1 /* 2 * jmemmgr.c 3 * 4 * Copyright (C) 1991-1997, Thomas G. Lane. 5 * Modified 2011-2019 by Guido Vollbeding. 6 * This file is part of the Independent JPEG Group's software. 7 * For conditions of distribution and use, see the accompanying README file. 8 * 9 * This file contains the JPEG system-independent memory management 10 * routines. This code is usable across a wide variety of machines; most 11 * of the system dependencies have been isolated in a separate file. 12 * The major functions provided here are: 13 * * pool-based allocation and freeing of memory; 14 * * policy decisions about how to divide available memory among the 15 * virtual arrays; 16 * * control logic for swapping virtual arrays between main memory and 17 * backing storage. 18 * The separate system-dependent file provides the actual backing-storage 19 * access code, and it contains the policy decision about how much total 20 * main memory to use. 21 * This file is system-dependent in the sense that some of its functions 22 * are unnecessary in some systems. For example, if there is enough virtual 23 * memory so that backing storage will never be used, much of the virtual 24 * array control logic could be removed. (Of course, if you have that much 25 * memory then you shouldn't care about a little bit of unused code...) 26 */ 27 28 #define JPEG_INTERNALS 29 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ 30 #include "jinclude.h" 31 #include "jpeglib.h" 32 #include "jmemsys.h" /* import the system-dependent declarations */ 33 34 #ifndef NO_GETENV 35 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ 36 extern char * getenv JPP((const char * name)); 37 #endif 38 #endif 39 40 41 /* 42 * Some important notes: 43 * The allocation routines provided here must never return NULL. 44 * They should exit to error_exit if unsuccessful. 45 * 46 * It's not a good idea to try to merge the sarray and barray routines, 47 * even though they are textually almost the same, because samples are 48 * usually stored as bytes while coefficients are shorts or ints. Thus, 49 * in machines where byte pointers have a different representation from 50 * word pointers, the resulting machine code could not be the same. 51 */ 52 53 54 /* 55 * Many machines require storage alignment: longs must start on 4-byte 56 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() 57 * always returns pointers that are multiples of the worst-case alignment 58 * requirement, and we had better do so too. 59 * There isn't any really portable way to determine the worst-case alignment 60 * requirement. This module assumes that the alignment requirement is 61 * multiples of sizeof(ALIGN_TYPE). 62 * By default, we define ALIGN_TYPE as double. This is necessary on some 63 * workstations (where doubles really do need 8-byte alignment) and will work 64 * fine on nearly everything. If your machine has lesser alignment needs, 65 * you can save a few bytes by making ALIGN_TYPE smaller. 66 * The only place I know of where this will NOT work is certain Macintosh 67 * 680x0 compilers that define double as a 10-byte IEEE extended float. 68 * Doing 10-byte alignment is counterproductive because longwords won't be 69 * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have 70 * such a compiler. 71 */ 72 73 #ifndef ALIGN_TYPE /* so can override from jconfig.h */ 74 #define ALIGN_TYPE double 75 #endif 76 77 78 /* 79 * We allocate objects from "pools", where each pool is gotten with a single 80 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object 81 * overhead within a pool, except for alignment padding. Each pool has a 82 * header with a link to the next pool of the same class. 83 * Small and large pool headers are identical except that the latter's 84 * link pointer must be FAR on 80x86 machines. 85 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE 86 * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple 87 * of the alignment requirement of ALIGN_TYPE. 88 */ 89 90 typedef union small_pool_struct * small_pool_ptr; 91 92 typedef union small_pool_struct { 93 struct { 94 small_pool_ptr next; /* next in list of pools */ 95 size_t bytes_used; /* how many bytes already used within pool */ 96 size_t bytes_left; /* bytes still available in this pool */ 97 } hdr; 98 ALIGN_TYPE dummy; /* included in union to ensure alignment */ 99 } small_pool_hdr; 100 101 typedef union large_pool_struct FAR * large_pool_ptr; 102 103 typedef union large_pool_struct { 104 struct { 105 large_pool_ptr next; /* next in list of pools */ 106 size_t bytes_used; /* how many bytes already used within pool */ 107 size_t bytes_left; /* bytes still available in this pool */ 108 } hdr; 109 ALIGN_TYPE dummy; /* included in union to ensure alignment */ 110 } large_pool_hdr; 111 112 113 /* 114 * Here is the full definition of a memory manager object. 115 */ 116 117 typedef struct { 118 struct jpeg_memory_mgr pub; /* public fields */ 119 120 /* Each pool identifier (lifetime class) names a linked list of pools. */ 121 small_pool_ptr small_list[JPOOL_NUMPOOLS]; 122 large_pool_ptr large_list[JPOOL_NUMPOOLS]; 123 124 /* Since we only have one lifetime class of virtual arrays, only one 125 * linked list is necessary (for each datatype). Note that the virtual 126 * array control blocks being linked together are actually stored somewhere 127 * in the small-pool list. 128 */ 129 jvirt_sarray_ptr virt_sarray_list; 130 jvirt_barray_ptr virt_barray_list; 131 132 /* This counts total space obtained from jpeg_get_small/large */ 133 size_t total_space_allocated; 134 135 /* alloc_sarray and alloc_barray set this value for use by virtual 136 * array routines. 137 */ 138 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ 139 } my_memory_mgr; 140 141 typedef my_memory_mgr * my_mem_ptr; 142 143 144 /* 145 * The control blocks for virtual arrays. 146 * Note that these blocks are allocated in the "small" pool area. 147 * System-dependent info for the associated backing store (if any) is hidden 148 * inside the backing_store_info struct. 149 */ 150 151 struct jvirt_sarray_control { 152 JSAMPARRAY mem_buffer; /* => the in-memory buffer */ 153 JDIMENSION rows_in_array; /* total virtual array height */ 154 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ 155 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ 156 JDIMENSION rows_in_mem; /* height of memory buffer */ 157 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ 158 JDIMENSION cur_start_row; /* first logical row # in the buffer */ 159 JDIMENSION first_undef_row; /* row # of first uninitialized row */ 160 boolean pre_zero; /* pre-zero mode requested? */ 161 boolean dirty; /* do current buffer contents need written? */ 162 boolean b_s_open; /* is backing-store data valid? */ 163 jvirt_sarray_ptr next; /* link to next virtual sarray control block */ 164 backing_store_info b_s_info; /* System-dependent control info */ 165 }; 166 167 struct jvirt_barray_control { 168 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ 169 JDIMENSION rows_in_array; /* total virtual array height */ 170 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ 171 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ 172 JDIMENSION rows_in_mem; /* height of memory buffer */ 173 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ 174 JDIMENSION cur_start_row; /* first logical row # in the buffer */ 175 JDIMENSION first_undef_row; /* row # of first uninitialized row */ 176 boolean pre_zero; /* pre-zero mode requested? */ 177 boolean dirty; /* do current buffer contents need written? */ 178 boolean b_s_open; /* is backing-store data valid? */ 179 jvirt_barray_ptr next; /* link to next virtual barray control block */ 180 backing_store_info b_s_info; /* System-dependent control info */ 181 }; 182 183 184 #ifdef MEM_STATS /* optional extra stuff for statistics */ 185 186 LOCAL(void) 187 print_mem_stats (j_common_ptr cinfo, int pool_id) 188 { 189 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 190 small_pool_ptr shdr_ptr; 191 large_pool_ptr lhdr_ptr; 192 193 /* Since this is only a debugging stub, we can cheat a little by using 194 * fprintf directly rather than going through the trace message code. 195 * This is helpful because message parm array can't handle longs. 196 */ 197 fprintf(stderr, "Freeing pool %d, total space = %ld\n", 198 pool_id, (long) mem->total_space_allocated); 199 200 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; 201 lhdr_ptr = lhdr_ptr->hdr.next) { 202 fprintf(stderr, " Large chunk used %ld\n", 203 (long) lhdr_ptr->hdr.bytes_used); 204 } 205 206 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; 207 shdr_ptr = shdr_ptr->hdr.next) { 208 fprintf(stderr, " Small chunk used %ld free %ld\n", 209 (long) shdr_ptr->hdr.bytes_used, 210 (long) shdr_ptr->hdr.bytes_left); 211 } 212 } 213 214 #endif /* MEM_STATS */ 215 216 217 LOCAL(noreturn_t) 218 out_of_memory (j_common_ptr cinfo, int which) 219 /* Report an out-of-memory error and stop execution */ 220 /* If we compiled MEM_STATS support, report alloc requests before dying */ 221 { 222 #ifdef MEM_STATS 223 cinfo->err->trace_level = 2; /* force self_destruct to report stats */ 224 #endif 225 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); 226 } 227 228 229 /* 230 * Allocation of "small" objects. 231 * 232 * For these, we use pooled storage. When a new pool must be created, 233 * we try to get enough space for the current request plus a "slop" factor, 234 * where the slop will be the amount of leftover space in the new pool. 235 * The speed vs. space tradeoff is largely determined by the slop values. 236 * A different slop value is provided for each pool class (lifetime), 237 * and we also distinguish the first pool of a class from later ones. 238 * NOTE: the values given work fairly well on both 16- and 32-bit-int 239 * machines, but may be too small if longs are 64 bits or more. 240 */ 241 242 static const size_t first_pool_slop[JPOOL_NUMPOOLS] = 243 { 244 1600, /* first PERMANENT pool */ 245 16000 /* first IMAGE pool */ 246 }; 247 248 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = 249 { 250 0, /* additional PERMANENT pools */ 251 5000 /* additional IMAGE pools */ 252 }; 253 254 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ 255 256 257 METHODDEF(void *) 258 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) 259 /* Allocate a "small" object */ 260 { 261 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 262 small_pool_ptr hdr_ptr, prev_hdr_ptr; 263 size_t odd_bytes, min_request, slop; 264 char * data_ptr; 265 266 /* Check for unsatisfiable request (do now to ensure no overflow below) */ 267 if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(small_pool_hdr)) 268 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ 269 270 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ 271 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); 272 if (odd_bytes > 0) 273 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; 274 275 /* See if space is available in any existing pool */ 276 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) 277 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ 278 prev_hdr_ptr = NULL; 279 hdr_ptr = mem->small_list[pool_id]; 280 while (hdr_ptr != NULL) { 281 if (hdr_ptr->hdr.bytes_left >= sizeofobject) 282 break; /* found pool with enough space */ 283 prev_hdr_ptr = hdr_ptr; 284 hdr_ptr = hdr_ptr->hdr.next; 285 } 286 287 /* Time to make a new pool? */ 288 if (hdr_ptr == NULL) { 289 /* min_request is what we need now, slop is what will be leftover */ 290 min_request = sizeofobject + SIZEOF(small_pool_hdr); 291 if (prev_hdr_ptr == NULL) /* first pool in class? */ 292 slop = first_pool_slop[pool_id]; 293 else 294 slop = extra_pool_slop[pool_id]; 295 /* Don't ask for more than MAX_ALLOC_CHUNK */ 296 if (slop > (size_t) MAX_ALLOC_CHUNK - min_request) 297 slop = (size_t) MAX_ALLOC_CHUNK - min_request; 298 /* Try to get space, if fail reduce slop and try again */ 299 for (;;) { 300 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); 301 if (hdr_ptr != NULL) 302 break; 303 slop /= 2; 304 if (slop < MIN_SLOP) /* give up when it gets real small */ 305 out_of_memory(cinfo, 2); /* jpeg_get_small failed */ 306 } 307 mem->total_space_allocated += min_request + slop; 308 /* Success, initialize the new pool header and add to end of list */ 309 hdr_ptr->hdr.next = NULL; 310 hdr_ptr->hdr.bytes_used = 0; 311 hdr_ptr->hdr.bytes_left = sizeofobject + slop; 312 if (prev_hdr_ptr == NULL) /* first pool in class? */ 313 mem->small_list[pool_id] = hdr_ptr; 314 else 315 prev_hdr_ptr->hdr.next = hdr_ptr; 316 } 317 318 /* OK, allocate the object from the current pool */ 319 data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ 320 data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ 321 hdr_ptr->hdr.bytes_used += sizeofobject; 322 hdr_ptr->hdr.bytes_left -= sizeofobject; 323 324 return (void *) data_ptr; 325 } 326 327 328 /* 329 * Allocation of "large" objects. 330 * 331 * The external semantics of these are the same as "small" objects, 332 * except that FAR pointers are used on 80x86. However the pool 333 * management heuristics are quite different. We assume that each 334 * request is large enough that it may as well be passed directly to 335 * jpeg_get_large; the pool management just links everything together 336 * so that we can free it all on demand. 337 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY 338 * structures. The routines that create these structures (see below) 339 * deliberately bunch rows together to ensure a large request size. 340 */ 341 342 METHODDEF(void FAR *) 343 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) 344 /* Allocate a "large" object */ 345 { 346 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 347 large_pool_ptr hdr_ptr; 348 size_t odd_bytes; 349 350 /* Check for unsatisfiable request (do now to ensure no overflow below) */ 351 if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) 352 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ 353 354 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ 355 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); 356 if (odd_bytes > 0) 357 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; 358 359 /* Always make a new pool */ 360 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) 361 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ 362 363 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + 364 SIZEOF(large_pool_hdr)); 365 if (hdr_ptr == NULL) 366 out_of_memory(cinfo, 4); /* jpeg_get_large failed */ 367 mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr); 368 369 /* Success, initialize the new pool header and add to list */ 370 hdr_ptr->hdr.next = mem->large_list[pool_id]; 371 /* We maintain space counts in each pool header for statistical purposes, 372 * even though they are not needed for allocation. 373 */ 374 hdr_ptr->hdr.bytes_used = sizeofobject; 375 hdr_ptr->hdr.bytes_left = 0; 376 mem->large_list[pool_id] = hdr_ptr; 377 378 return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ 379 } 380 381 382 /* 383 * Creation of 2-D sample arrays. 384 * The pointers are in near heap, the samples themselves in FAR heap. 385 * 386 * To minimize allocation overhead and to allow I/O of large contiguous 387 * blocks, we allocate the sample rows in groups of as many rows as possible 388 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. 389 * NB: the virtual array control routines, later in this file, know about 390 * this chunking of rows. The rowsperchunk value is left in the mem manager 391 * object so that it can be saved away if this sarray is the workspace for 392 * a virtual array. 393 */ 394 395 METHODDEF(JSAMPARRAY) 396 alloc_sarray (j_common_ptr cinfo, int pool_id, 397 JDIMENSION samplesperrow, JDIMENSION numrows) 398 /* Allocate a 2-D sample array */ 399 { 400 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 401 JSAMPARRAY result; 402 JSAMPROW workspace; 403 JDIMENSION rowsperchunk, currow, i; 404 long ltemp; 405 406 /* Calculate max # of rows allowed in one allocation chunk */ 407 ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) / 408 ((long) samplesperrow * SIZEOF(JSAMPLE)); 409 if (ltemp <= 0) 410 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); 411 if (ltemp < (long) numrows) 412 rowsperchunk = (JDIMENSION) ltemp; 413 else 414 rowsperchunk = numrows; 415 mem->last_rowsperchunk = rowsperchunk; 416 417 /* Get space for row pointers (small object) */ 418 result = (JSAMPARRAY) alloc_small(cinfo, pool_id, 419 (size_t) numrows * SIZEOF(JSAMPROW)); 420 421 /* Get the rows themselves (large objects) */ 422 currow = 0; 423 while (currow < numrows) { 424 rowsperchunk = MIN(rowsperchunk, numrows - currow); 425 workspace = (JSAMPROW) alloc_large(cinfo, pool_id, 426 (size_t) rowsperchunk * (size_t) samplesperrow * SIZEOF(JSAMPLE)); 427 for (i = rowsperchunk; i > 0; i--) { 428 result[currow++] = workspace; 429 workspace += samplesperrow; 430 } 431 } 432 433 return result; 434 } 435 436 437 /* 438 * Creation of 2-D coefficient-block arrays. 439 * This is essentially the same as the code for sample arrays, above. 440 */ 441 442 METHODDEF(JBLOCKARRAY) 443 alloc_barray (j_common_ptr cinfo, int pool_id, 444 JDIMENSION blocksperrow, JDIMENSION numrows) 445 /* Allocate a 2-D coefficient-block array */ 446 { 447 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 448 JBLOCKARRAY result; 449 JBLOCKROW workspace; 450 JDIMENSION rowsperchunk, currow, i; 451 long ltemp; 452 453 /* Calculate max # of rows allowed in one allocation chunk */ 454 ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) / 455 ((long) blocksperrow * SIZEOF(JBLOCK)); 456 if (ltemp <= 0) 457 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); 458 if (ltemp < (long) numrows) 459 rowsperchunk = (JDIMENSION) ltemp; 460 else 461 rowsperchunk = numrows; 462 mem->last_rowsperchunk = rowsperchunk; 463 464 /* Get space for row pointers (small object) */ 465 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, 466 (size_t) numrows * SIZEOF(JBLOCKROW)); 467 468 /* Get the rows themselves (large objects) */ 469 currow = 0; 470 while (currow < numrows) { 471 rowsperchunk = MIN(rowsperchunk, numrows - currow); 472 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, 473 (size_t) rowsperchunk * (size_t) blocksperrow * SIZEOF(JBLOCK)); 474 for (i = rowsperchunk; i > 0; i--) { 475 result[currow++] = workspace; 476 workspace += blocksperrow; 477 } 478 } 479 480 return result; 481 } 482 483 484 /* 485 * About virtual array management: 486 * 487 * The above "normal" array routines are only used to allocate strip buffers 488 * (as wide as the image, but just a few rows high). Full-image-sized buffers 489 * are handled as "virtual" arrays. The array is still accessed a strip at a 490 * time, but the memory manager must save the whole array for repeated 491 * accesses. The intended implementation is that there is a strip buffer in 492 * memory (as high as is possible given the desired memory limit), plus a 493 * backing file that holds the rest of the array. 494 * 495 * The request_virt_array routines are told the total size of the image and 496 * the maximum number of rows that will be accessed at once. The in-memory 497 * buffer must be at least as large as the maxaccess value. 498 * 499 * The request routines create control blocks but not the in-memory buffers. 500 * That is postponed until realize_virt_arrays is called. At that time the 501 * total amount of space needed is known (approximately, anyway), so free 502 * memory can be divided up fairly. 503 * 504 * The access_virt_array routines are responsible for making a specific strip 505 * area accessible (after reading or writing the backing file, if necessary). 506 * Note that the access routines are told whether the caller intends to modify 507 * the accessed strip; during a read-only pass this saves having to rewrite 508 * data to disk. The access routines are also responsible for pre-zeroing 509 * any newly accessed rows, if pre-zeroing was requested. 510 * 511 * In current usage, the access requests are usually for nonoverlapping 512 * strips; that is, successive access start_row numbers differ by exactly 513 * num_rows = maxaccess. This means we can get good performance with simple 514 * buffer dump/reload logic, by making the in-memory buffer be a multiple 515 * of the access height; then there will never be accesses across bufferload 516 * boundaries. The code will still work with overlapping access requests, 517 * but it doesn't handle bufferload overlaps very efficiently. 518 */ 519 520 521 METHODDEF(jvirt_sarray_ptr) 522 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, 523 JDIMENSION samplesperrow, JDIMENSION numrows, 524 JDIMENSION maxaccess) 525 /* Request a virtual 2-D sample array */ 526 { 527 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 528 jvirt_sarray_ptr result; 529 530 /* Only IMAGE-lifetime virtual arrays are currently supported */ 531 if (pool_id != JPOOL_IMAGE) 532 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ 533 534 /* get control block */ 535 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, 536 SIZEOF(struct jvirt_sarray_control)); 537 538 result->mem_buffer = NULL; /* marks array not yet realized */ 539 result->rows_in_array = numrows; 540 result->samplesperrow = samplesperrow; 541 result->maxaccess = maxaccess; 542 result->pre_zero = pre_zero; 543 result->b_s_open = FALSE; /* no associated backing-store object */ 544 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ 545 mem->virt_sarray_list = result; 546 547 return result; 548 } 549 550 551 METHODDEF(jvirt_barray_ptr) 552 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, 553 JDIMENSION blocksperrow, JDIMENSION numrows, 554 JDIMENSION maxaccess) 555 /* Request a virtual 2-D coefficient-block array */ 556 { 557 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 558 jvirt_barray_ptr result; 559 560 /* Only IMAGE-lifetime virtual arrays are currently supported */ 561 if (pool_id != JPOOL_IMAGE) 562 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ 563 564 /* get control block */ 565 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, 566 SIZEOF(struct jvirt_barray_control)); 567 568 result->mem_buffer = NULL; /* marks array not yet realized */ 569 result->rows_in_array = numrows; 570 result->blocksperrow = blocksperrow; 571 result->maxaccess = maxaccess; 572 result->pre_zero = pre_zero; 573 result->b_s_open = FALSE; /* no associated backing-store object */ 574 result->next = mem->virt_barray_list; /* add to list of virtual arrays */ 575 mem->virt_barray_list = result; 576 577 return result; 578 } 579 580 581 METHODDEF(void) 582 realize_virt_arrays (j_common_ptr cinfo) 583 /* Allocate the in-memory buffers for any unrealized virtual arrays */ 584 { 585 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 586 long bytesperrow, space_per_minheight, maximum_space; 587 long avail_mem, minheights, max_minheights; 588 jvirt_sarray_ptr sptr; 589 jvirt_barray_ptr bptr; 590 591 /* Compute the minimum space needed (maxaccess rows in each buffer) 592 * and the maximum space needed (full image height in each buffer). 593 * These may be of use to the system-dependent jpeg_mem_available routine. 594 */ 595 space_per_minheight = 0; 596 maximum_space = 0; 597 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { 598 if (sptr->mem_buffer == NULL) { /* if not realized yet */ 599 bytesperrow = (long) sptr->samplesperrow * SIZEOF(JSAMPLE); 600 space_per_minheight += (long) sptr->maxaccess * bytesperrow; 601 maximum_space += (long) sptr->rows_in_array * bytesperrow; 602 } 603 } 604 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { 605 if (bptr->mem_buffer == NULL) { /* if not realized yet */ 606 bytesperrow = (long) bptr->blocksperrow * SIZEOF(JBLOCK); 607 space_per_minheight += (long) bptr->maxaccess * bytesperrow; 608 maximum_space += (long) bptr->rows_in_array * bytesperrow; 609 } 610 } 611 612 if (space_per_minheight <= 0) 613 return; /* no unrealized arrays, no work */ 614 615 /* Determine amount of memory to actually use; this is system-dependent. */ 616 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, 617 (long) mem->total_space_allocated); 618 619 /* If the maximum space needed is available, make all the buffers full 620 * height; otherwise parcel it out with the same number of minheights 621 * in each buffer. 622 */ 623 if (avail_mem >= maximum_space) 624 max_minheights = 1000000000L; 625 else { 626 max_minheights = avail_mem / space_per_minheight; 627 /* If there doesn't seem to be enough space, try to get the minimum 628 * anyway. This allows a "stub" implementation of jpeg_mem_available(). 629 */ 630 if (max_minheights <= 0) 631 max_minheights = 1; 632 } 633 634 /* Allocate the in-memory buffers and initialize backing store as needed. */ 635 636 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { 637 if (sptr->mem_buffer == NULL) { /* if not realized yet */ 638 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; 639 if (minheights <= max_minheights) { 640 /* This buffer fits in memory */ 641 sptr->rows_in_mem = sptr->rows_in_array; 642 } else { 643 /* It doesn't fit in memory, create backing store. */ 644 sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); 645 jpeg_open_backing_store(cinfo, & sptr->b_s_info, 646 (long) sptr->rows_in_array * 647 (long) sptr->samplesperrow * 648 (long) SIZEOF(JSAMPLE)); 649 sptr->b_s_open = TRUE; 650 } 651 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, 652 sptr->samplesperrow, sptr->rows_in_mem); 653 sptr->rowsperchunk = mem->last_rowsperchunk; 654 sptr->cur_start_row = 0; 655 sptr->first_undef_row = 0; 656 sptr->dirty = FALSE; 657 } 658 } 659 660 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { 661 if (bptr->mem_buffer == NULL) { /* if not realized yet */ 662 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; 663 if (minheights <= max_minheights) { 664 /* This buffer fits in memory */ 665 bptr->rows_in_mem = bptr->rows_in_array; 666 } else { 667 /* It doesn't fit in memory, create backing store. */ 668 bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); 669 jpeg_open_backing_store(cinfo, & bptr->b_s_info, 670 (long) bptr->rows_in_array * 671 (long) bptr->blocksperrow * 672 (long) SIZEOF(JBLOCK)); 673 bptr->b_s_open = TRUE; 674 } 675 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, 676 bptr->blocksperrow, bptr->rows_in_mem); 677 bptr->rowsperchunk = mem->last_rowsperchunk; 678 bptr->cur_start_row = 0; 679 bptr->first_undef_row = 0; 680 bptr->dirty = FALSE; 681 } 682 } 683 } 684 685 686 LOCAL(void) 687 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) 688 /* Do backing store read or write of a virtual sample array */ 689 { 690 long bytesperrow, file_offset, byte_count, rows, thisrow, i; 691 692 bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); 693 file_offset = (long) ptr->cur_start_row * bytesperrow; 694 /* Loop to read or write each allocation chunk in mem_buffer */ 695 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { 696 /* One chunk, but check for short chunk at end of buffer */ 697 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); 698 /* Transfer no more than is currently defined */ 699 thisrow = (long) ptr->cur_start_row + i; 700 rows = MIN(rows, (long) ptr->first_undef_row - thisrow); 701 /* Transfer no more than fits in file */ 702 rows = MIN(rows, (long) ptr->rows_in_array - thisrow); 703 if (rows <= 0) /* this chunk might be past end of file! */ 704 break; 705 byte_count = rows * bytesperrow; 706 if (writing) 707 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, 708 (void FAR *) ptr->mem_buffer[i], 709 file_offset, byte_count); 710 else 711 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, 712 (void FAR *) ptr->mem_buffer[i], 713 file_offset, byte_count); 714 file_offset += byte_count; 715 } 716 } 717 718 719 LOCAL(void) 720 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) 721 /* Do backing store read or write of a virtual coefficient-block array */ 722 { 723 long bytesperrow, file_offset, byte_count, rows, thisrow, i; 724 725 bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); 726 file_offset = (long) ptr->cur_start_row * bytesperrow; 727 /* Loop to read or write each allocation chunk in mem_buffer */ 728 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { 729 /* One chunk, but check for short chunk at end of buffer */ 730 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); 731 /* Transfer no more than is currently defined */ 732 thisrow = (long) ptr->cur_start_row + i; 733 rows = MIN(rows, (long) ptr->first_undef_row - thisrow); 734 /* Transfer no more than fits in file */ 735 rows = MIN(rows, (long) ptr->rows_in_array - thisrow); 736 if (rows <= 0) /* this chunk might be past end of file! */ 737 break; 738 byte_count = rows * bytesperrow; 739 if (writing) 740 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, 741 (void FAR *) ptr->mem_buffer[i], 742 file_offset, byte_count); 743 else 744 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, 745 (void FAR *) ptr->mem_buffer[i], 746 file_offset, byte_count); 747 file_offset += byte_count; 748 } 749 } 750 751 752 METHODDEF(JSAMPARRAY) 753 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, 754 JDIMENSION start_row, JDIMENSION num_rows, 755 boolean writable) 756 /* Access the part of a virtual sample array starting at start_row */ 757 /* and extending for num_rows rows. writable is true if */ 758 /* caller intends to modify the accessed area. */ 759 { 760 JDIMENSION end_row = start_row + num_rows; 761 JDIMENSION undef_row; 762 763 /* debugging check */ 764 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || 765 ptr->mem_buffer == NULL) 766 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 767 768 /* Make the desired part of the virtual array accessible */ 769 if (start_row < ptr->cur_start_row || 770 end_row > ptr->cur_start_row + ptr->rows_in_mem) { 771 if (! ptr->b_s_open) 772 ERREXIT(cinfo, JERR_VIRTUAL_BUG); 773 /* Flush old buffer contents if necessary */ 774 if (ptr->dirty) { 775 do_sarray_io(cinfo, ptr, TRUE); 776 ptr->dirty = FALSE; 777 } 778 /* Decide what part of virtual array to access. 779 * Algorithm: if target address > current window, assume forward scan, 780 * load starting at target address. If target address < current window, 781 * assume backward scan, load so that target area is top of window. 782 * Note that when switching from forward write to forward read, will have 783 * start_row = 0, so the limiting case applies and we load from 0 anyway. 784 */ 785 if (start_row > ptr->cur_start_row) { 786 ptr->cur_start_row = start_row; 787 } else { 788 /* use long arithmetic here to avoid overflow & unsigned problems */ 789 long ltemp; 790 791 ltemp = (long) end_row - (long) ptr->rows_in_mem; 792 if (ltemp < 0) 793 ltemp = 0; /* don't fall off front end of file */ 794 ptr->cur_start_row = (JDIMENSION) ltemp; 795 } 796 /* Read in the selected part of the array. 797 * During the initial write pass, we will do no actual read 798 * because the selected part is all undefined. 799 */ 800 do_sarray_io(cinfo, ptr, FALSE); 801 } 802 /* Ensure the accessed part of the array is defined; prezero if needed. 803 * To improve locality of access, we only prezero the part of the array 804 * that the caller is about to access, not the entire in-memory array. 805 */ 806 if (ptr->first_undef_row < end_row) { 807 if (ptr->first_undef_row < start_row) { 808 if (writable) /* writer skipped over a section of array */ 809 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 810 undef_row = start_row; /* but reader is allowed to read ahead */ 811 } else { 812 undef_row = ptr->first_undef_row; 813 } 814 if (writable) 815 ptr->first_undef_row = end_row; 816 if (ptr->pre_zero) { 817 size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); 818 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ 819 end_row -= ptr->cur_start_row; 820 while (undef_row < end_row) { 821 FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); 822 undef_row++; 823 } 824 } else { 825 if (! writable) /* reader looking at undefined data */ 826 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 827 } 828 } 829 /* Flag the buffer dirty if caller will write in it */ 830 if (writable) 831 ptr->dirty = TRUE; 832 /* Return address of proper part of the buffer */ 833 return ptr->mem_buffer + (start_row - ptr->cur_start_row); 834 } 835 836 837 METHODDEF(JBLOCKARRAY) 838 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, 839 JDIMENSION start_row, JDIMENSION num_rows, 840 boolean writable) 841 /* Access the part of a virtual block array starting at start_row */ 842 /* and extending for num_rows rows. writable is true if */ 843 /* caller intends to modify the accessed area. */ 844 { 845 JDIMENSION end_row = start_row + num_rows; 846 JDIMENSION undef_row; 847 848 /* debugging check */ 849 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || 850 ptr->mem_buffer == NULL) 851 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 852 853 /* Make the desired part of the virtual array accessible */ 854 if (start_row < ptr->cur_start_row || 855 end_row > ptr->cur_start_row + ptr->rows_in_mem) { 856 if (! ptr->b_s_open) 857 ERREXIT(cinfo, JERR_VIRTUAL_BUG); 858 /* Flush old buffer contents if necessary */ 859 if (ptr->dirty) { 860 do_barray_io(cinfo, ptr, TRUE); 861 ptr->dirty = FALSE; 862 } 863 /* Decide what part of virtual array to access. 864 * Algorithm: if target address > current window, assume forward scan, 865 * load starting at target address. If target address < current window, 866 * assume backward scan, load so that target area is top of window. 867 * Note that when switching from forward write to forward read, will have 868 * start_row = 0, so the limiting case applies and we load from 0 anyway. 869 */ 870 if (start_row > ptr->cur_start_row) { 871 ptr->cur_start_row = start_row; 872 } else { 873 /* use long arithmetic here to avoid overflow & unsigned problems */ 874 long ltemp; 875 876 ltemp = (long) end_row - (long) ptr->rows_in_mem; 877 if (ltemp < 0) 878 ltemp = 0; /* don't fall off front end of file */ 879 ptr->cur_start_row = (JDIMENSION) ltemp; 880 } 881 /* Read in the selected part of the array. 882 * During the initial write pass, we will do no actual read 883 * because the selected part is all undefined. 884 */ 885 do_barray_io(cinfo, ptr, FALSE); 886 } 887 /* Ensure the accessed part of the array is defined; prezero if needed. 888 * To improve locality of access, we only prezero the part of the array 889 * that the caller is about to access, not the entire in-memory array. 890 */ 891 if (ptr->first_undef_row < end_row) { 892 if (ptr->first_undef_row < start_row) { 893 if (writable) /* writer skipped over a section of array */ 894 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 895 undef_row = start_row; /* but reader is allowed to read ahead */ 896 } else { 897 undef_row = ptr->first_undef_row; 898 } 899 if (writable) 900 ptr->first_undef_row = end_row; 901 if (ptr->pre_zero) { 902 size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); 903 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ 904 end_row -= ptr->cur_start_row; 905 while (undef_row < end_row) { 906 FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); 907 undef_row++; 908 } 909 } else { 910 if (! writable) /* reader looking at undefined data */ 911 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); 912 } 913 } 914 /* Flag the buffer dirty if caller will write in it */ 915 if (writable) 916 ptr->dirty = TRUE; 917 /* Return address of proper part of the buffer */ 918 return ptr->mem_buffer + (start_row - ptr->cur_start_row); 919 } 920 921 922 /* 923 * Release all objects belonging to a specified pool. 924 */ 925 926 METHODDEF(void) 927 free_pool (j_common_ptr cinfo, int pool_id) 928 { 929 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; 930 small_pool_ptr shdr_ptr; 931 large_pool_ptr lhdr_ptr; 932 size_t space_freed; 933 934 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) 935 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ 936 937 #ifdef MEM_STATS 938 if (cinfo->err->trace_level > 1) 939 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ 940 #endif 941 942 /* If freeing IMAGE pool, close any virtual arrays first */ 943 if (pool_id == JPOOL_IMAGE) { 944 jvirt_sarray_ptr sptr; 945 jvirt_barray_ptr bptr; 946 947 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { 948 if (sptr->b_s_open) { /* there may be no backing store */ 949 sptr->b_s_open = FALSE; /* prevent recursive close if error */ 950 (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); 951 } 952 } 953 mem->virt_sarray_list = NULL; 954 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { 955 if (bptr->b_s_open) { /* there may be no backing store */ 956 bptr->b_s_open = FALSE; /* prevent recursive close if error */ 957 (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); 958 } 959 } 960 mem->virt_barray_list = NULL; 961 } 962 963 /* Release large objects */ 964 lhdr_ptr = mem->large_list[pool_id]; 965 mem->large_list[pool_id] = NULL; 966 967 while (lhdr_ptr != NULL) { 968 large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; 969 space_freed = lhdr_ptr->hdr.bytes_used + 970 lhdr_ptr->hdr.bytes_left + 971 SIZEOF(large_pool_hdr); 972 jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); 973 mem->total_space_allocated -= space_freed; 974 lhdr_ptr = next_lhdr_ptr; 975 } 976 977 /* Release small objects */ 978 shdr_ptr = mem->small_list[pool_id]; 979 mem->small_list[pool_id] = NULL; 980 981 while (shdr_ptr != NULL) { 982 small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; 983 space_freed = shdr_ptr->hdr.bytes_used + 984 shdr_ptr->hdr.bytes_left + 985 SIZEOF(small_pool_hdr); 986 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); 987 mem->total_space_allocated -= space_freed; 988 shdr_ptr = next_shdr_ptr; 989 } 990 } 991 992 993 /* 994 * Close up shop entirely. 995 * Note that this cannot be called unless cinfo->mem is non-NULL. 996 */ 997 998 METHODDEF(void) 999 self_destruct (j_common_ptr cinfo) 1000 { 1001 int pool; 1002 1003 /* Close all backing store, release all memory. 1004 * Releasing pools in reverse order might help avoid fragmentation 1005 * with some (brain-damaged) malloc libraries. 1006 */ 1007 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { 1008 free_pool(cinfo, pool); 1009 } 1010 1011 /* Release the memory manager control block too. */ 1012 jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); 1013 cinfo->mem = NULL; /* ensures I will be called only once */ 1014 1015 jpeg_mem_term(cinfo); /* system-dependent cleanup */ 1016 } 1017 1018 1019 /* 1020 * Memory manager initialization. 1021 * When this is called, only the error manager pointer is valid in cinfo! 1022 */ 1023 1024 GLOBAL(void) 1025 jinit_memory_mgr (j_common_ptr cinfo) 1026 { 1027 my_mem_ptr mem; 1028 long max_to_use; 1029 int pool; 1030 size_t test_mac; 1031 1032 cinfo->mem = NULL; /* for safety if init fails */ 1033 1034 /* Check for configuration errors. 1035 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably 1036 * doesn't reflect any real hardware alignment requirement. 1037 * The test is a little tricky: for X>0, X and X-1 have no one-bits 1038 * in common if and only if X is a power of 2, ie has only one one-bit. 1039 * Some compilers may give an "unreachable code" warning here; ignore it. 1040 */ 1041 if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) 1042 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); 1043 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be 1044 * a multiple of SIZEOF(ALIGN_TYPE). 1045 * Again, an "unreachable code" warning may be ignored here. 1046 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. 1047 */ 1048 test_mac = (size_t) MAX_ALLOC_CHUNK; 1049 if ((long) test_mac != MAX_ALLOC_CHUNK || 1050 (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) 1051 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); 1052 1053 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ 1054 1055 /* Attempt to allocate memory manager's control block */ 1056 mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); 1057 1058 if (mem == NULL) { 1059 jpeg_mem_term(cinfo); /* system-dependent cleanup */ 1060 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); 1061 } 1062 1063 /* OK, fill in the method pointers */ 1064 mem->pub.alloc_small = alloc_small; 1065 mem->pub.alloc_large = alloc_large; 1066 mem->pub.alloc_sarray = alloc_sarray; 1067 mem->pub.alloc_barray = alloc_barray; 1068 mem->pub.request_virt_sarray = request_virt_sarray; 1069 mem->pub.request_virt_barray = request_virt_barray; 1070 mem->pub.realize_virt_arrays = realize_virt_arrays; 1071 mem->pub.access_virt_sarray = access_virt_sarray; 1072 mem->pub.access_virt_barray = access_virt_barray; 1073 mem->pub.free_pool = free_pool; 1074 mem->pub.self_destruct = self_destruct; 1075 1076 /* Make MAX_ALLOC_CHUNK accessible to other modules */ 1077 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; 1078 1079 /* Initialize working state */ 1080 mem->pub.max_memory_to_use = max_to_use; 1081 1082 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { 1083 mem->small_list[pool] = NULL; 1084 mem->large_list[pool] = NULL; 1085 } 1086 mem->virt_sarray_list = NULL; 1087 mem->virt_barray_list = NULL; 1088 1089 mem->total_space_allocated = SIZEOF(my_memory_mgr); 1090 1091 /* Declare ourselves open for business */ 1092 cinfo->mem = &mem->pub; 1093 1094 /* Check for an environment variable JPEGMEM; if found, override the 1095 * default max_memory setting from jpeg_mem_init. Note that the 1096 * surrounding application may again override this value. 1097 * If your system doesn't support getenv(), define NO_GETENV to disable 1098 * this feature. 1099 */ 1100 #ifndef NO_GETENV 1101 { char * memenv; 1102 1103 if ((memenv = getenv("JPEGMEM")) != NULL) { 1104 char ch = 'x'; 1105 1106 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { 1107 if (ch == 'm' || ch == 'M') 1108 max_to_use *= 1000L; 1109 mem->pub.max_memory_to_use = max_to_use * 1000L; 1110 } 1111 } 1112 } 1113 #endif 1114 1115 } 1116