xref: /reactos/dll/3rdparty/libjpeg/jquant1.c (revision 5eb25b5c)
1 /*
2  * jquant1.c
3  *
4  * Copyright (C) 1991-1996, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains 1-pass color quantization (color mapping) routines.
9  * These routines provide mapping to a fixed color map using equally spaced
10  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
11  */
12 
13 #define JPEG_INTERNALS
14 #include "jinclude.h"
15 #include "jpeglib.h"
16 
17 #ifdef QUANT_1PASS_SUPPORTED
18 
19 
20 /*
21  * The main purpose of 1-pass quantization is to provide a fast, if not very
22  * high quality, colormapped output capability.  A 2-pass quantizer usually
23  * gives better visual quality; however, for quantized grayscale output this
24  * quantizer is perfectly adequate.  Dithering is highly recommended with this
25  * quantizer, though you can turn it off if you really want to.
26  *
27  * In 1-pass quantization the colormap must be chosen in advance of seeing the
28  * image.  We use a map consisting of all combinations of Ncolors[i] color
29  * values for the i'th component.  The Ncolors[] values are chosen so that
30  * their product, the total number of colors, is no more than that requested.
31  * (In most cases, the product will be somewhat less.)
32  *
33  * Since the colormap is orthogonal, the representative value for each color
34  * component can be determined without considering the other components;
35  * then these indexes can be combined into a colormap index by a standard
36  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
37  * can be precalculated and stored in the lookup table colorindex[].
38  * colorindex[i][j] maps pixel value j in component i to the nearest
39  * representative value (grid plane) for that component; this index is
40  * multiplied by the array stride for component i, so that the
41  * index of the colormap entry closest to a given pixel value is just
42  *    sum( colorindex[component-number][pixel-component-value] )
43  * Aside from being fast, this scheme allows for variable spacing between
44  * representative values with no additional lookup cost.
45  *
46  * If gamma correction has been applied in color conversion, it might be wise
47  * to adjust the color grid spacing so that the representative colors are
48  * equidistant in linear space.  At this writing, gamma correction is not
49  * implemented by jdcolor, so nothing is done here.
50  */
51 
52 
53 /* Declarations for ordered dithering.
54  *
55  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
56  * dithering is described in many references, for instance Dale Schumacher's
57  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
58  * In place of Schumacher's comparisons against a "threshold" value, we add a
59  * "dither" value to the input pixel and then round the result to the nearest
60  * output value.  The dither value is equivalent to (0.5 - threshold) times
61  * the distance between output values.  For ordered dithering, we assume that
62  * the output colors are equally spaced; if not, results will probably be
63  * worse, since the dither may be too much or too little at a given point.
64  *
65  * The normal calculation would be to form pixel value + dither, range-limit
66  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
67  * We can skip the separate range-limiting step by extending the colorindex
68  * table in both directions.
69  */
70 
71 #define ODITHER_SIZE  16	/* dimension of dither matrix */
72 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
73 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)	/* # cells in matrix */
74 #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
75 
76 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
77 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
78 
79 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
80   /* Bayer's order-4 dither array.  Generated by the code given in
81    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
82    * The values in this array must range from 0 to ODITHER_CELLS-1.
83    */
84   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
85   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
86   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
87   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
88   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
89   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
90   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
91   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
92   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
93   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
94   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
95   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
96   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
97   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
98   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
99   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
100 };
101 
102 
103 /* Declarations for Floyd-Steinberg dithering.
104  *
105  * Errors are accumulated into the array fserrors[], at a resolution of
106  * 1/16th of a pixel count.  The error at a given pixel is propagated
107  * to its not-yet-processed neighbors using the standard F-S fractions,
108  *		...	(here)	7/16
109  *		3/16	5/16	1/16
110  * We work left-to-right on even rows, right-to-left on odd rows.
111  *
112  * We can get away with a single array (holding one row's worth of errors)
113  * by using it to store the current row's errors at pixel columns not yet
114  * processed, but the next row's errors at columns already processed.  We
115  * need only a few extra variables to hold the errors immediately around the
116  * current column.  (If we are lucky, those variables are in registers, but
117  * even if not, they're probably cheaper to access than array elements are.)
118  *
119  * The fserrors[] array is indexed [component#][position].
120  * We provide (#columns + 2) entries per component; the extra entry at each
121  * end saves us from special-casing the first and last pixels.
122  *
123  * Note: on a wide image, we might not have enough room in a PC's near data
124  * segment to hold the error array; so it is allocated with alloc_large.
125  */
126 
127 #if BITS_IN_JSAMPLE == 8
128 typedef INT16 FSERROR;		/* 16 bits should be enough */
129 typedef int LOCFSERROR;		/* use 'int' for calculation temps */
130 #else
131 typedef INT32 FSERROR;		/* may need more than 16 bits */
132 typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
133 #endif
134 
135 typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
136 
137 
138 /* Private subobject */
139 
140 #define MAX_Q_COMPS 4		/* max components I can handle */
141 
142 typedef struct {
143   struct jpeg_color_quantizer pub; /* public fields */
144 
145   /* Initially allocated colormap is saved here */
146   JSAMPARRAY sv_colormap;	/* The color map as a 2-D pixel array */
147   int sv_actual;		/* number of entries in use */
148 
149   JSAMPARRAY colorindex;	/* Precomputed mapping for speed */
150   /* colorindex[i][j] = index of color closest to pixel value j in component i,
151    * premultiplied as described above.  Since colormap indexes must fit into
152    * JSAMPLEs, the entries of this array will too.
153    */
154   boolean is_padded;		/* is the colorindex padded for odither? */
155 
156   int Ncolors[MAX_Q_COMPS];	/* # of values alloced to each component */
157 
158   /* Variables for ordered dithering */
159   int row_index;		/* cur row's vertical index in dither matrix */
160   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
161 
162   /* Variables for Floyd-Steinberg dithering */
163   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
164   boolean on_odd_row;		/* flag to remember which row we are on */
165 } my_cquantizer;
166 
167 typedef my_cquantizer * my_cquantize_ptr;
168 
169 
170 /*
171  * Policy-making subroutines for create_colormap and create_colorindex.
172  * These routines determine the colormap to be used.  The rest of the module
173  * only assumes that the colormap is orthogonal.
174  *
175  *  * select_ncolors decides how to divvy up the available colors
176  *    among the components.
177  *  * output_value defines the set of representative values for a component.
178  *  * largest_input_value defines the mapping from input values to
179  *    representative values for a component.
180  * Note that the latter two routines may impose different policies for
181  * different components, though this is not currently done.
182  */
183 
184 
185 LOCAL(int)
186 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
187 /* Determine allocation of desired colors to components, */
188 /* and fill in Ncolors[] array to indicate choice. */
189 /* Return value is total number of colors (product of Ncolors[] values). */
190 {
191   int nc = cinfo->out_color_components; /* number of color components */
192   int max_colors = cinfo->desired_number_of_colors;
193   int total_colors, iroot, i, j;
194   boolean changed;
195   long temp;
196   static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
197 
198   /* We can allocate at least the nc'th root of max_colors per component. */
199   /* Compute floor(nc'th root of max_colors). */
200   iroot = 1;
201   do {
202     iroot++;
203     temp = iroot;		/* set temp = iroot ** nc */
204     for (i = 1; i < nc; i++)
205       temp *= iroot;
206   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
207   iroot--;			/* now iroot = floor(root) */
208 
209   /* Must have at least 2 color values per component */
210   if (iroot < 2)
211     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
212 
213   /* Initialize to iroot color values for each component */
214   total_colors = 1;
215   for (i = 0; i < nc; i++) {
216     Ncolors[i] = iroot;
217     total_colors *= iroot;
218   }
219   /* We may be able to increment the count for one or more components without
220    * exceeding max_colors, though we know not all can be incremented.
221    * Sometimes, the first component can be incremented more than once!
222    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
223    * In RGB colorspace, try to increment G first, then R, then B.
224    */
225   do {
226     changed = FALSE;
227     for (i = 0; i < nc; i++) {
228       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
229       /* calculate new total_colors if Ncolors[j] is incremented */
230       temp = total_colors / Ncolors[j];
231       temp *= Ncolors[j]+1;	/* done in long arith to avoid oflo */
232       if (temp > (long) max_colors)
233 	break;			/* won't fit, done with this pass */
234       Ncolors[j]++;		/* OK, apply the increment */
235       total_colors = (int) temp;
236       changed = TRUE;
237     }
238   } while (changed);
239 
240   return total_colors;
241 }
242 
243 
244 LOCAL(int)
245 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
246 /* Return j'th output value, where j will range from 0 to maxj */
247 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
248 {
249   /* We always provide values 0 and MAXJSAMPLE for each component;
250    * any additional values are equally spaced between these limits.
251    * (Forcing the upper and lower values to the limits ensures that
252    * dithering can't produce a color outside the selected gamut.)
253    */
254   return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
255 }
256 
257 
258 LOCAL(int)
259 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
260 /* Return largest input value that should map to j'th output value */
261 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
262 {
263   /* Breakpoints are halfway between values returned by output_value */
264   return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
265 }
266 
267 
268 /*
269  * Create the colormap.
270  */
271 
272 LOCAL(void)
273 create_colormap (j_decompress_ptr cinfo)
274 {
275   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
276   JSAMPARRAY colormap;		/* Created colormap */
277   int total_colors;		/* Number of distinct output colors */
278   int i,j,k, nci, blksize, blkdist, ptr, val;
279 
280   /* Select number of colors for each component */
281   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
282 
283   /* Report selected color counts */
284   if (cinfo->out_color_components == 3)
285     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
286 	     total_colors, cquantize->Ncolors[0],
287 	     cquantize->Ncolors[1], cquantize->Ncolors[2]);
288   else
289     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
290 
291   /* Allocate and fill in the colormap. */
292   /* The colors are ordered in the map in standard row-major order, */
293   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
294 
295   colormap = (*cinfo->mem->alloc_sarray)
296     ((j_common_ptr) cinfo, JPOOL_IMAGE,
297      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
298 
299   /* blksize is number of adjacent repeated entries for a component */
300   /* blkdist is distance between groups of identical entries for a component */
301   blkdist = total_colors;
302 
303   for (i = 0; i < cinfo->out_color_components; i++) {
304     /* fill in colormap entries for i'th color component */
305     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
306     blksize = blkdist / nci;
307     for (j = 0; j < nci; j++) {
308       /* Compute j'th output value (out of nci) for component */
309       val = output_value(cinfo, i, j, nci-1);
310       /* Fill in all colormap entries that have this value of this component */
311       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
312 	/* fill in blksize entries beginning at ptr */
313 	for (k = 0; k < blksize; k++)
314 	  colormap[i][ptr+k] = (JSAMPLE) val;
315       }
316     }
317     blkdist = blksize;		/* blksize of this color is blkdist of next */
318   }
319 
320   /* Save the colormap in private storage,
321    * where it will survive color quantization mode changes.
322    */
323   cquantize->sv_colormap = colormap;
324   cquantize->sv_actual = total_colors;
325 }
326 
327 
328 /*
329  * Create the color index table.
330  */
331 
332 LOCAL(void)
333 create_colorindex (j_decompress_ptr cinfo)
334 {
335   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
336   JSAMPROW indexptr;
337   int i,j,k, nci, blksize, val, pad;
338 
339   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
340    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
341    * This is not necessary in the other dithering modes.  However, we
342    * flag whether it was done in case user changes dithering mode.
343    */
344   if (cinfo->dither_mode == JDITHER_ORDERED) {
345     pad = MAXJSAMPLE*2;
346     cquantize->is_padded = TRUE;
347   } else {
348     pad = 0;
349     cquantize->is_padded = FALSE;
350   }
351 
352   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
353     ((j_common_ptr) cinfo, JPOOL_IMAGE,
354      (JDIMENSION) (MAXJSAMPLE+1 + pad),
355      (JDIMENSION) cinfo->out_color_components);
356 
357   /* blksize is number of adjacent repeated entries for a component */
358   blksize = cquantize->sv_actual;
359 
360   for (i = 0; i < cinfo->out_color_components; i++) {
361     /* fill in colorindex entries for i'th color component */
362     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
363     blksize = blksize / nci;
364 
365     /* adjust colorindex pointers to provide padding at negative indexes. */
366     if (pad)
367       cquantize->colorindex[i] += MAXJSAMPLE;
368 
369     /* in loop, val = index of current output value, */
370     /* and k = largest j that maps to current val */
371     indexptr = cquantize->colorindex[i];
372     val = 0;
373     k = largest_input_value(cinfo, i, 0, nci-1);
374     for (j = 0; j <= MAXJSAMPLE; j++) {
375       while (j > k)		/* advance val if past boundary */
376 	k = largest_input_value(cinfo, i, ++val, nci-1);
377       /* premultiply so that no multiplication needed in main processing */
378       indexptr[j] = (JSAMPLE) (val * blksize);
379     }
380     /* Pad at both ends if necessary */
381     if (pad)
382       for (j = 1; j <= MAXJSAMPLE; j++) {
383 	indexptr[-j] = indexptr[0];
384 	indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
385       }
386   }
387 }
388 
389 
390 /*
391  * Create an ordered-dither array for a component having ncolors
392  * distinct output values.
393  */
394 
395 LOCAL(ODITHER_MATRIX_PTR)
396 make_odither_array (j_decompress_ptr cinfo, int ncolors)
397 {
398   ODITHER_MATRIX_PTR odither;
399   int j,k;
400   INT32 num,den;
401 
402   odither = (ODITHER_MATRIX_PTR)
403     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
404 				SIZEOF(ODITHER_MATRIX));
405   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
406    * Hence the dither value for the matrix cell with fill order f
407    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
408    * On 16-bit-int machine, be careful to avoid overflow.
409    */
410   den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
411   for (j = 0; j < ODITHER_SIZE; j++) {
412     for (k = 0; k < ODITHER_SIZE; k++) {
413       num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
414 	    * MAXJSAMPLE;
415       /* Ensure round towards zero despite C's lack of consistency
416        * about rounding negative values in integer division...
417        */
418       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
419     }
420   }
421   return odither;
422 }
423 
424 
425 /*
426  * Create the ordered-dither tables.
427  * Components having the same number of representative colors may
428  * share a dither table.
429  */
430 
431 LOCAL(void)
432 create_odither_tables (j_decompress_ptr cinfo)
433 {
434   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
435   ODITHER_MATRIX_PTR odither;
436   int i, j, nci;
437 
438   for (i = 0; i < cinfo->out_color_components; i++) {
439     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
440     odither = NULL;		/* search for matching prior component */
441     for (j = 0; j < i; j++) {
442       if (nci == cquantize->Ncolors[j]) {
443 	odither = cquantize->odither[j];
444 	break;
445       }
446     }
447     if (odither == NULL)	/* need a new table? */
448       odither = make_odither_array(cinfo, nci);
449     cquantize->odither[i] = odither;
450   }
451 }
452 
453 
454 /*
455  * Map some rows of pixels to the output colormapped representation.
456  */
457 
458 METHODDEF(void)
459 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
460 		JSAMPARRAY output_buf, int num_rows)
461 /* General case, no dithering */
462 {
463   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
464   JSAMPARRAY colorindex = cquantize->colorindex;
465   register int pixcode, ci;
466   register JSAMPROW ptrin, ptrout;
467   int row;
468   JDIMENSION col;
469   JDIMENSION width = cinfo->output_width;
470   register int nc = cinfo->out_color_components;
471 
472   for (row = 0; row < num_rows; row++) {
473     ptrin = input_buf[row];
474     ptrout = output_buf[row];
475     for (col = width; col > 0; col--) {
476       pixcode = 0;
477       for (ci = 0; ci < nc; ci++) {
478 	pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
479       }
480       *ptrout++ = (JSAMPLE) pixcode;
481     }
482   }
483 }
484 
485 
486 METHODDEF(void)
487 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
488 		 JSAMPARRAY output_buf, int num_rows)
489 /* Fast path for out_color_components==3, no dithering */
490 {
491   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
492   register int pixcode;
493   register JSAMPROW ptrin, ptrout;
494   JSAMPROW colorindex0 = cquantize->colorindex[0];
495   JSAMPROW colorindex1 = cquantize->colorindex[1];
496   JSAMPROW colorindex2 = cquantize->colorindex[2];
497   int row;
498   JDIMENSION col;
499   JDIMENSION width = cinfo->output_width;
500 
501   for (row = 0; row < num_rows; row++) {
502     ptrin = input_buf[row];
503     ptrout = output_buf[row];
504     for (col = width; col > 0; col--) {
505       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
506       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
507       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
508       *ptrout++ = (JSAMPLE) pixcode;
509     }
510   }
511 }
512 
513 
514 METHODDEF(void)
515 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
516 		     JSAMPARRAY output_buf, int num_rows)
517 /* General case, with ordered dithering */
518 {
519   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
520   register JSAMPROW input_ptr;
521   register JSAMPROW output_ptr;
522   JSAMPROW colorindex_ci;
523   int * dither;			/* points to active row of dither matrix */
524   int row_index, col_index;	/* current indexes into dither matrix */
525   int nc = cinfo->out_color_components;
526   int ci;
527   int row;
528   JDIMENSION col;
529   JDIMENSION width = cinfo->output_width;
530 
531   for (row = 0; row < num_rows; row++) {
532     /* Initialize output values to 0 so can process components separately */
533     jzero_far((void FAR *) output_buf[row],
534 	      (size_t) (width * SIZEOF(JSAMPLE)));
535     row_index = cquantize->row_index;
536     for (ci = 0; ci < nc; ci++) {
537       input_ptr = input_buf[row] + ci;
538       output_ptr = output_buf[row];
539       colorindex_ci = cquantize->colorindex[ci];
540       dither = cquantize->odither[ci][row_index];
541       col_index = 0;
542 
543       for (col = width; col > 0; col--) {
544 	/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
545 	 * select output value, accumulate into output code for this pixel.
546 	 * Range-limiting need not be done explicitly, as we have extended
547 	 * the colorindex table to produce the right answers for out-of-range
548 	 * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
549 	 * required amount of padding.
550 	 */
551 	*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
552 	input_ptr += nc;
553 	output_ptr++;
554 	col_index = (col_index + 1) & ODITHER_MASK;
555       }
556     }
557     /* Advance row index for next row */
558     row_index = (row_index + 1) & ODITHER_MASK;
559     cquantize->row_index = row_index;
560   }
561 }
562 
563 
564 METHODDEF(void)
565 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
566 		      JSAMPARRAY output_buf, int num_rows)
567 /* Fast path for out_color_components==3, with ordered dithering */
568 {
569   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
570   register int pixcode;
571   register JSAMPROW input_ptr;
572   register JSAMPROW output_ptr;
573   JSAMPROW colorindex0 = cquantize->colorindex[0];
574   JSAMPROW colorindex1 = cquantize->colorindex[1];
575   JSAMPROW colorindex2 = cquantize->colorindex[2];
576   int * dither0;		/* points to active row of dither matrix */
577   int * dither1;
578   int * dither2;
579   int row_index, col_index;	/* current indexes into dither matrix */
580   int row;
581   JDIMENSION col;
582   JDIMENSION width = cinfo->output_width;
583 
584   for (row = 0; row < num_rows; row++) {
585     row_index = cquantize->row_index;
586     input_ptr = input_buf[row];
587     output_ptr = output_buf[row];
588     dither0 = cquantize->odither[0][row_index];
589     dither1 = cquantize->odither[1][row_index];
590     dither2 = cquantize->odither[2][row_index];
591     col_index = 0;
592 
593     for (col = width; col > 0; col--) {
594       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
595 					dither0[col_index]]);
596       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
597 					dither1[col_index]]);
598       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
599 					dither2[col_index]]);
600       *output_ptr++ = (JSAMPLE) pixcode;
601       col_index = (col_index + 1) & ODITHER_MASK;
602     }
603     row_index = (row_index + 1) & ODITHER_MASK;
604     cquantize->row_index = row_index;
605   }
606 }
607 
608 
609 METHODDEF(void)
610 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
611 		    JSAMPARRAY output_buf, int num_rows)
612 /* General case, with Floyd-Steinberg dithering */
613 {
614   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
615   register LOCFSERROR cur;	/* current error or pixel value */
616   LOCFSERROR belowerr;		/* error for pixel below cur */
617   LOCFSERROR bpreverr;		/* error for below/prev col */
618   LOCFSERROR bnexterr;		/* error for below/next col */
619   LOCFSERROR delta;
620   register FSERRPTR errorptr;	/* => fserrors[] at column before current */
621   register JSAMPROW input_ptr;
622   register JSAMPROW output_ptr;
623   JSAMPROW colorindex_ci;
624   JSAMPROW colormap_ci;
625   int pixcode;
626   int nc = cinfo->out_color_components;
627   int dir;			/* 1 for left-to-right, -1 for right-to-left */
628   int dirnc;			/* dir * nc */
629   int ci;
630   int row;
631   JDIMENSION col;
632   JDIMENSION width = cinfo->output_width;
633   JSAMPLE *range_limit = cinfo->sample_range_limit;
634   SHIFT_TEMPS
635 
636   for (row = 0; row < num_rows; row++) {
637     /* Initialize output values to 0 so can process components separately */
638     jzero_far((void FAR *) output_buf[row],
639 	      (size_t) (width * SIZEOF(JSAMPLE)));
640     for (ci = 0; ci < nc; ci++) {
641       input_ptr = input_buf[row] + ci;
642       output_ptr = output_buf[row];
643       if (cquantize->on_odd_row) {
644 	/* work right to left in this row */
645 	input_ptr += (width-1) * nc; /* so point to rightmost pixel */
646 	output_ptr += width-1;
647 	dir = -1;
648 	dirnc = -nc;
649 	errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
650       } else {
651 	/* work left to right in this row */
652 	dir = 1;
653 	dirnc = nc;
654 	errorptr = cquantize->fserrors[ci]; /* => entry before first column */
655       }
656       colorindex_ci = cquantize->colorindex[ci];
657       colormap_ci = cquantize->sv_colormap[ci];
658       /* Preset error values: no error propagated to first pixel from left */
659       cur = 0;
660       /* and no error propagated to row below yet */
661       belowerr = bpreverr = 0;
662 
663       for (col = width; col > 0; col--) {
664 	/* cur holds the error propagated from the previous pixel on the
665 	 * current line.  Add the error propagated from the previous line
666 	 * to form the complete error correction term for this pixel, and
667 	 * round the error term (which is expressed * 16) to an integer.
668 	 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
669 	 * for either sign of the error value.
670 	 * Note: errorptr points to *previous* column's array entry.
671 	 */
672 	cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
673 	/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
674 	 * The maximum error is +- MAXJSAMPLE; this sets the required size
675 	 * of the range_limit array.
676 	 */
677 	cur += GETJSAMPLE(*input_ptr);
678 	cur = GETJSAMPLE(range_limit[cur]);
679 	/* Select output value, accumulate into output code for this pixel */
680 	pixcode = GETJSAMPLE(colorindex_ci[cur]);
681 	*output_ptr += (JSAMPLE) pixcode;
682 	/* Compute actual representation error at this pixel */
683 	/* Note: we can do this even though we don't have the final */
684 	/* pixel code, because the colormap is orthogonal. */
685 	cur -= GETJSAMPLE(colormap_ci[pixcode]);
686 	/* Compute error fractions to be propagated to adjacent pixels.
687 	 * Add these into the running sums, and simultaneously shift the
688 	 * next-line error sums left by 1 column.
689 	 */
690 	bnexterr = cur;
691 	delta = cur * 2;
692 	cur += delta;		/* form error * 3 */
693 	errorptr[0] = (FSERROR) (bpreverr + cur);
694 	cur += delta;		/* form error * 5 */
695 	bpreverr = belowerr + cur;
696 	belowerr = bnexterr;
697 	cur += delta;		/* form error * 7 */
698 	/* At this point cur contains the 7/16 error value to be propagated
699 	 * to the next pixel on the current line, and all the errors for the
700 	 * next line have been shifted over. We are therefore ready to move on.
701 	 */
702 	input_ptr += dirnc;	/* advance input ptr to next column */
703 	output_ptr += dir;	/* advance output ptr to next column */
704 	errorptr += dir;	/* advance errorptr to current column */
705       }
706       /* Post-loop cleanup: we must unload the final error value into the
707        * final fserrors[] entry.  Note we need not unload belowerr because
708        * it is for the dummy column before or after the actual array.
709        */
710       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
711     }
712     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
713   }
714 }
715 
716 
717 /*
718  * Allocate workspace for Floyd-Steinberg errors.
719  */
720 
721 LOCAL(void)
722 alloc_fs_workspace (j_decompress_ptr cinfo)
723 {
724   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
725   size_t arraysize;
726   int i;
727 
728   arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
729   for (i = 0; i < cinfo->out_color_components; i++) {
730     cquantize->fserrors[i] = (FSERRPTR)
731       (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
732   }
733 }
734 
735 
736 /*
737  * Initialize for one-pass color quantization.
738  */
739 
740 METHODDEF(void)
741 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
742 {
743   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
744   size_t arraysize;
745   int i;
746 
747   /* Install my colormap. */
748   cinfo->colormap = cquantize->sv_colormap;
749   cinfo->actual_number_of_colors = cquantize->sv_actual;
750 
751   /* Initialize for desired dithering mode. */
752   switch (cinfo->dither_mode) {
753   case JDITHER_NONE:
754     if (cinfo->out_color_components == 3)
755       cquantize->pub.color_quantize = color_quantize3;
756     else
757       cquantize->pub.color_quantize = color_quantize;
758     break;
759   case JDITHER_ORDERED:
760     if (cinfo->out_color_components == 3)
761       cquantize->pub.color_quantize = quantize3_ord_dither;
762     else
763       cquantize->pub.color_quantize = quantize_ord_dither;
764     cquantize->row_index = 0;	/* initialize state for ordered dither */
765     /* If user changed to ordered dither from another mode,
766      * we must recreate the color index table with padding.
767      * This will cost extra space, but probably isn't very likely.
768      */
769     if (! cquantize->is_padded)
770       create_colorindex(cinfo);
771     /* Create ordered-dither tables if we didn't already. */
772     if (cquantize->odither[0] == NULL)
773       create_odither_tables(cinfo);
774     break;
775   case JDITHER_FS:
776     cquantize->pub.color_quantize = quantize_fs_dither;
777     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
778     /* Allocate Floyd-Steinberg workspace if didn't already. */
779     if (cquantize->fserrors[0] == NULL)
780       alloc_fs_workspace(cinfo);
781     /* Initialize the propagated errors to zero. */
782     arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
783     for (i = 0; i < cinfo->out_color_components; i++)
784       jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
785     break;
786   default:
787     ERREXIT(cinfo, JERR_NOT_COMPILED);
788     break;
789   }
790 }
791 
792 
793 /*
794  * Finish up at the end of the pass.
795  */
796 
797 METHODDEF(void)
798 finish_pass_1_quant (j_decompress_ptr cinfo)
799 {
800   /* no work in 1-pass case */
801 }
802 
803 
804 /*
805  * Switch to a new external colormap between output passes.
806  * Shouldn't get to this module!
807  */
808 
809 METHODDEF(void)
810 new_color_map_1_quant (j_decompress_ptr cinfo)
811 {
812   ERREXIT(cinfo, JERR_MODE_CHANGE);
813 }
814 
815 
816 /*
817  * Module initialization routine for 1-pass color quantization.
818  */
819 
820 GLOBAL(void)
821 jinit_1pass_quantizer (j_decompress_ptr cinfo)
822 {
823   my_cquantize_ptr cquantize;
824 
825   cquantize = (my_cquantize_ptr)
826     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
827 				SIZEOF(my_cquantizer));
828   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
829   cquantize->pub.start_pass = start_pass_1_quant;
830   cquantize->pub.finish_pass = finish_pass_1_quant;
831   cquantize->pub.new_color_map = new_color_map_1_quant;
832   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
833   cquantize->odither[0] = NULL;	/* Also flag odither arrays not allocated */
834 
835   /* Make sure my internal arrays won't overflow */
836   if (cinfo->out_color_components > MAX_Q_COMPS)
837     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
838   /* Make sure colormap indexes can be represented by JSAMPLEs */
839   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
840     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
841 
842   /* Create the colormap and color index table. */
843   create_colormap(cinfo);
844   create_colorindex(cinfo);
845 
846   /* Allocate Floyd-Steinberg workspace now if requested.
847    * We do this now since it is FAR storage and may affect the memory
848    * manager's space calculations.  If the user changes to FS dither
849    * mode in a later pass, we will allocate the space then, and will
850    * possibly overrun the max_memory_to_use setting.
851    */
852   if (cinfo->dither_mode == JDITHER_FS)
853     alloc_fs_workspace(cinfo);
854 }
855 
856 #endif /* QUANT_1PASS_SUPPORTED */
857