xref: /reactos/dll/3rdparty/libjpeg/jdmainct.c (revision ebaf247c)
1 /*
2  * jdmainct.c
3  *
4  * Copyright (C) 1994-1996, Thomas G. Lane.
5  * Modified 2002-2016 by Guido Vollbeding.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains the main buffer controller for decompression.
10  * The main buffer lies between the JPEG decompressor proper and the
11  * post-processor; it holds downsampled data in the JPEG colorspace.
12  *
13  * Note that this code is bypassed in raw-data mode, since the application
14  * supplies the equivalent of the main buffer in that case.
15  */
16 
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 
21 
22 /*
23  * In the current system design, the main buffer need never be a full-image
24  * buffer; any full-height buffers will be found inside the coefficient or
25  * postprocessing controllers.  Nonetheless, the main controller is not
26  * trivial.  Its responsibility is to provide context rows for upsampling/
27  * rescaling, and doing this in an efficient fashion is a bit tricky.
28  *
29  * Postprocessor input data is counted in "row groups".  A row group is
30  * defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size)
31  * sample rows of each component.  (We require DCT_scaled_size values to be
32  * chosen such that these numbers are integers.  In practice DCT_scaled_size
33  * values will likely be powers of two, so we actually have the stronger
34  * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
35  * Upsampling will typically produce max_v_samp_factor pixel rows from each
36  * row group (times any additional scale factor that the upsampler is
37  * applying).
38  *
39  * The coefficient controller will deliver data to us one iMCU row at a time;
40  * each iMCU row contains v_samp_factor * DCT_v_scaled_size sample rows, or
41  * exactly min_DCT_v_scaled_size row groups.  (This amount of data corresponds
42  * to one row of MCUs when the image is fully interleaved.)  Note that the
43  * number of sample rows varies across components, but the number of row
44  * groups does not.  Some garbage sample rows may be included in the last iMCU
45  * row at the bottom of the image.
46  *
47  * Depending on the vertical scaling algorithm used, the upsampler may need
48  * access to the sample row(s) above and below its current input row group.
49  * The upsampler is required to set need_context_rows TRUE at global selection
50  * time if so.  When need_context_rows is FALSE, this controller can simply
51  * obtain one iMCU row at a time from the coefficient controller and dole it
52  * out as row groups to the postprocessor.
53  *
54  * When need_context_rows is TRUE, this controller guarantees that the buffer
55  * passed to postprocessing contains at least one row group's worth of samples
56  * above and below the row group(s) being processed.  Note that the context
57  * rows "above" the first passed row group appear at negative row offsets in
58  * the passed buffer.  At the top and bottom of the image, the required
59  * context rows are manufactured by duplicating the first or last real sample
60  * row; this avoids having special cases in the upsampling inner loops.
61  *
62  * The amount of context is fixed at one row group just because that's a
63  * convenient number for this controller to work with.  The existing
64  * upsamplers really only need one sample row of context.  An upsampler
65  * supporting arbitrary output rescaling might wish for more than one row
66  * group of context when shrinking the image; tough, we don't handle that.
67  * (This is justified by the assumption that downsizing will be handled mostly
68  * by adjusting the DCT_scaled_size values, so that the actual scale factor at
69  * the upsample step needn't be much less than one.)
70  *
71  * To provide the desired context, we have to retain the last two row groups
72  * of one iMCU row while reading in the next iMCU row.  (The last row group
73  * can't be processed until we have another row group for its below-context,
74  * and so we have to save the next-to-last group too for its above-context.)
75  * We could do this most simply by copying data around in our buffer, but
76  * that'd be very slow.  We can avoid copying any data by creating a rather
77  * strange pointer structure.  Here's how it works.  We allocate a workspace
78  * consisting of M+2 row groups (where M = min_DCT_v_scaled_size is the number
79  * of row groups per iMCU row).  We create two sets of redundant pointers to
80  * the workspace.  Labeling the physical row groups 0 to M+1, the synthesized
81  * pointer lists look like this:
82  *                   M+1                          M-1
83  * master pointer --> 0         master pointer --> 0
84  *                    1                            1
85  *                   ...                          ...
86  *                   M-3                          M-3
87  *                   M-2                           M
88  *                   M-1                          M+1
89  *                    M                           M-2
90  *                   M+1                          M-1
91  *                    0                            0
92  * We read alternate iMCU rows using each master pointer; thus the last two
93  * row groups of the previous iMCU row remain un-overwritten in the workspace.
94  * The pointer lists are set up so that the required context rows appear to
95  * be adjacent to the proper places when we pass the pointer lists to the
96  * upsampler.
97  *
98  * The above pictures describe the normal state of the pointer lists.
99  * At top and bottom of the image, we diddle the pointer lists to duplicate
100  * the first or last sample row as necessary (this is cheaper than copying
101  * sample rows around).
102  *
103  * This scheme breaks down if M < 2, ie, min_DCT_v_scaled_size is 1.  In that
104  * situation each iMCU row provides only one row group so the buffering logic
105  * must be different (eg, we must read two iMCU rows before we can emit the
106  * first row group).  For now, we simply do not support providing context
107  * rows when min_DCT_v_scaled_size is 1.  That combination seems unlikely to
108  * be worth providing --- if someone wants a 1/8th-size preview, they probably
109  * want it quick and dirty, so a context-free upsampler is sufficient.
110  */
111 
112 
113 /* Private buffer controller object */
114 
115 typedef struct {
116   struct jpeg_d_main_controller pub; /* public fields */
117 
118   /* Pointer to allocated workspace (M or M+2 row groups). */
119   JSAMPARRAY buffer[MAX_COMPONENTS];
120 
121   JDIMENSION rowgroup_ctr;	/* counts row groups output to postprocessor */
122   JDIMENSION rowgroups_avail;	/* row groups available to postprocessor */
123 
124   /* Remaining fields are only used in the context case. */
125 
126   boolean buffer_full;		/* Have we gotten an iMCU row from decoder? */
127 
128   /* These are the master pointers to the funny-order pointer lists. */
129   JSAMPIMAGE xbuffer[2];	/* pointers to weird pointer lists */
130 
131   int whichptr;			/* indicates which pointer set is now in use */
132   int context_state;		/* process_data state machine status */
133   JDIMENSION iMCU_row_ctr;	/* counts iMCU rows to detect image top/bot */
134 } my_main_controller;
135 
136 typedef my_main_controller * my_main_ptr;
137 
138 /* context_state values: */
139 #define CTX_PREPARE_FOR_IMCU	0	/* need to prepare for MCU row */
140 #define CTX_PROCESS_IMCU	1	/* feeding iMCU to postprocessor */
141 #define CTX_POSTPONED_ROW	2	/* feeding postponed row group */
142 
143 
144 /* Forward declarations */
145 METHODDEF(void) process_data_simple_main
146 	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
147 	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
148 METHODDEF(void) process_data_context_main
149 	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
150 	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
151 #ifdef QUANT_2PASS_SUPPORTED
152 METHODDEF(void) process_data_crank_post
153 	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
154 	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
155 #endif
156 
157 
158 LOCAL(void)
159 alloc_funny_pointers (j_decompress_ptr cinfo)
160 /* Allocate space for the funny pointer lists.
161  * This is done only once, not once per pass.
162  */
163 {
164   my_main_ptr mainp = (my_main_ptr) cinfo->main;
165   int ci, rgroup;
166   int M = cinfo->min_DCT_v_scaled_size;
167   jpeg_component_info *compptr;
168   JSAMPARRAY xbuf;
169 
170   /* Get top-level space for component array pointers.
171    * We alloc both arrays with one call to save a few cycles.
172    */
173   mainp->xbuffer[0] = (JSAMPIMAGE)
174     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
175 				cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
176   mainp->xbuffer[1] = mainp->xbuffer[0] + cinfo->num_components;
177 
178   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
179        ci++, compptr++) {
180     rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
181       cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
182     /* Get space for pointer lists --- M+4 row groups in each list.
183      * We alloc both pointer lists with one call to save a few cycles.
184      */
185     xbuf = (JSAMPARRAY)
186       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
187 				  2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
188     xbuf += rgroup;		/* want one row group at negative offsets */
189     mainp->xbuffer[0][ci] = xbuf;
190     xbuf += rgroup * (M + 4);
191     mainp->xbuffer[1][ci] = xbuf;
192   }
193 }
194 
195 
196 LOCAL(void)
197 make_funny_pointers (j_decompress_ptr cinfo)
198 /* Create the funny pointer lists discussed in the comments above.
199  * The actual workspace is already allocated (in mainp->buffer),
200  * and the space for the pointer lists is allocated too.
201  * This routine just fills in the curiously ordered lists.
202  * This will be repeated at the beginning of each pass.
203  */
204 {
205   my_main_ptr mainp = (my_main_ptr) cinfo->main;
206   int ci, i, rgroup;
207   int M = cinfo->min_DCT_v_scaled_size;
208   jpeg_component_info *compptr;
209   JSAMPARRAY buf, xbuf0, xbuf1;
210 
211   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
212        ci++, compptr++) {
213     rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
214       cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
215     xbuf0 = mainp->xbuffer[0][ci];
216     xbuf1 = mainp->xbuffer[1][ci];
217     /* First copy the workspace pointers as-is */
218     buf = mainp->buffer[ci];
219     for (i = 0; i < rgroup * (M + 2); i++) {
220       xbuf0[i] = xbuf1[i] = buf[i];
221     }
222     /* In the second list, put the last four row groups in swapped order */
223     for (i = 0; i < rgroup * 2; i++) {
224       xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
225       xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
226     }
227     /* The wraparound pointers at top and bottom will be filled later
228      * (see set_wraparound_pointers, below).  Initially we want the "above"
229      * pointers to duplicate the first actual data line.  This only needs
230      * to happen in xbuffer[0].
231      */
232     for (i = 0; i < rgroup; i++) {
233       xbuf0[i - rgroup] = xbuf0[0];
234     }
235   }
236 }
237 
238 
239 LOCAL(void)
240 set_wraparound_pointers (j_decompress_ptr cinfo)
241 /* Set up the "wraparound" pointers at top and bottom of the pointer lists.
242  * This changes the pointer list state from top-of-image to the normal state.
243  */
244 {
245   my_main_ptr mainp = (my_main_ptr) cinfo->main;
246   int ci, i, rgroup;
247   int M = cinfo->min_DCT_v_scaled_size;
248   jpeg_component_info *compptr;
249   JSAMPARRAY xbuf0, xbuf1;
250 
251   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
252        ci++, compptr++) {
253     rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
254       cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
255     xbuf0 = mainp->xbuffer[0][ci];
256     xbuf1 = mainp->xbuffer[1][ci];
257     for (i = 0; i < rgroup; i++) {
258       xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
259       xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
260       xbuf0[rgroup*(M+2) + i] = xbuf0[i];
261       xbuf1[rgroup*(M+2) + i] = xbuf1[i];
262     }
263   }
264 }
265 
266 
267 LOCAL(void)
268 set_bottom_pointers (j_decompress_ptr cinfo)
269 /* Change the pointer lists to duplicate the last sample row at the bottom
270  * of the image.  whichptr indicates which xbuffer holds the final iMCU row.
271  * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
272  */
273 {
274   my_main_ptr mainp = (my_main_ptr) cinfo->main;
275   int ci, i, rgroup, iMCUheight, rows_left;
276   jpeg_component_info *compptr;
277   JSAMPARRAY xbuf;
278 
279   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
280        ci++, compptr++) {
281     /* Count sample rows in one iMCU row and in one row group */
282     iMCUheight = compptr->v_samp_factor * compptr->DCT_v_scaled_size;
283     rgroup = iMCUheight / cinfo->min_DCT_v_scaled_size;
284     /* Count nondummy sample rows remaining for this component */
285     rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
286     if (rows_left == 0) rows_left = iMCUheight;
287     /* Count nondummy row groups.  Should get same answer for each component,
288      * so we need only do it once.
289      */
290     if (ci == 0) {
291       mainp->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
292     }
293     /* Duplicate the last real sample row rgroup*2 times; this pads out the
294      * last partial rowgroup and ensures at least one full rowgroup of context.
295      */
296     xbuf = mainp->xbuffer[mainp->whichptr][ci];
297     for (i = 0; i < rgroup * 2; i++) {
298       xbuf[rows_left + i] = xbuf[rows_left-1];
299     }
300   }
301 }
302 
303 
304 /*
305  * Initialize for a processing pass.
306  */
307 
308 METHODDEF(void)
309 start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
310 {
311   my_main_ptr mainp = (my_main_ptr) cinfo->main;
312 
313   switch (pass_mode) {
314   case JBUF_PASS_THRU:
315     if (cinfo->upsample->need_context_rows) {
316       mainp->pub.process_data = process_data_context_main;
317       make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
318       mainp->whichptr = 0;	/* Read first iMCU row into xbuffer[0] */
319       mainp->context_state = CTX_PREPARE_FOR_IMCU;
320       mainp->iMCU_row_ctr = 0;
321       mainp->buffer_full = FALSE; /* Mark buffer empty */
322     } else {
323       /* Simple case with no context needed */
324       mainp->pub.process_data = process_data_simple_main;
325       mainp->rowgroup_ctr = mainp->rowgroups_avail; /* Mark buffer empty */
326     }
327     break;
328 #ifdef QUANT_2PASS_SUPPORTED
329   case JBUF_CRANK_DEST:
330     /* For last pass of 2-pass quantization, just crank the postprocessor */
331     mainp->pub.process_data = process_data_crank_post;
332     break;
333 #endif
334   default:
335     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
336     break;
337   }
338 }
339 
340 
341 /*
342  * Process some data.
343  * This handles the simple case where no context is required.
344  */
345 
346 METHODDEF(void)
347 process_data_simple_main (j_decompress_ptr cinfo,
348 			  JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
349 			  JDIMENSION out_rows_avail)
350 {
351   my_main_ptr mainp = (my_main_ptr) cinfo->main;
352 
353   /* Read input data if we haven't filled the main buffer yet */
354   if (mainp->rowgroup_ctr >= mainp->rowgroups_avail) {
355     if (! (*cinfo->coef->decompress_data) (cinfo, mainp->buffer))
356       return;			/* suspension forced, can do nothing more */
357     mainp->rowgroup_ctr = 0;	/* OK, we have an iMCU row to work with */
358   }
359 
360   /* Note: at the bottom of the image, we may pass extra garbage row groups
361    * to the postprocessor.  The postprocessor has to check for bottom
362    * of image anyway (at row resolution), so no point in us doing it too.
363    */
364 
365   /* Feed the postprocessor */
366   (*cinfo->post->post_process_data) (cinfo, mainp->buffer,
367 			&mainp->rowgroup_ctr, mainp->rowgroups_avail,
368 			output_buf, out_row_ctr, out_rows_avail);
369 }
370 
371 
372 /*
373  * Process some data.
374  * This handles the case where context rows must be provided.
375  */
376 
377 METHODDEF(void)
378 process_data_context_main (j_decompress_ptr cinfo,
379 			   JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
380 			   JDIMENSION out_rows_avail)
381 {
382   my_main_ptr mainp = (my_main_ptr) cinfo->main;
383 
384   /* Read input data if we haven't filled the main buffer yet */
385   if (! mainp->buffer_full) {
386     if (! (*cinfo->coef->decompress_data) (cinfo,
387 					   mainp->xbuffer[mainp->whichptr]))
388       return;			/* suspension forced, can do nothing more */
389     mainp->buffer_full = TRUE;	/* OK, we have an iMCU row to work with */
390     mainp->iMCU_row_ctr++;	/* count rows received */
391   }
392 
393   /* Postprocessor typically will not swallow all the input data it is handed
394    * in one call (due to filling the output buffer first).  Must be prepared
395    * to exit and restart.  This switch lets us keep track of how far we got.
396    * Note that each case falls through to the next on successful completion.
397    */
398   switch (mainp->context_state) {
399   case CTX_POSTPONED_ROW:
400     /* Call postprocessor using previously set pointers for postponed row */
401     (*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr],
402 			&mainp->rowgroup_ctr, mainp->rowgroups_avail,
403 			output_buf, out_row_ctr, out_rows_avail);
404     if (mainp->rowgroup_ctr < mainp->rowgroups_avail)
405       return;			/* Need to suspend */
406     mainp->context_state = CTX_PREPARE_FOR_IMCU;
407     if (*out_row_ctr >= out_rows_avail)
408       return;			/* Postprocessor exactly filled output buf */
409     /*FALLTHROUGH*/
410   case CTX_PREPARE_FOR_IMCU:
411     /* Prepare to process first M-1 row groups of this iMCU row */
412     mainp->rowgroup_ctr = 0;
413     mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1);
414     /* Check for bottom of image: if so, tweak pointers to "duplicate"
415      * the last sample row, and adjust rowgroups_avail to ignore padding rows.
416      */
417     if (mainp->iMCU_row_ctr == cinfo->total_iMCU_rows)
418       set_bottom_pointers(cinfo);
419     mainp->context_state = CTX_PROCESS_IMCU;
420     /*FALLTHROUGH*/
421   case CTX_PROCESS_IMCU:
422     /* Call postprocessor using previously set pointers */
423     (*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr],
424 			&mainp->rowgroup_ctr, mainp->rowgroups_avail,
425 			output_buf, out_row_ctr, out_rows_avail);
426     if (mainp->rowgroup_ctr < mainp->rowgroups_avail)
427       return;			/* Need to suspend */
428     /* After the first iMCU, change wraparound pointers to normal state */
429     if (mainp->iMCU_row_ctr == 1)
430       set_wraparound_pointers(cinfo);
431     /* Prepare to load new iMCU row using other xbuffer list */
432     mainp->whichptr ^= 1;	/* 0=>1 or 1=>0 */
433     mainp->buffer_full = FALSE;
434     /* Still need to process last row group of this iMCU row, */
435     /* which is saved at index M+1 of the other xbuffer */
436     mainp->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1);
437     mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2);
438     mainp->context_state = CTX_POSTPONED_ROW;
439   }
440 }
441 
442 
443 /*
444  * Process some data.
445  * Final pass of two-pass quantization: just call the postprocessor.
446  * Source data will be the postprocessor controller's internal buffer.
447  */
448 
449 #ifdef QUANT_2PASS_SUPPORTED
450 
451 METHODDEF(void)
452 process_data_crank_post (j_decompress_ptr cinfo,
453 			 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
454 			 JDIMENSION out_rows_avail)
455 {
456   (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
457 				     (JDIMENSION *) NULL, (JDIMENSION) 0,
458 				     output_buf, out_row_ctr, out_rows_avail);
459 }
460 
461 #endif /* QUANT_2PASS_SUPPORTED */
462 
463 
464 /*
465  * Initialize main buffer controller.
466  */
467 
468 GLOBAL(void)
469 jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
470 {
471   my_main_ptr mainp;
472   int ci, rgroup, ngroups;
473   jpeg_component_info *compptr;
474 
475   mainp = (my_main_ptr)
476     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
477 				SIZEOF(my_main_controller));
478   cinfo->main = &mainp->pub;
479   mainp->pub.start_pass = start_pass_main;
480 
481   if (need_full_buffer)		/* shouldn't happen */
482     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
483 
484   /* Allocate the workspace.
485    * ngroups is the number of row groups we need.
486    */
487   if (cinfo->upsample->need_context_rows) {
488     if (cinfo->min_DCT_v_scaled_size < 2) /* unsupported, see comments above */
489       ERREXIT(cinfo, JERR_NOTIMPL);
490     alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
491     ngroups = cinfo->min_DCT_v_scaled_size + 2;
492   } else {
493     /* There are always min_DCT_v_scaled_size row groups in an iMCU row. */
494     ngroups = cinfo->min_DCT_v_scaled_size;
495     mainp->rowgroups_avail = (JDIMENSION) ngroups;
496   }
497 
498   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
499        ci++, compptr++) {
500     rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
501       cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
502     mainp->buffer[ci] = (*cinfo->mem->alloc_sarray)
503       ((j_common_ptr) cinfo, JPOOL_IMAGE,
504        compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size),
505        (JDIMENSION) (rgroup * ngroups));
506   }
507 }
508