* Still need to process last row group of this iMCU row, */ 435 /* which is saved at index M+1 of the other xbuffer */ 436 mainp->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1); 437 mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2); 438 mainp->context_state = CTX_POSTPONED_ROW; 439 } 440 } 441 442 443 /* 444 * Process some data. 445 * Final pass of two-pass quantization: just call the postprocessor. 446 * Source data will be the postprocessor controller's internal buffer. 447 */ 448 449 #ifdef QUANT_2PASS_SUPPORTED 450 451 METHODDEF(void) 452 process_data_crank_post (j_decompress_ptr cinfo, 453 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, 454 JDIMENSION out_rows_avail) 455 { 456 (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL, 457 (JDIMENSION *) NULL, (JDIMENSION) 0, 458 output_buf, out_row_ctr, out_rows_avail); 459 } 460 461 #endif /* QUANT_2PASS_SUPPORTED */ 462 463 464 /* 465 * Initialize main buffer controller. 466 */ 467 468 GLOBAL(void) 469 jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer) 470 { 471 my_main_ptr mainp; 472 int ci, rgroup, ngroups; 473 jpeg_component_info *compptr; 474 475 mainp = (my_main_ptr) 476 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 477 SIZEOF(my_main_controller)); 478 cinfo->main = &mainp->pub; 479 mainp->pub.start_pass = start_pass_main; 480 481 if (need_full_buffer) /* shouldn't happen */ 482 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); 483 484 /* Allocate the workspace. 485 * ngroups is the number of row groups we need. 486 */ 487 if (cinfo->upsample->need_context_rows) { 488 if (cinfo->min_DCT_v_scaled_size < 2) /* unsupported, see comments above */ 489 ERREXIT(cinfo, JERR_NOTIMPL); 490 alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */ 491 ngroups = cinfo->min_DCT_v_scaled_size + 2; 492 } else { 493 /* There are always min_DCT_v_scaled_size row groups in an iMCU row. */ 494 ngroups = cinfo->min_DCT_v_scaled_size; 495 mainp->rowgroups_avail = (JDIMENSION) ngroups; 496 } 497 498 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 499 ci++, compptr++) { 500 rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / 501 cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ 502 mainp->buffer[ci] = (*cinfo->mem->alloc_sarray) 503 ((j_common_ptr) cinfo, JPOOL_IMAGE, 504 compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size), 505 (JDIMENSION) (rgroup * ngroups)); 506 } 507 } 508