1 2 /* png.c - location for general purpose libpng functions 3 * 4 * Copyright (c) 2018-2022 Cosmin Truta 5 * Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson 6 * Copyright (c) 1996-1997 Andreas Dilger 7 * Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc. 8 * 9 * This code is released under the libpng license. 10 * For conditions of distribution and use, see the disclaimer 11 * and license in png.h 12 */ 13 14 #include "pngpriv.h" 15 16 /* Generate a compiler error if there is an old png.h in the search path. */ 17 typedef png_libpng_version_1_6_39 Your_png_h_is_not_version_1_6_39; 18 19 #ifdef __GNUC__ 20 /* The version tests may need to be added to, but the problem warning has 21 * consistently been fixed in GCC versions which obtain wide-spread release. 22 * The problem is that many versions of GCC rearrange comparison expressions in 23 * the optimizer in such a way that the results of the comparison will change 24 * if signed integer overflow occurs. Such comparisons are not permitted in 25 * ANSI C90, however GCC isn't clever enough to work out that that do not occur 26 * below in png_ascii_from_fp and png_muldiv, so it produces a warning with 27 * -Wextra. Unfortunately this is highly dependent on the optimizer and the 28 * machine architecture so the warning comes and goes unpredictably and is 29 * impossible to "fix", even were that a good idea. 30 */ 31 #if __GNUC__ == 7 && __GNUC_MINOR__ == 1 32 #define GCC_STRICT_OVERFLOW 1 33 #endif /* GNU 7.1.x */ 34 #endif /* GNU */ 35 #ifndef GCC_STRICT_OVERFLOW 36 #define GCC_STRICT_OVERFLOW 0 37 #endif 38 39 /* Tells libpng that we have already handled the first "num_bytes" bytes 40 * of the PNG file signature. If the PNG data is embedded into another 41 * stream we can set num_bytes = 8 so that libpng will not attempt to read 42 * or write any of the magic bytes before it starts on the IHDR. 43 */ 44 45 #ifdef PNG_READ_SUPPORTED 46 void PNGAPI 47 png_set_sig_bytes(png_structrp png_ptr, int num_bytes) 48 { 49 unsigned int nb = (unsigned int)num_bytes; 50 51 png_debug(1, "in png_set_sig_bytes"); 52 53 if (png_ptr == NULL) 54 return; 55 56 if (num_bytes < 0) 57 nb = 0; 58 59 if (nb > 8) 60 png_error(png_ptr, "Too many bytes for PNG signature"); 61 62 png_ptr->sig_bytes = (png_byte)nb; 63 } 64 65 /* Checks whether the supplied bytes match the PNG signature. We allow 66 * checking less than the full 8-byte signature so that those apps that 67 * already read the first few bytes of a file to determine the file type 68 * can simply check the remaining bytes for extra assurance. Returns 69 * an integer less than, equal to, or greater than zero if sig is found, 70 * respectively, to be less than, to match, or be greater than the correct 71 * PNG signature (this is the same behavior as strcmp, memcmp, etc). 72 */ 73 int PNGAPI 74 png_sig_cmp(png_const_bytep sig, size_t start, size_t num_to_check) 75 { 76 png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10}; 77 78 if (num_to_check > 8) 79 num_to_check = 8; 80 81 else if (num_to_check < 1) 82 return (-1); 83 84 if (start > 7) 85 return (-1); 86 87 if (start + num_to_check > 8) 88 num_to_check = 8 - start; 89 90 return ((int)(memcmp(&sig[start], &png_signature[start], num_to_check))); 91 } 92 93 #endif /* READ */ 94 95 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) 96 /* Function to allocate memory for zlib */ 97 PNG_FUNCTION(voidpf /* PRIVATE */, 98 png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED) 99 { 100 png_alloc_size_t num_bytes = size; 101 102 if (png_ptr == NULL) 103 return NULL; 104 105 if (items >= (~(png_alloc_size_t)0)/size) 106 { 107 png_warning (png_voidcast(png_structrp, png_ptr), 108 "Potential overflow in png_zalloc()"); 109 return NULL; 110 } 111 112 num_bytes *= items; 113 return png_malloc_warn(png_voidcast(png_structrp, png_ptr), num_bytes); 114 } 115 116 /* Function to free memory for zlib */ 117 void /* PRIVATE */ 118 png_zfree(voidpf png_ptr, voidpf ptr) 119 { 120 png_free(png_voidcast(png_const_structrp,png_ptr), ptr); 121 } 122 123 /* Reset the CRC variable to 32 bits of 1's. Care must be taken 124 * in case CRC is > 32 bits to leave the top bits 0. 125 */ 126 void /* PRIVATE */ 127 png_reset_crc(png_structrp png_ptr) 128 { 129 /* The cast is safe because the crc is a 32-bit value. */ 130 png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0); 131 } 132 133 /* Calculate the CRC over a section of data. We can only pass as 134 * much data to this routine as the largest single buffer size. We 135 * also check that this data will actually be used before going to the 136 * trouble of calculating it. 137 */ 138 void /* PRIVATE */ 139 png_calculate_crc(png_structrp png_ptr, png_const_bytep ptr, size_t length) 140 { 141 int need_crc = 1; 142 143 if (PNG_CHUNK_ANCILLARY(png_ptr->chunk_name) != 0) 144 { 145 if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) == 146 (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN)) 147 need_crc = 0; 148 } 149 150 else /* critical */ 151 { 152 if ((png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) != 0) 153 need_crc = 0; 154 } 155 156 /* 'uLong' is defined in zlib.h as unsigned long; this means that on some 157 * systems it is a 64-bit value. crc32, however, returns 32 bits so the 158 * following cast is safe. 'uInt' may be no more than 16 bits, so it is 159 * necessary to perform a loop here. 160 */ 161 if (need_crc != 0 && length > 0) 162 { 163 uLong crc = png_ptr->crc; /* Should never issue a warning */ 164 165 do 166 { 167 uInt safe_length = (uInt)length; 168 #ifndef __COVERITY__ 169 if (safe_length == 0) 170 safe_length = (uInt)-1; /* evil, but safe */ 171 #endif 172 173 crc = crc32(crc, ptr, safe_length); 174 175 /* The following should never issue compiler warnings; if they do the 176 * target system has characteristics that will probably violate other 177 * assumptions within the libpng code. 178 */ 179 ptr += safe_length; 180 length -= safe_length; 181 } 182 while (length > 0); 183 184 /* And the following is always safe because the crc is only 32 bits. */ 185 png_ptr->crc = (png_uint_32)crc; 186 } 187 } 188 189 /* Check a user supplied version number, called from both read and write 190 * functions that create a png_struct. 191 */ 192 int 193 png_user_version_check(png_structrp png_ptr, png_const_charp user_png_ver) 194 { 195 /* Libpng versions 1.0.0 and later are binary compatible if the version 196 * string matches through the second '.'; we must recompile any 197 * applications that use any older library version. 198 */ 199 200 if (user_png_ver != NULL) 201 { 202 int i = -1; 203 int found_dots = 0; 204 205 do 206 { 207 i++; 208 if (user_png_ver[i] != PNG_LIBPNG_VER_STRING[i]) 209 png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; 210 if (user_png_ver[i] == '.') 211 found_dots++; 212 } while (found_dots < 2 && user_png_ver[i] != 0 && 213 PNG_LIBPNG_VER_STRING[i] != 0); 214 } 215 216 else 217 png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; 218 219 if ((png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) != 0) 220 { 221 #ifdef PNG_WARNINGS_SUPPORTED 222 size_t pos = 0; 223 char m[128]; 224 225 pos = png_safecat(m, (sizeof m), pos, 226 "Application built with libpng-"); 227 pos = png_safecat(m, (sizeof m), pos, user_png_ver); 228 pos = png_safecat(m, (sizeof m), pos, " but running with "); 229 pos = png_safecat(m, (sizeof m), pos, PNG_LIBPNG_VER_STRING); 230 PNG_UNUSED(pos) 231 232 png_warning(png_ptr, m); 233 #endif 234 235 #ifdef PNG_ERROR_NUMBERS_SUPPORTED 236 png_ptr->flags = 0; 237 #endif 238 239 return 0; 240 } 241 242 /* Success return. */ 243 return 1; 244 } 245 246 /* Generic function to create a png_struct for either read or write - this 247 * contains the common initialization. 248 */ 249 PNG_FUNCTION(png_structp /* PRIVATE */, 250 png_create_png_struct,(png_const_charp user_png_ver, png_voidp error_ptr, 251 png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr, 252 png_malloc_ptr malloc_fn, png_free_ptr free_fn),PNG_ALLOCATED) 253 { 254 png_struct create_struct; 255 # ifdef PNG_SETJMP_SUPPORTED 256 jmp_buf create_jmp_buf; 257 # endif 258 259 /* This temporary stack-allocated structure is used to provide a place to 260 * build enough context to allow the user provided memory allocator (if any) 261 * to be called. 262 */ 263 memset(&create_struct, 0, (sizeof create_struct)); 264 265 /* Added at libpng-1.2.6 */ 266 # ifdef PNG_USER_LIMITS_SUPPORTED 267 create_struct.user_width_max = PNG_USER_WIDTH_MAX; 268 create_struct.user_height_max = PNG_USER_HEIGHT_MAX; 269 270 # ifdef PNG_USER_CHUNK_CACHE_MAX 271 /* Added at libpng-1.2.43 and 1.4.0 */ 272 create_struct.user_chunk_cache_max = PNG_USER_CHUNK_CACHE_MAX; 273 # endif 274 275 # ifdef PNG_USER_CHUNK_MALLOC_MAX 276 /* Added at libpng-1.2.43 and 1.4.1, required only for read but exists 277 * in png_struct regardless. 278 */ 279 create_struct.user_chunk_malloc_max = PNG_USER_CHUNK_MALLOC_MAX; 280 # endif 281 # endif 282 283 /* The following two API calls simply set fields in png_struct, so it is safe 284 * to do them now even though error handling is not yet set up. 285 */ 286 # ifdef PNG_USER_MEM_SUPPORTED 287 png_set_mem_fn(&create_struct, mem_ptr, malloc_fn, free_fn); 288 # else 289 PNG_UNUSED(mem_ptr) 290 PNG_UNUSED(malloc_fn) 291 PNG_UNUSED(free_fn) 292 # endif 293 294 /* (*error_fn) can return control to the caller after the error_ptr is set, 295 * this will result in a memory leak unless the error_fn does something 296 * extremely sophisticated. The design lacks merit but is implicit in the 297 * API. 298 */ 299 png_set_error_fn(&create_struct, error_ptr, error_fn, warn_fn); 300 301 # ifdef PNG_SETJMP_SUPPORTED 302 if (!setjmp(create_jmp_buf)) 303 # endif 304 { 305 # ifdef PNG_SETJMP_SUPPORTED 306 /* Temporarily fake out the longjmp information until we have 307 * successfully completed this function. This only works if we have 308 * setjmp() support compiled in, but it is safe - this stuff should 309 * never happen. 310 */ 311 create_struct.jmp_buf_ptr = &create_jmp_buf; 312 create_struct.jmp_buf_size = 0; /*stack allocation*/ 313 create_struct.longjmp_fn = longjmp; 314 # endif 315 /* Call the general version checker (shared with read and write code): 316 */ 317 if (png_user_version_check(&create_struct, user_png_ver) != 0) 318 { 319 png_structrp png_ptr = png_voidcast(png_structrp, 320 png_malloc_warn(&create_struct, (sizeof *png_ptr))); 321 322 if (png_ptr != NULL) 323 { 324 /* png_ptr->zstream holds a back-pointer to the png_struct, so 325 * this can only be done now: 326 */ 327 create_struct.zstream.zalloc = png_zalloc; 328 create_struct.zstream.zfree = png_zfree; 329 create_struct.zstream.opaque = png_ptr; 330 331 # ifdef PNG_SETJMP_SUPPORTED 332 /* Eliminate the local error handling: */ 333 create_struct.jmp_buf_ptr = NULL; 334 create_struct.jmp_buf_size = 0; 335 create_struct.longjmp_fn = 0; 336 # endif 337 338 *png_ptr = create_struct; 339 340 /* This is the successful return point */ 341 return png_ptr; 342 } 343 } 344 } 345 346 /* A longjmp because of a bug in the application storage allocator or a 347 * simple failure to allocate the png_struct. 348 */ 349 return NULL; 350 } 351 352 /* Allocate the memory for an info_struct for the application. */ 353 PNG_FUNCTION(png_infop,PNGAPI 354 png_create_info_struct,(png_const_structrp png_ptr),PNG_ALLOCATED) 355 { 356 png_inforp info_ptr; 357 358 png_debug(1, "in png_create_info_struct"); 359 360 if (png_ptr == NULL) 361 return NULL; 362 363 /* Use the internal API that does not (or at least should not) error out, so 364 * that this call always returns ok. The application typically sets up the 365 * error handling *after* creating the info_struct because this is the way it 366 * has always been done in 'example.c'. 367 */ 368 info_ptr = png_voidcast(png_inforp, png_malloc_base(png_ptr, 369 (sizeof *info_ptr))); 370 371 if (info_ptr != NULL) 372 memset(info_ptr, 0, (sizeof *info_ptr)); 373 374 return info_ptr; 375 } 376 377 /* This function frees the memory associated with a single info struct. 378 * Normally, one would use either png_destroy_read_struct() or 379 * png_destroy_write_struct() to free an info struct, but this may be 380 * useful for some applications. From libpng 1.6.0 this function is also used 381 * internally to implement the png_info release part of the 'struct' destroy 382 * APIs. This ensures that all possible approaches free the same data (all of 383 * it). 384 */ 385 void PNGAPI 386 png_destroy_info_struct(png_const_structrp png_ptr, png_infopp info_ptr_ptr) 387 { 388 png_inforp info_ptr = NULL; 389 390 png_debug(1, "in png_destroy_info_struct"); 391 392 if (png_ptr == NULL) 393 return; 394 395 if (info_ptr_ptr != NULL) 396 info_ptr = *info_ptr_ptr; 397 398 if (info_ptr != NULL) 399 { 400 /* Do this first in case of an error below; if the app implements its own 401 * memory management this can lead to png_free calling png_error, which 402 * will abort this routine and return control to the app error handler. 403 * An infinite loop may result if it then tries to free the same info 404 * ptr. 405 */ 406 *info_ptr_ptr = NULL; 407 408 png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1); 409 memset(info_ptr, 0, (sizeof *info_ptr)); 410 png_free(png_ptr, info_ptr); 411 } 412 } 413 414 /* Initialize the info structure. This is now an internal function (0.89) 415 * and applications using it are urged to use png_create_info_struct() 416 * instead. Use deprecated in 1.6.0, internal use removed (used internally it 417 * is just a memset). 418 * 419 * NOTE: it is almost inconceivable that this API is used because it bypasses 420 * the user-memory mechanism and the user error handling/warning mechanisms in 421 * those cases where it does anything other than a memset. 422 */ 423 PNG_FUNCTION(void,PNGAPI 424 png_info_init_3,(png_infopp ptr_ptr, size_t png_info_struct_size), 425 PNG_DEPRECATED) 426 { 427 png_inforp info_ptr = *ptr_ptr; 428 429 png_debug(1, "in png_info_init_3"); 430 431 if (info_ptr == NULL) 432 return; 433 434 if ((sizeof (png_info)) > png_info_struct_size) 435 { 436 *ptr_ptr = NULL; 437 /* The following line is why this API should not be used: */ 438 free(info_ptr); 439 info_ptr = png_voidcast(png_inforp, png_malloc_base(NULL, 440 (sizeof *info_ptr))); 441 if (info_ptr == NULL) 442 return; 443 *ptr_ptr = info_ptr; 444 } 445 446 /* Set everything to 0 */ 447 memset(info_ptr, 0, (sizeof *info_ptr)); 448 } 449 450 /* The following API is not called internally */ 451 void PNGAPI 452 png_data_freer(png_const_structrp png_ptr, png_inforp info_ptr, 453 int freer, png_uint_32 mask) 454 { 455 png_debug(1, "in png_data_freer"); 456 457 if (png_ptr == NULL || info_ptr == NULL) 458 return; 459 460 if (freer == PNG_DESTROY_WILL_FREE_DATA) 461 info_ptr->free_me |= mask; 462 463 else if (freer == PNG_USER_WILL_FREE_DATA) 464 info_ptr->free_me &= ~mask; 465 466 else 467 png_error(png_ptr, "Unknown freer parameter in png_data_freer"); 468 } 469 470 void PNGAPI 471 png_free_data(png_const_structrp png_ptr, png_inforp info_ptr, png_uint_32 mask, 472 int num) 473 { 474 png_debug(1, "in png_free_data"); 475 476 if (png_ptr == NULL || info_ptr == NULL) 477 return; 478 479 #ifdef PNG_TEXT_SUPPORTED 480 /* Free text item num or (if num == -1) all text items */ 481 if (info_ptr->text != NULL && 482 ((mask & PNG_FREE_TEXT) & info_ptr->free_me) != 0) 483 { 484 if (num != -1) 485 { 486 png_free(png_ptr, info_ptr->text[num].key); 487 info_ptr->text[num].key = NULL; 488 } 489 490 else 491 { 492 int i; 493 494 for (i = 0; i < info_ptr->num_text; i++) 495 png_free(png_ptr, info_ptr->text[i].key); 496 497 png_free(png_ptr, info_ptr->text); 498 info_ptr->text = NULL; 499 info_ptr->num_text = 0; 500 info_ptr->max_text = 0; 501 } 502 } 503 #endif 504 505 #ifdef PNG_tRNS_SUPPORTED 506 /* Free any tRNS entry */ 507 if (((mask & PNG_FREE_TRNS) & info_ptr->free_me) != 0) 508 { 509 info_ptr->valid &= ~PNG_INFO_tRNS; 510 png_free(png_ptr, info_ptr->trans_alpha); 511 info_ptr->trans_alpha = NULL; 512 info_ptr->num_trans = 0; 513 } 514 #endif 515 516 #ifdef PNG_sCAL_SUPPORTED 517 /* Free any sCAL entry */ 518 if (((mask & PNG_FREE_SCAL) & info_ptr->free_me) != 0) 519 { 520 png_free(png_ptr, info_ptr->scal_s_width); 521 png_free(png_ptr, info_ptr->scal_s_height); 522 info_ptr->scal_s_width = NULL; 523 info_ptr->scal_s_height = NULL; 524 info_ptr->valid &= ~PNG_INFO_sCAL; 525 } 526 #endif 527 528 #ifdef PNG_pCAL_SUPPORTED 529 /* Free any pCAL entry */ 530 if (((mask & PNG_FREE_PCAL) & info_ptr->free_me) != 0) 531 { 532 png_free(png_ptr, info_ptr->pcal_purpose); 533 png_free(png_ptr, info_ptr->pcal_units); 534 info_ptr->pcal_purpose = NULL; 535 info_ptr->pcal_units = NULL; 536 537 if (info_ptr->pcal_params != NULL) 538 { 539 int i; 540 541 for (i = 0; i < info_ptr->pcal_nparams; i++) 542 png_free(png_ptr, info_ptr->pcal_params[i]); 543 544 png_free(png_ptr, info_ptr->pcal_params); 545 info_ptr->pcal_params = NULL; 546 } 547 info_ptr->valid &= ~PNG_INFO_pCAL; 548 } 549 #endif 550 551 #ifdef PNG_iCCP_SUPPORTED 552 /* Free any profile entry */ 553 if (((mask & PNG_FREE_ICCP) & info_ptr->free_me) != 0) 554 { 555 png_free(png_ptr, info_ptr->iccp_name); 556 png_free(png_ptr, info_ptr->iccp_profile); 557 info_ptr->iccp_name = NULL; 558 info_ptr->iccp_profile = NULL; 559 info_ptr->valid &= ~PNG_INFO_iCCP; 560 } 561 #endif 562 563 #ifdef PNG_sPLT_SUPPORTED 564 /* Free a given sPLT entry, or (if num == -1) all sPLT entries */ 565 if (info_ptr->splt_palettes != NULL && 566 ((mask & PNG_FREE_SPLT) & info_ptr->free_me) != 0) 567 { 568 if (num != -1) 569 { 570 png_free(png_ptr, info_ptr->splt_palettes[num].name); 571 png_free(png_ptr, info_ptr->splt_palettes[num].entries); 572 info_ptr->splt_palettes[num].name = NULL; 573 info_ptr->splt_palettes[num].entries = NULL; 574 } 575 576 else 577 { 578 int i; 579 580 for (i = 0; i < info_ptr->splt_palettes_num; i++) 581 { 582 png_free(png_ptr, info_ptr->splt_palettes[i].name); 583 png_free(png_ptr, info_ptr->splt_palettes[i].entries); 584 } 585 586 png_free(png_ptr, info_ptr->splt_palettes); 587 info_ptr->splt_palettes = NULL; 588 info_ptr->splt_palettes_num = 0; 589 info_ptr->valid &= ~PNG_INFO_sPLT; 590 } 591 } 592 #endif 593 594 #ifdef PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED 595 if (info_ptr->unknown_chunks != NULL && 596 ((mask & PNG_FREE_UNKN) & info_ptr->free_me) != 0) 597 { 598 if (num != -1) 599 { 600 png_free(png_ptr, info_ptr->unknown_chunks[num].data); 601 info_ptr->unknown_chunks[num].data = NULL; 602 } 603 604 else 605 { 606 int i; 607 608 for (i = 0; i < info_ptr->unknown_chunks_num; i++) 609 png_free(png_ptr, info_ptr->unknown_chunks[i].data); 610 611 png_free(png_ptr, info_ptr->unknown_chunks); 612 info_ptr->unknown_chunks = NULL; 613 info_ptr->unknown_chunks_num = 0; 614 } 615 } 616 #endif 617 618 #ifdef PNG_eXIf_SUPPORTED 619 /* Free any eXIf entry */ 620 if (((mask & PNG_FREE_EXIF) & info_ptr->free_me) != 0) 621 { 622 # ifdef PNG_READ_eXIf_SUPPORTED 623 if (info_ptr->eXIf_buf) 624 { 625 png_free(png_ptr, info_ptr->eXIf_buf); 626 info_ptr->eXIf_buf = NULL; 627 } 628 # endif 629 if (info_ptr->exif) 630 { 631 png_free(png_ptr, info_ptr->exif); 632 info_ptr->exif = NULL; 633 } 634 info_ptr->valid &= ~PNG_INFO_eXIf; 635 } 636 #endif 637 638 #ifdef PNG_hIST_SUPPORTED 639 /* Free any hIST entry */ 640 if (((mask & PNG_FREE_HIST) & info_ptr->free_me) != 0) 641 { 642 png_free(png_ptr, info_ptr->hist); 643 info_ptr->hist = NULL; 644 info_ptr->valid &= ~PNG_INFO_hIST; 645 } 646 #endif 647 648 /* Free any PLTE entry that was internally allocated */ 649 if (((mask & PNG_FREE_PLTE) & info_ptr->free_me) != 0) 650 { 651 png_free(png_ptr, info_ptr->palette); 652 info_ptr->palette = NULL; 653 info_ptr->valid &= ~PNG_INFO_PLTE; 654 info_ptr->num_palette = 0; 655 } 656 657 #ifdef PNG_INFO_IMAGE_SUPPORTED 658 /* Free any image bits attached to the info structure */ 659 if (((mask & PNG_FREE_ROWS) & info_ptr->free_me) != 0) 660 { 661 if (info_ptr->row_pointers != NULL) 662 { 663 png_uint_32 row; 664 for (row = 0; row < info_ptr->height; row++) 665 png_free(png_ptr, info_ptr->row_pointers[row]); 666 667 png_free(png_ptr, info_ptr->row_pointers); 668 info_ptr->row_pointers = NULL; 669 } 670 info_ptr->valid &= ~PNG_INFO_IDAT; 671 } 672 #endif 673 674 if (num != -1) 675 mask &= ~PNG_FREE_MUL; 676 677 info_ptr->free_me &= ~mask; 678 } 679 #endif /* READ || WRITE */ 680 681 /* This function returns a pointer to the io_ptr associated with the user 682 * functions. The application should free any memory associated with this 683 * pointer before png_write_destroy() or png_read_destroy() are called. 684 */ 685 png_voidp PNGAPI 686 png_get_io_ptr(png_const_structrp png_ptr) 687 { 688 if (png_ptr == NULL) 689 return (NULL); 690 691 return (png_ptr->io_ptr); 692 } 693 694 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) 695 # ifdef PNG_STDIO_SUPPORTED 696 /* Initialize the default input/output functions for the PNG file. If you 697 * use your own read or write routines, you can call either png_set_read_fn() 698 * or png_set_write_fn() instead of png_init_io(). If you have defined 699 * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a 700 * function of your own because "FILE *" isn't necessarily available. 701 */ 702 void PNGAPI 703 png_init_io(png_structrp png_ptr, png_FILE_p fp) 704 { 705 png_debug(1, "in png_init_io"); 706 707 if (png_ptr == NULL) 708 return; 709 710 png_ptr->io_ptr = (png_voidp)fp; 711 } 712 # endif 713 714 # ifdef PNG_SAVE_INT_32_SUPPORTED 715 /* PNG signed integers are saved in 32-bit 2's complement format. ANSI C-90 716 * defines a cast of a signed integer to an unsigned integer either to preserve 717 * the value, if it is positive, or to calculate: 718 * 719 * (UNSIGNED_MAX+1) + integer 720 * 721 * Where UNSIGNED_MAX is the appropriate maximum unsigned value, so when the 722 * negative integral value is added the result will be an unsigned value 723 * corresponding to the 2's complement representation. 724 */ 725 void PNGAPI 726 png_save_int_32(png_bytep buf, png_int_32 i) 727 { 728 png_save_uint_32(buf, (png_uint_32)i); 729 } 730 # endif 731 732 # ifdef PNG_TIME_RFC1123_SUPPORTED 733 /* Convert the supplied time into an RFC 1123 string suitable for use in 734 * a "Creation Time" or other text-based time string. 735 */ 736 int PNGAPI 737 png_convert_to_rfc1123_buffer(char out[29], png_const_timep ptime) 738 { 739 static const char short_months[12][4] = 740 {"Jan", "Feb", "Mar", "Apr", "May", "Jun", 741 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"}; 742 743 if (out == NULL) 744 return 0; 745 746 if (ptime->year > 9999 /* RFC1123 limitation */ || 747 ptime->month == 0 || ptime->month > 12 || 748 ptime->day == 0 || ptime->day > 31 || 749 ptime->hour > 23 || ptime->minute > 59 || 750 ptime->second > 60) 751 return 0; 752 753 { 754 size_t pos = 0; 755 char number_buf[5]; /* enough for a four-digit year */ 756 757 # define APPEND_STRING(string) pos = png_safecat(out, 29, pos, (string)) 758 # define APPEND_NUMBER(format, value)\ 759 APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value))) 760 # define APPEND(ch) if (pos < 28) out[pos++] = (ch) 761 762 APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day); 763 APPEND(' '); 764 APPEND_STRING(short_months[(ptime->month - 1)]); 765 APPEND(' '); 766 APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year); 767 APPEND(' '); 768 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour); 769 APPEND(':'); 770 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute); 771 APPEND(':'); 772 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second); 773 APPEND_STRING(" +0000"); /* This reliably terminates the buffer */ 774 PNG_UNUSED (pos) 775 776 # undef APPEND 777 # undef APPEND_NUMBER 778 # undef APPEND_STRING 779 } 780 781 return 1; 782 } 783 784 # if PNG_LIBPNG_VER < 10700 785 /* To do: remove the following from libpng-1.7 */ 786 /* Original API that uses a private buffer in png_struct. 787 * Deprecated because it causes png_struct to carry a spurious temporary 788 * buffer (png_struct::time_buffer), better to have the caller pass this in. 789 */ 790 png_const_charp PNGAPI 791 png_convert_to_rfc1123(png_structrp png_ptr, png_const_timep ptime) 792 { 793 if (png_ptr != NULL) 794 { 795 /* The only failure above if png_ptr != NULL is from an invalid ptime */ 796 if (png_convert_to_rfc1123_buffer(png_ptr->time_buffer, ptime) == 0) 797 png_warning(png_ptr, "Ignoring invalid time value"); 798 799 else 800 return png_ptr->time_buffer; 801 } 802 803 return NULL; 804 } 805 # endif /* LIBPNG_VER < 10700 */ 806 # endif /* TIME_RFC1123 */ 807 808 #endif /* READ || WRITE */ 809 810 png_const_charp PNGAPI 811 png_get_copyright(png_const_structrp png_ptr) 812 { 813 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ 814 #ifdef PNG_STRING_COPYRIGHT 815 return PNG_STRING_COPYRIGHT 816 #else 817 return PNG_STRING_NEWLINE \ 818 "libpng version 1.6.39" PNG_STRING_NEWLINE \ 819 "Copyright (c) 2018-2022 Cosmin Truta" PNG_STRING_NEWLINE \ 820 "Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson" \ 821 PNG_STRING_NEWLINE \ 822 "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \ 823 "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \ 824 PNG_STRING_NEWLINE; 825 #endif 826 } 827 828 /* The following return the library version as a short string in the 829 * format 1.0.0 through 99.99.99zz. To get the version of *.h files 830 * used with your application, print out PNG_LIBPNG_VER_STRING, which 831 * is defined in png.h. 832 * Note: now there is no difference between png_get_libpng_ver() and 833 * png_get_header_ver(). Due to the version_nn_nn_nn typedef guard, 834 * it is guaranteed that png.c uses the correct version of png.h. 835 */ 836 png_const_charp PNGAPI 837 png_get_libpng_ver(png_const_structrp png_ptr) 838 { 839 /* Version of *.c files used when building libpng */ 840 return png_get_header_ver(png_ptr); 841 } 842 843 png_const_charp PNGAPI 844 png_get_header_ver(png_const_structrp png_ptr) 845 { 846 /* Version of *.h files used when building libpng */ 847 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ 848 return PNG_LIBPNG_VER_STRING; 849 } 850 851 png_const_charp PNGAPI 852 png_get_header_version(png_const_structrp png_ptr) 853 { 854 /* Returns longer string containing both version and date */ 855 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ 856 #ifdef __STDC__ 857 return PNG_HEADER_VERSION_STRING 858 # ifndef PNG_READ_SUPPORTED 859 " (NO READ SUPPORT)" 860 # endif 861 PNG_STRING_NEWLINE; 862 #else 863 return PNG_HEADER_VERSION_STRING; 864 #endif 865 } 866 867 #ifdef PNG_BUILD_GRAYSCALE_PALETTE_SUPPORTED 868 /* NOTE: this routine is not used internally! */ 869 /* Build a grayscale palette. Palette is assumed to be 1 << bit_depth 870 * large of png_color. This lets grayscale images be treated as 871 * paletted. Most useful for gamma correction and simplification 872 * of code. This API is not used internally. 873 */ 874 void PNGAPI 875 png_build_grayscale_palette(int bit_depth, png_colorp palette) 876 { 877 int num_palette; 878 int color_inc; 879 int i; 880 int v; 881 882 png_debug(1, "in png_do_build_grayscale_palette"); 883 884 if (palette == NULL) 885 return; 886 887 switch (bit_depth) 888 { 889 case 1: 890 num_palette = 2; 891 color_inc = 0xff; 892 break; 893 894 case 2: 895 num_palette = 4; 896 color_inc = 0x55; 897 break; 898 899 case 4: 900 num_palette = 16; 901 color_inc = 0x11; 902 break; 903 904 case 8: 905 num_palette = 256; 906 color_inc = 1; 907 break; 908 909 default: 910 num_palette = 0; 911 color_inc = 0; 912 break; 913 } 914 915 for (i = 0, v = 0; i < num_palette; i++, v += color_inc) 916 { 917 palette[i].red = (png_byte)(v & 0xff); 918 palette[i].green = (png_byte)(v & 0xff); 919 palette[i].blue = (png_byte)(v & 0xff); 920 } 921 } 922 #endif 923 924 #ifdef PNG_SET_UNKNOWN_CHUNKS_SUPPORTED 925 int PNGAPI 926 png_handle_as_unknown(png_const_structrp png_ptr, png_const_bytep chunk_name) 927 { 928 /* Check chunk_name and return "keep" value if it's on the list, else 0 */ 929 png_const_bytep p, p_end; 930 931 if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list == 0) 932 return PNG_HANDLE_CHUNK_AS_DEFAULT; 933 934 p_end = png_ptr->chunk_list; 935 p = p_end + png_ptr->num_chunk_list*5; /* beyond end */ 936 937 /* The code is the fifth byte after each four byte string. Historically this 938 * code was always searched from the end of the list, this is no longer 939 * necessary because the 'set' routine handles duplicate entries correctly. 940 */ 941 do /* num_chunk_list > 0, so at least one */ 942 { 943 p -= 5; 944 945 if (memcmp(chunk_name, p, 4) == 0) 946 return p[4]; 947 } 948 while (p > p_end); 949 950 /* This means that known chunks should be processed and unknown chunks should 951 * be handled according to the value of png_ptr->unknown_default; this can be 952 * confusing because, as a result, there are two levels of defaulting for 953 * unknown chunks. 954 */ 955 return PNG_HANDLE_CHUNK_AS_DEFAULT; 956 } 957 958 #if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) ||\ 959 defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED) 960 int /* PRIVATE */ 961 png_chunk_unknown_handling(png_const_structrp png_ptr, png_uint_32 chunk_name) 962 { 963 png_byte chunk_string[5]; 964 965 PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name); 966 return png_handle_as_unknown(png_ptr, chunk_string); 967 } 968 #endif /* READ_UNKNOWN_CHUNKS || HANDLE_AS_UNKNOWN */ 969 #endif /* SET_UNKNOWN_CHUNKS */ 970 971 #ifdef PNG_READ_SUPPORTED 972 /* This function, added to libpng-1.0.6g, is untested. */ 973 int PNGAPI 974 png_reset_zstream(png_structrp png_ptr) 975 { 976 if (png_ptr == NULL) 977 return Z_STREAM_ERROR; 978 979 /* WARNING: this resets the window bits to the maximum! */ 980 return (inflateReset(&png_ptr->zstream)); 981 } 982 #endif /* READ */ 983 984 /* This function was added to libpng-1.0.7 */ 985 png_uint_32 PNGAPI 986 png_access_version_number(void) 987 { 988 /* Version of *.c files used when building libpng */ 989 return((png_uint_32)PNG_LIBPNG_VER); 990 } 991 992 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) 993 /* Ensure that png_ptr->zstream.msg holds some appropriate error message string. 994 * If it doesn't 'ret' is used to set it to something appropriate, even in cases 995 * like Z_OK or Z_STREAM_END where the error code is apparently a success code. 996 */ 997 void /* PRIVATE */ 998 png_zstream_error(png_structrp png_ptr, int ret) 999 { 1000 /* Translate 'ret' into an appropriate error string, priority is given to the 1001 * one in zstream if set. This always returns a string, even in cases like 1002 * Z_OK or Z_STREAM_END where the error code is a success code. 1003 */ 1004 if (png_ptr->zstream.msg == NULL) switch (ret) 1005 { 1006 default: 1007 case Z_OK: 1008 png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return code"); 1009 break; 1010 1011 case Z_STREAM_END: 1012 /* Normal exit */ 1013 png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected end of LZ stream"); 1014 break; 1015 1016 case Z_NEED_DICT: 1017 /* This means the deflate stream did not have a dictionary; this 1018 * indicates a bogus PNG. 1019 */ 1020 png_ptr->zstream.msg = PNGZ_MSG_CAST("missing LZ dictionary"); 1021 break; 1022 1023 case Z_ERRNO: 1024 /* gz APIs only: should not happen */ 1025 png_ptr->zstream.msg = PNGZ_MSG_CAST("zlib IO error"); 1026 break; 1027 1028 case Z_STREAM_ERROR: 1029 /* internal libpng error */ 1030 png_ptr->zstream.msg = PNGZ_MSG_CAST("bad parameters to zlib"); 1031 break; 1032 1033 case Z_DATA_ERROR: 1034 png_ptr->zstream.msg = PNGZ_MSG_CAST("damaged LZ stream"); 1035 break; 1036 1037 case Z_MEM_ERROR: 1038 png_ptr->zstream.msg = PNGZ_MSG_CAST("insufficient memory"); 1039 break; 1040 1041 case Z_BUF_ERROR: 1042 /* End of input or output; not a problem if the caller is doing 1043 * incremental read or write. 1044 */ 1045 png_ptr->zstream.msg = PNGZ_MSG_CAST("truncated"); 1046 break; 1047 1048 case Z_VERSION_ERROR: 1049 png_ptr->zstream.msg = PNGZ_MSG_CAST("unsupported zlib version"); 1050 break; 1051 1052 case PNG_UNEXPECTED_ZLIB_RETURN: 1053 /* Compile errors here mean that zlib now uses the value co-opted in 1054 * pngpriv.h for PNG_UNEXPECTED_ZLIB_RETURN; update the switch above 1055 * and change pngpriv.h. Note that this message is "... return", 1056 * whereas the default/Z_OK one is "... return code". 1057 */ 1058 png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return"); 1059 break; 1060 } 1061 } 1062 1063 /* png_convert_size: a PNGAPI but no longer in png.h, so deleted 1064 * at libpng 1.5.5! 1065 */ 1066 1067 /* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */ 1068 #ifdef PNG_GAMMA_SUPPORTED /* always set if COLORSPACE */ 1069 static int 1070 png_colorspace_check_gamma(png_const_structrp png_ptr, 1071 png_colorspacerp colorspace, png_fixed_point gAMA, int from) 1072 /* This is called to check a new gamma value against an existing one. The 1073 * routine returns false if the new gamma value should not be written. 1074 * 1075 * 'from' says where the new gamma value comes from: 1076 * 1077 * 0: the new gamma value is the libpng estimate for an ICC profile 1078 * 1: the new gamma value comes from a gAMA chunk 1079 * 2: the new gamma value comes from an sRGB chunk 1080 */ 1081 { 1082 png_fixed_point gtest; 1083 1084 if ((colorspace->flags & PNG_COLORSPACE_HAVE_GAMMA) != 0 && 1085 (png_muldiv(>est, colorspace->gamma, PNG_FP_1, gAMA) == 0 || 1086 png_gamma_significant(gtest) != 0)) 1087 { 1088 /* Either this is an sRGB image, in which case the calculated gamma 1089 * approximation should match, or this is an image with a profile and the 1090 * value libpng calculates for the gamma of the profile does not match the 1091 * value recorded in the file. The former, sRGB, case is an error, the 1092 * latter is just a warning. 1093 */ 1094 if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0 || from == 2) 1095 { 1096 png_chunk_report(png_ptr, "gamma value does not match sRGB", 1097 PNG_CHUNK_ERROR); 1098 /* Do not overwrite an sRGB value */ 1099 return from == 2; 1100 } 1101 1102 else /* sRGB tag not involved */ 1103 { 1104 png_chunk_report(png_ptr, "gamma value does not match libpng estimate", 1105 PNG_CHUNK_WARNING); 1106 return from == 1; 1107 } 1108 } 1109 1110 return 1; 1111 } 1112 1113 void /* PRIVATE */ 1114 png_colorspace_set_gamma(png_const_structrp png_ptr, 1115 png_colorspacerp colorspace, png_fixed_point gAMA) 1116 { 1117 /* Changed in libpng-1.5.4 to limit the values to ensure overflow can't 1118 * occur. Since the fixed point representation is asymmetrical it is 1119 * possible for 1/gamma to overflow the limit of 21474 and this means the 1120 * gamma value must be at least 5/100000 and hence at most 20000.0. For 1121 * safety the limits here are a little narrower. The values are 0.00016 to 1122 * 6250.0, which are truly ridiculous gamma values (and will produce 1123 * displays that are all black or all white.) 1124 * 1125 * In 1.6.0 this test replaces the ones in pngrutil.c, in the gAMA chunk 1126 * handling code, which only required the value to be >0. 1127 */ 1128 png_const_charp errmsg; 1129 1130 if (gAMA < 16 || gAMA > 625000000) 1131 errmsg = "gamma value out of range"; 1132 1133 # ifdef PNG_READ_gAMA_SUPPORTED 1134 /* Allow the application to set the gamma value more than once */ 1135 else if ((png_ptr->mode & PNG_IS_READ_STRUCT) != 0 && 1136 (colorspace->flags & PNG_COLORSPACE_FROM_gAMA) != 0) 1137 errmsg = "duplicate"; 1138 # endif 1139 1140 /* Do nothing if the colorspace is already invalid */ 1141 else if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0) 1142 return; 1143 1144 else 1145 { 1146 if (png_colorspace_check_gamma(png_ptr, colorspace, gAMA, 1147 1/*from gAMA*/) != 0) 1148 { 1149 /* Store this gamma value. */ 1150 colorspace->gamma = gAMA; 1151 colorspace->flags |= 1152 (PNG_COLORSPACE_HAVE_GAMMA | PNG_COLORSPACE_FROM_gAMA); 1153 } 1154 1155 /* At present if the check_gamma test fails the gamma of the colorspace is 1156 * not updated however the colorspace is not invalidated. This 1157 * corresponds to the case where the existing gamma comes from an sRGB 1158 * chunk or profile. An error message has already been output. 1159 */ 1160 return; 1161 } 1162 1163 /* Error exit - errmsg has been set. */ 1164 colorspace->flags |= PNG_COLORSPACE_INVALID; 1165 png_chunk_report(png_ptr, errmsg, PNG_CHUNK_WRITE_ERROR); 1166 } 1167 1168 void /* PRIVATE */ 1169 png_colorspace_sync_info(png_const_structrp png_ptr, png_inforp info_ptr) 1170 { 1171 if ((info_ptr->colorspace.flags & PNG_COLORSPACE_INVALID) != 0) 1172 { 1173 /* Everything is invalid */ 1174 info_ptr->valid &= ~(PNG_INFO_gAMA|PNG_INFO_cHRM|PNG_INFO_sRGB| 1175 PNG_INFO_iCCP); 1176 1177 # ifdef PNG_COLORSPACE_SUPPORTED 1178 /* Clean up the iCCP profile now if it won't be used. */ 1179 png_free_data(png_ptr, info_ptr, PNG_FREE_ICCP, -1/*not used*/); 1180 # else 1181 PNG_UNUSED(png_ptr) 1182 # endif 1183 } 1184 1185 else 1186 { 1187 # ifdef PNG_COLORSPACE_SUPPORTED 1188 /* Leave the INFO_iCCP flag set if the pngset.c code has already set 1189 * it; this allows a PNG to contain a profile which matches sRGB and 1190 * yet still have that profile retrievable by the application. 1191 */ 1192 if ((info_ptr->colorspace.flags & PNG_COLORSPACE_MATCHES_sRGB) != 0) 1193 info_ptr->valid |= PNG_INFO_sRGB; 1194 1195 else 1196 info_ptr->valid &= ~PNG_INFO_sRGB; 1197 1198 if ((info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0) 1199 info_ptr->valid |= PNG_INFO_cHRM; 1200 1201 else 1202 info_ptr->valid &= ~PNG_INFO_cHRM; 1203 # endif 1204 1205 if ((info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_GAMMA) != 0) 1206 info_ptr->valid |= PNG_INFO_gAMA; 1207 1208 else 1209 info_ptr->valid &= ~PNG_INFO_gAMA; 1210 } 1211 } 1212 1213 #ifdef PNG_READ_SUPPORTED 1214 void /* PRIVATE */ 1215 png_colorspace_sync(png_const_structrp png_ptr, png_inforp info_ptr) 1216 { 1217 if (info_ptr == NULL) /* reduce code size; check here not in the caller */ 1218 return; 1219 1220 info_ptr->colorspace = png_ptr->colorspace; 1221 png_colorspace_sync_info(png_ptr, info_ptr); 1222 } 1223 #endif 1224 #endif /* GAMMA */ 1225 1226 #ifdef PNG_COLORSPACE_SUPPORTED 1227 /* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for 1228 * cHRM, as opposed to using chromaticities. These internal APIs return 1229 * non-zero on a parameter error. The X, Y and Z values are required to be 1230 * positive and less than 1.0. 1231 */ 1232 static int 1233 png_xy_from_XYZ(png_xy *xy, const png_XYZ *XYZ) 1234 { 1235 png_int_32 d, dwhite, whiteX, whiteY; 1236 1237 d = XYZ->red_X + XYZ->red_Y + XYZ->red_Z; 1238 if (png_muldiv(&xy->redx, XYZ->red_X, PNG_FP_1, d) == 0) 1239 return 1; 1240 if (png_muldiv(&xy->redy, XYZ->red_Y, PNG_FP_1, d) == 0) 1241 return 1; 1242 dwhite = d; 1243 whiteX = XYZ->red_X; 1244 whiteY = XYZ->red_Y; 1245 1246 d = XYZ->green_X + XYZ->green_Y + XYZ->green_Z; 1247 if (png_muldiv(&xy->greenx, XYZ->green_X, PNG_FP_1, d) == 0) 1248 return 1; 1249 if (png_muldiv(&xy->greeny, XYZ->green_Y, PNG_FP_1, d) == 0) 1250 return 1; 1251 dwhite += d; 1252 whiteX += XYZ->green_X; 1253 whiteY += XYZ->green_Y; 1254 1255 d = XYZ->blue_X + XYZ->blue_Y + XYZ->blue_Z; 1256 if (png_muldiv(&xy->bluex, XYZ->blue_X, PNG_FP_1, d) == 0) 1257 return 1; 1258 if (png_muldiv(&xy->bluey, XYZ->blue_Y, PNG_FP_1, d) == 0) 1259 return 1; 1260 dwhite += d; 1261 whiteX += XYZ->blue_X; 1262 whiteY += XYZ->blue_Y; 1263 1264 /* The reference white is simply the sum of the end-point (X,Y,Z) vectors, 1265 * thus: 1266 */ 1267 if (png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite) == 0) 1268 return 1; 1269 if (png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite) == 0) 1270 return 1; 1271 1272 return 0; 1273 } 1274 1275 static int 1276 png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy) 1277 { 1278 png_fixed_point red_inverse, green_inverse, blue_scale; 1279 png_fixed_point left, right, denominator; 1280 1281 /* Check xy and, implicitly, z. Note that wide gamut color spaces typically 1282 * have end points with 0 tristimulus values (these are impossible end 1283 * points, but they are used to cover the possible colors). We check 1284 * xy->whitey against 5, not 0, to avoid a possible integer overflow. 1285 */ 1286 if (xy->redx < 0 || xy->redx > PNG_FP_1) return 1; 1287 if (xy->redy < 0 || xy->redy > PNG_FP_1-xy->redx) return 1; 1288 if (xy->greenx < 0 || xy->greenx > PNG_FP_1) return 1; 1289 if (xy->greeny < 0 || xy->greeny > PNG_FP_1-xy->greenx) return 1; 1290 if (xy->bluex < 0 || xy->bluex > PNG_FP_1) return 1; 1291 if (xy->bluey < 0 || xy->bluey > PNG_FP_1-xy->bluex) return 1; 1292 if (xy->whitex < 0 || xy->whitex > PNG_FP_1) return 1; 1293 if (xy->whitey < 5 || xy->whitey > PNG_FP_1-xy->whitex) return 1; 1294 1295 /* The reverse calculation is more difficult because the original tristimulus 1296 * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8 1297 * derived values were recorded in the cHRM chunk; 1298 * (red,green,blue,white)x(x,y). This loses one degree of freedom and 1299 * therefore an arbitrary ninth value has to be introduced to undo the 1300 * original transformations. 1301 * 1302 * Think of the original end-points as points in (X,Y,Z) space. The 1303 * chromaticity values (c) have the property: 1304 * 1305 * C 1306 * c = --------- 1307 * X + Y + Z 1308 * 1309 * For each c (x,y,z) from the corresponding original C (X,Y,Z). Thus the 1310 * three chromaticity values (x,y,z) for each end-point obey the 1311 * relationship: 1312 * 1313 * x + y + z = 1 1314 * 1315 * This describes the plane in (X,Y,Z) space that intersects each axis at the 1316 * value 1.0; call this the chromaticity plane. Thus the chromaticity 1317 * calculation has scaled each end-point so that it is on the x+y+z=1 plane 1318 * and chromaticity is the intersection of the vector from the origin to the 1319 * (X,Y,Z) value with the chromaticity plane. 1320 * 1321 * To fully invert the chromaticity calculation we would need the three 1322 * end-point scale factors, (red-scale, green-scale, blue-scale), but these 1323 * were not recorded. Instead we calculated the reference white (X,Y,Z) and 1324 * recorded the chromaticity of this. The reference white (X,Y,Z) would have 1325 * given all three of the scale factors since: 1326 * 1327 * color-C = color-c * color-scale 1328 * white-C = red-C + green-C + blue-C 1329 * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale 1330 * 1331 * But cHRM records only white-x and white-y, so we have lost the white scale 1332 * factor: 1333 * 1334 * white-C = white-c*white-scale 1335 * 1336 * To handle this the inverse transformation makes an arbitrary assumption 1337 * about white-scale: 1338 * 1339 * Assume: white-Y = 1.0 1340 * Hence: white-scale = 1/white-y 1341 * Or: red-Y + green-Y + blue-Y = 1.0 1342 * 1343 * Notice the last statement of the assumption gives an equation in three of 1344 * the nine values we want to calculate. 8 more equations come from the 1345 * above routine as summarised at the top above (the chromaticity 1346 * calculation): 1347 * 1348 * Given: color-x = color-X / (color-X + color-Y + color-Z) 1349 * Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0 1350 * 1351 * This is 9 simultaneous equations in the 9 variables "color-C" and can be 1352 * solved by Cramer's rule. Cramer's rule requires calculating 10 9x9 matrix 1353 * determinants, however this is not as bad as it seems because only 28 of 1354 * the total of 90 terms in the various matrices are non-zero. Nevertheless 1355 * Cramer's rule is notoriously numerically unstable because the determinant 1356 * calculation involves the difference of large, but similar, numbers. It is 1357 * difficult to be sure that the calculation is stable for real world values 1358 * and it is certain that it becomes unstable where the end points are close 1359 * together. 1360 * 1361 * So this code uses the perhaps slightly less optimal but more 1362 * understandable and totally obvious approach of calculating color-scale. 1363 * 1364 * This algorithm depends on the precision in white-scale and that is 1365 * (1/white-y), so we can immediately see that as white-y approaches 0 the 1366 * accuracy inherent in the cHRM chunk drops off substantially. 1367 * 1368 * libpng arithmetic: a simple inversion of the above equations 1369 * ------------------------------------------------------------ 1370 * 1371 * white_scale = 1/white-y 1372 * white-X = white-x * white-scale 1373 * white-Y = 1.0 1374 * white-Z = (1 - white-x - white-y) * white_scale 1375 * 1376 * white-C = red-C + green-C + blue-C 1377 * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale 1378 * 1379 * This gives us three equations in (red-scale,green-scale,blue-scale) where 1380 * all the coefficients are now known: 1381 * 1382 * red-x*red-scale + green-x*green-scale + blue-x*blue-scale 1383 * = white-x/white-y 1384 * red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1 1385 * red-z*red-scale + green-z*green-scale + blue-z*blue-scale 1386 * = (1 - white-x - white-y)/white-y 1387 * 1388 * In the last equation color-z is (1 - color-x - color-y) so we can add all 1389 * three equations together to get an alternative third: 1390 * 1391 * red-scale + green-scale + blue-scale = 1/white-y = white-scale 1392 * 1393 * So now we have a Cramer's rule solution where the determinants are just 1394 * 3x3 - far more tractible. Unfortunately 3x3 determinants still involve 1395 * multiplication of three coefficients so we can't guarantee to avoid 1396 * overflow in the libpng fixed point representation. Using Cramer's rule in 1397 * floating point is probably a good choice here, but it's not an option for 1398 * fixed point. Instead proceed to simplify the first two equations by 1399 * eliminating what is likely to be the largest value, blue-scale: 1400 * 1401 * blue-scale = white-scale - red-scale - green-scale 1402 * 1403 * Hence: 1404 * 1405 * (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale = 1406 * (white-x - blue-x)*white-scale 1407 * 1408 * (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale = 1409 * 1 - blue-y*white-scale 1410 * 1411 * And now we can trivially solve for (red-scale,green-scale): 1412 * 1413 * green-scale = 1414 * (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale 1415 * ----------------------------------------------------------- 1416 * green-x - blue-x 1417 * 1418 * red-scale = 1419 * 1 - blue-y*white-scale - (green-y - blue-y) * green-scale 1420 * --------------------------------------------------------- 1421 * red-y - blue-y 1422 * 1423 * Hence: 1424 * 1425 * red-scale = 1426 * ( (green-x - blue-x) * (white-y - blue-y) - 1427 * (green-y - blue-y) * (white-x - blue-x) ) / white-y 1428 * ------------------------------------------------------------------------- 1429 * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) 1430 * 1431 * green-scale = 1432 * ( (red-y - blue-y) * (white-x - blue-x) - 1433 * (red-x - blue-x) * (white-y - blue-y) ) / white-y 1434 * ------------------------------------------------------------------------- 1435 * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) 1436 * 1437 * Accuracy: 1438 * The input values have 5 decimal digits of accuracy. The values are all in 1439 * the range 0 < value < 1, so simple products are in the same range but may 1440 * need up to 10 decimal digits to preserve the original precision and avoid 1441 * underflow. Because we are using a 32-bit signed representation we cannot 1442 * match this; the best is a little over 9 decimal digits, less than 10. 1443 * 1444 * The approach used here is to preserve the maximum precision within the 1445 * signed representation. Because the red-scale calculation above uses the 1446 * difference between two products of values that must be in the range -1..+1 1447 * it is sufficient to divide the product by 7; ceil(100,000/32767*2). The 1448 * factor is irrelevant in the calculation because it is applied to both 1449 * numerator and denominator. 1450 * 1451 * Note that the values of the differences of the products of the 1452 * chromaticities in the above equations tend to be small, for example for 1453 * the sRGB chromaticities they are: 1454 * 1455 * red numerator: -0.04751 1456 * green numerator: -0.08788 1457 * denominator: -0.2241 (without white-y multiplication) 1458 * 1459 * The resultant Y coefficients from the chromaticities of some widely used 1460 * color space definitions are (to 15 decimal places): 1461 * 1462 * sRGB 1463 * 0.212639005871510 0.715168678767756 0.072192315360734 1464 * Kodak ProPhoto 1465 * 0.288071128229293 0.711843217810102 0.000085653960605 1466 * Adobe RGB 1467 * 0.297344975250536 0.627363566255466 0.075291458493998 1468 * Adobe Wide Gamut RGB 1469 * 0.258728243040113 0.724682314948566 0.016589442011321 1470 */ 1471 /* By the argument, above overflow should be impossible here. The return 1472 * value of 2 indicates an internal error to the caller. 1473 */ 1474 if (png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 7) == 0) 1475 return 2; 1476 if (png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 7) == 0) 1477 return 2; 1478 denominator = left - right; 1479 1480 /* Now find the red numerator. */ 1481 if (png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 7) == 0) 1482 return 2; 1483 if (png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 7) == 0) 1484 return 2; 1485 1486 /* Overflow is possible here and it indicates an extreme set of PNG cHRM 1487 * chunk values. This calculation actually returns the reciprocal of the 1488 * scale value because this allows us to delay the multiplication of white-y 1489 * into the denominator, which tends to produce a small number. 1490 */ 1491 if (png_muldiv(&red_inverse, xy->whitey, denominator, left-right) == 0 || 1492 red_inverse <= xy->whitey /* r+g+b scales = white scale */) 1493 return 1; 1494 1495 /* Similarly for green_inverse: */ 1496 if (png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 7) == 0) 1497 return 2; 1498 if (png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 7) == 0) 1499 return 2; 1500 if (png_muldiv(&green_inverse, xy->whitey, denominator, left-right) == 0 || 1501 green_inverse <= xy->whitey) 1502 return 1; 1503 1504 /* And the blue scale, the checks above guarantee this can't overflow but it 1505 * can still produce 0 for extreme cHRM values. 1506 */ 1507 blue_scale = png_reciprocal(xy->whitey) - png_reciprocal(red_inverse) - 1508 png_reciprocal(green_inverse); 1509 if (blue_scale <= 0) 1510 return 1; 1511 1512 1513 /* And fill in the png_XYZ: */ 1514 if (png_muldiv(&XYZ->red_X, xy->redx, PNG_FP_1, red_inverse) == 0) 1515 return 1; 1516 if (png_muldiv(&XYZ->red_Y, xy->redy, PNG_FP_1, red_inverse) == 0) 1517 return 1; 1518 if (png_muldiv(&XYZ->red_Z, PNG_FP_1 - xy->redx - xy->redy, PNG_FP_1, 1519 red_inverse) == 0) 1520 return 1; 1521 1522 if (png_muldiv(&XYZ->green_X, xy->greenx, PNG_FP_1, green_inverse) == 0) 1523 return 1; 1524 if (png_muldiv(&XYZ->green_Y, xy->greeny, PNG_FP_1, green_inverse) == 0) 1525 return 1; 1526 if (png_muldiv(&XYZ->green_Z, PNG_FP_1 - xy->greenx - xy->greeny, PNG_FP_1, 1527 green_inverse) == 0) 1528 return 1; 1529 1530 if (png_muldiv(&XYZ->blue_X, xy->bluex, blue_scale, PNG_FP_1) == 0) 1531 return 1; 1532 if (png_muldiv(&XYZ->blue_Y, xy->bluey, blue_scale, PNG_FP_1) == 0) 1533 return 1; 1534 if (png_muldiv(&XYZ->blue_Z, PNG_FP_1 - xy->bluex - xy->bluey, blue_scale, 1535 PNG_FP_1) == 0) 1536 return 1; 1537 1538 return 0; /*success*/ 1539 } 1540 1541 static int 1542 png_XYZ_normalize(png_XYZ *XYZ) 1543 { 1544 png_int_32 Y; 1545 1546 if (XYZ->red_Y < 0 || XYZ->green_Y < 0 || XYZ->blue_Y < 0 || 1547 XYZ->red_X < 0 || XYZ->green_X < 0 || XYZ->blue_X < 0 || 1548 XYZ->red_Z < 0 || XYZ->green_Z < 0 || XYZ->blue_Z < 0) 1549 return 1; 1550 1551 /* Normalize by scaling so the sum of the end-point Y values is PNG_FP_1. 1552 * IMPLEMENTATION NOTE: ANSI requires signed overflow not to occur, therefore 1553 * relying on addition of two positive values producing a negative one is not 1554 * safe. 1555 */ 1556 Y = XYZ->red_Y; 1557 if (0x7fffffff - Y < XYZ->green_X) 1558 return 1; 1559 Y += XYZ->green_Y; 1560 if (0x7fffffff - Y < XYZ->blue_X) 1561 return 1; 1562 Y += XYZ->blue_Y; 1563 1564 if (Y != PNG_FP_1) 1565 { 1566 if (png_muldiv(&XYZ->red_X, XYZ->red_X, PNG_FP_1, Y) == 0) 1567 return 1; 1568 if (png_muldiv(&XYZ->red_Y, XYZ->red_Y, PNG_FP_1, Y) == 0) 1569 return 1; 1570 if (png_muldiv(&XYZ->red_Z, XYZ->red_Z, PNG_FP_1, Y) == 0) 1571 return 1; 1572 1573 if (png_muldiv(&XYZ->green_X, XYZ->green_X, PNG_FP_1, Y) == 0) 1574 return 1; 1575 if (png_muldiv(&XYZ->green_Y, XYZ->green_Y, PNG_FP_1, Y) == 0) 1576 return 1; 1577 if (png_muldiv(&XYZ->green_Z, XYZ->green_Z, PNG_FP_1, Y) == 0) 1578 return 1; 1579 1580 if (png_muldiv(&XYZ->blue_X, XYZ->blue_X, PNG_FP_1, Y) == 0) 1581 return 1; 1582 if (png_muldiv(&XYZ->blue_Y, XYZ->blue_Y, PNG_FP_1, Y) == 0) 1583 return 1; 1584 if (png_muldiv(&XYZ->blue_Z, XYZ->blue_Z, PNG_FP_1, Y) == 0) 1585 return 1; 1586 } 1587 1588 return 0; 1589 } 1590 1591 static int 1592 png_colorspace_endpoints_match(const png_xy *xy1, const png_xy *xy2, int delta) 1593 { 1594 /* Allow an error of +/-0.01 (absolute value) on each chromaticity */ 1595 if (PNG_OUT_OF_RANGE(xy1->whitex, xy2->whitex,delta) || 1596 PNG_OUT_OF_RANGE(xy1->whitey, xy2->whitey,delta) || 1597 PNG_OUT_OF_RANGE(xy1->redx, xy2->redx, delta) || 1598 PNG_OUT_OF_RANGE(xy1->redy, xy2->redy, delta) || 1599 PNG_OUT_OF_RANGE(xy1->greenx, xy2->greenx,delta) || 1600 PNG_OUT_OF_RANGE(xy1->greeny, xy2->greeny,delta) || 1601 PNG_OUT_OF_RANGE(xy1->bluex, xy2->bluex, delta) || 1602 PNG_OUT_OF_RANGE(xy1->bluey, xy2->bluey, delta)) 1603 return 0; 1604 return 1; 1605 } 1606 1607 /* Added in libpng-1.6.0, a different check for the validity of a set of cHRM 1608 * chunk chromaticities. Earlier checks used to simply look for the overflow 1609 * condition (where the determinant of the matrix to solve for XYZ ends up zero 1610 * because the chromaticity values are not all distinct.) Despite this it is 1611 * theoretically possible to produce chromaticities that are apparently valid 1612 * but that rapidly degrade to invalid, potentially crashing, sets because of 1613 * arithmetic inaccuracies when calculations are performed on them. The new 1614 * check is to round-trip xy -> XYZ -> xy and then check that the result is 1615 * within a small percentage of the original. 1616 */ 1617 static int 1618 png_colorspace_check_xy(png_XYZ *XYZ, const png_xy *xy) 1619 { 1620 int result; 1621 png_xy xy_test; 1622 1623 /* As a side-effect this routine also returns the XYZ endpoints. */ 1624 result = png_XYZ_from_xy(XYZ, xy); 1625 if (result != 0) 1626 return result; 1627 1628 result = png_xy_from_XYZ(&xy_test, XYZ); 1629 if (result != 0) 1630 return result; 1631 1632 if (png_colorspace_endpoints_match(xy, &xy_test, 1633 5/*actually, the math is pretty accurate*/) != 0) 1634 return 0; 1635 1636 /* Too much slip */ 1637 return 1; 1638 } 1639 1640 /* This is the check going the other way. The XYZ is modified to normalize it 1641 * (another side-effect) and the xy chromaticities are returned. 1642 */ 1643 static int 1644 png_colorspace_check_XYZ(png_xy *xy, png_XYZ *XYZ) 1645 { 1646 int result; 1647 png_XYZ XYZtemp; 1648 1649 result = png_XYZ_normalize(XYZ); 1650 if (result != 0) 1651 return result; 1652 1653 result = png_xy_from_XYZ(xy, XYZ); 1654 if (result != 0) 1655 return result; 1656 1657 XYZtemp = *XYZ; 1658 return png_colorspace_check_xy(&XYZtemp, xy); 1659 } 1660 1661 /* Used to check for an endpoint match against sRGB */ 1662 static const png_xy sRGB_xy = /* From ITU-R BT.709-3 */ 1663 { 1664 /* color x y */ 1665 /* red */ 64000, 33000, 1666 /* green */ 30000, 60000, 1667 /* blue */ 15000, 6000, 1668 /* white */ 31270, 32900 1669 }; 1670 1671 static int 1672 png_colorspace_set_xy_and_XYZ(png_const_structrp png_ptr, 1673 png_colorspacerp colorspace, const png_xy *xy, const png_XYZ *XYZ, 1674 int preferred) 1675 { 1676 if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0) 1677 return 0; 1678 1679 /* The consistency check is performed on the chromaticities; this factors out 1680 * variations because of the normalization (or not) of the end point Y 1681 * values. 1682 */ 1683 if (preferred < 2 && 1684 (colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0) 1685 { 1686 /* The end points must be reasonably close to any we already have. The 1687 * following allows an error of up to +/-.001 1688 */ 1689 if (png_colorspace_endpoints_match(xy, &colorspace->end_points_xy, 1690 100) == 0) 1691 { 1692 colorspace->flags |= PNG_COLORSPACE_INVALID; 1693 png_benign_error(png_ptr, "inconsistent chromaticities"); 1694 return 0; /* failed */ 1695 } 1696 1697 /* Only overwrite with preferred values */ 1698 if (preferred == 0) 1699 return 1; /* ok, but no change */ 1700 } 1701 1702 colorspace->end_points_xy = *xy; 1703 colorspace->end_points_XYZ = *XYZ; 1704 colorspace->flags |= PNG_COLORSPACE_HAVE_ENDPOINTS; 1705 1706 /* The end points are normally quoted to two decimal digits, so allow +/-0.01 1707 * on this test. 1708 */ 1709 if (png_colorspace_endpoints_match(xy, &sRGB_xy, 1000) != 0) 1710 colorspace->flags |= PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB; 1711 1712 else 1713 colorspace->flags &= PNG_COLORSPACE_CANCEL( 1714 PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB); 1715 1716 return 2; /* ok and changed */ 1717 } 1718 1719 int /* PRIVATE */ 1720 png_colorspace_set_chromaticities(png_const_structrp png_ptr, 1721 png_colorspacerp colorspace, const png_xy *xy, int preferred) 1722 { 1723 /* We must check the end points to ensure they are reasonable - in the past 1724 * color management systems have crashed as a result of getting bogus 1725 * colorant values, while this isn't the fault of libpng it is the 1726 * responsibility of libpng because PNG carries the bomb and libpng is in a 1727 * position to protect against it. 1728 */ 1729 png_XYZ XYZ; 1730 1731 switch (png_colorspace_check_xy(&XYZ, xy)) 1732 { 1733 case 0: /* success */ 1734 return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, xy, &XYZ, 1735 preferred); 1736 1737 case 1: 1738 /* We can't invert the chromaticities so we can't produce value XYZ 1739 * values. Likely as not a color management system will fail too. 1740 */ 1741 colorspace->flags |= PNG_COLORSPACE_INVALID; 1742 png_benign_error(png_ptr, "invalid chromaticities"); 1743 break; 1744 1745 default: 1746 /* libpng is broken; this should be a warning but if it happens we 1747 * want error reports so for the moment it is an error. 1748 */ 1749 colorspace->flags |= PNG_COLORSPACE_INVALID; 1750 png_error(png_ptr, "internal error checking chromaticities"); 1751 } 1752 1753 return 0; /* failed */ 1754 } 1755 1756 int /* PRIVATE */ 1757 png_colorspace_set_endpoints(png_const_structrp png_ptr, 1758 png_colorspacerp colorspace, const png_XYZ *XYZ_in, int preferred) 1759 { 1760 png_XYZ XYZ = *XYZ_in; 1761 png_xy xy; 1762 1763 switch (png_colorspace_check_XYZ(&xy, &XYZ)) 1764 { 1765 case 0: 1766 return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, &xy, &XYZ, 1767 preferred); 1768 1769 case 1: 1770 /* End points are invalid. */ 1771 colorspace->flags |= PNG_COLORSPACE_INVALID; 1772 png_benign_error(png_ptr, "invalid end points"); 1773 break; 1774 1775 default: 1776 colorspace->flags |= PNG_COLORSPACE_INVALID; 1777 png_error(png_ptr, "internal error checking chromaticities"); 1778 } 1779 1780 return 0; /* failed */ 1781 } 1782 1783 #if defined(PNG_sRGB_SUPPORTED) || defined(PNG_iCCP_SUPPORTED) 1784 /* Error message generation */ 1785 static char 1786 png_icc_tag_char(png_uint_32 byte) 1787 { 1788 byte &= 0xff; 1789 if (byte >= 32 && byte <= 126) 1790 return (char)byte; 1791 else 1792 return '?'; 1793 } 1794 1795 static void 1796 png_icc_tag_name(char *name, png_uint_32 tag) 1797 { 1798 name[0] = '\''; 1799 name[1] = png_icc_tag_char(tag >> 24); 1800 name[2] = png_icc_tag_char(tag >> 16); 1801 name[3] = png_icc_tag_char(tag >> 8); 1802 name[4] = png_icc_tag_char(tag ); 1803 name[5] = '\''; 1804 } 1805 1806 static int 1807 is_ICC_signature_char(png_alloc_size_t it) 1808 { 1809 return it == 32 || (it >= 48 && it <= 57) || (it >= 65 && it <= 90) || 1810 (it >= 97 && it <= 122); 1811 } 1812 1813 static int 1814 is_ICC_signature(png_alloc_size_t it) 1815 { 1816 return is_ICC_signature_char(it >> 24) /* checks all the top bits */ && 1817 is_ICC_signature_char((it >> 16) & 0xff) && 1818 is_ICC_signature_char((it >> 8) & 0xff) && 1819 is_ICC_signature_char(it & 0xff); 1820 } 1821 1822 static int 1823 png_icc_profile_error(png_const_structrp png_ptr, png_colorspacerp colorspace, 1824 png_const_charp name, png_alloc_size_t value, png_const_charp reason) 1825 { 1826 size_t pos; 1827 char message[196]; /* see below for calculation */ 1828 1829 if (colorspace != NULL) 1830 colorspace->flags |= PNG_COLORSPACE_INVALID; 1831 1832 pos = png_safecat(message, (sizeof message), 0, "profile '"); /* 9 chars */ 1833 pos = png_safecat(message, pos+79, pos, name); /* Truncate to 79 chars */ 1834 pos = png_safecat(message, (sizeof message), pos, "': "); /* +2 = 90 */ 1835 if (is_ICC_signature(value) != 0) 1836 { 1837 /* So 'value' is at most 4 bytes and the following cast is safe */ 1838 png_icc_tag_name(message+pos, (png_uint_32)value); 1839 pos += 6; /* total +8; less than the else clause */ 1840 message[pos++] = ':'; 1841 message[pos++] = ' '; 1842 } 1843 # ifdef PNG_WARNINGS_SUPPORTED 1844 else 1845 { 1846 char number[PNG_NUMBER_BUFFER_SIZE]; /* +24 = 114 */ 1847 1848 pos = png_safecat(message, (sizeof message), pos, 1849 png_format_number(number, number+(sizeof number), 1850 PNG_NUMBER_FORMAT_x, value)); 1851 pos = png_safecat(message, (sizeof message), pos, "h: "); /* +2 = 116 */ 1852 } 1853 # endif 1854 /* The 'reason' is an arbitrary message, allow +79 maximum 195 */ 1855 pos = png_safecat(message, (sizeof message), pos, reason); 1856 PNG_UNUSED(pos) 1857 1858 /* This is recoverable, but make it unconditionally an app_error on write to 1859 * avoid writing invalid ICC profiles into PNG files (i.e., we handle them 1860 * on read, with a warning, but on write unless the app turns off 1861 * application errors the PNG won't be written.) 1862 */ 1863 png_chunk_report(png_ptr, message, 1864 (colorspace != NULL) ? PNG_CHUNK_ERROR : PNG_CHUNK_WRITE_ERROR); 1865 1866 return 0; 1867 } 1868 #endif /* sRGB || iCCP */ 1869 1870 #ifdef PNG_sRGB_SUPPORTED 1871 int /* PRIVATE */ 1872 png_colorspace_set_sRGB(png_const_structrp png_ptr, png_colorspacerp colorspace, 1873 int intent) 1874 { 1875 /* sRGB sets known gamma, end points and (from the chunk) intent. */ 1876 /* IMPORTANT: these are not necessarily the values found in an ICC profile 1877 * because ICC profiles store values adapted to a D50 environment; it is 1878 * expected that the ICC profile mediaWhitePointTag will be D50; see the 1879 * checks and code elsewhere to understand this better. 1880 * 1881 * These XYZ values, which are accurate to 5dp, produce rgb to gray 1882 * coefficients of (6968,23435,2366), which are reduced (because they add up 1883 * to 32769 not 32768) to (6968,23434,2366). These are the values that 1884 * libpng has traditionally used (and are the best values given the 15bit 1885 * algorithm used by the rgb to gray code.) 1886 */ 1887 static const png_XYZ sRGB_XYZ = /* D65 XYZ (*not* the D50 adapted values!) */ 1888 { 1889 /* color X Y Z */ 1890 /* red */ 41239, 21264, 1933, 1891 /* green */ 35758, 71517, 11919, 1892 /* blue */ 18048, 7219, 95053 1893 }; 1894 1895 /* Do nothing if the colorspace is already invalidated. */ 1896 if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0) 1897 return 0; 1898 1899 /* Check the intent, then check for existing settings. It is valid for the 1900 * PNG file to have cHRM or gAMA chunks along with sRGB, but the values must 1901 * be consistent with the correct values. If, however, this function is 1902 * called below because an iCCP chunk matches sRGB then it is quite 1903 * conceivable that an older app recorded incorrect gAMA and cHRM because of 1904 * an incorrect calculation based on the values in the profile - this does 1905 * *not* invalidate the profile (though it still produces an error, which can 1906 * be ignored.) 1907 */ 1908 if (intent < 0 || intent >= PNG_sRGB_INTENT_LAST) 1909 return png_icc_profile_error(png_ptr, colorspace, "sRGB", 1910 (png_alloc_size_t)intent, "invalid sRGB rendering intent"); 1911 1912 if ((colorspace->flags & PNG_COLORSPACE_HAVE_INTENT) != 0 && 1913 colorspace->rendering_intent != intent) 1914 return png_icc_profile_error(png_ptr, colorspace, "sRGB", 1915 (png_alloc_size_t)intent, "inconsistent rendering intents"); 1916 1917 if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0) 1918 { 1919 png_benign_error(png_ptr, "duplicate sRGB information ignored"); 1920 return 0; 1921 } 1922 1923 /* If the standard sRGB cHRM chunk does not match the one from the PNG file 1924 * warn but overwrite the value with the correct one. 1925 */ 1926 if ((colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0 && 1927 !png_colorspace_endpoints_match(&sRGB_xy, &colorspace->end_points_xy, 1928 100)) 1929 png_chunk_report(png_ptr, "cHRM chunk does not match sRGB", 1930 PNG_CHUNK_ERROR); 1931 1932 /* This check is just done for the error reporting - the routine always 1933 * returns true when the 'from' argument corresponds to sRGB (2). 1934 */ 1935 (void)png_colorspace_check_gamma(png_ptr, colorspace, PNG_GAMMA_sRGB_INVERSE, 1936 2/*from sRGB*/); 1937 1938 /* intent: bugs in GCC force 'int' to be used as the parameter type. */ 1939 colorspace->rendering_intent = (png_uint_16)intent; 1940 colorspace->flags |= PNG_COLORSPACE_HAVE_INTENT; 1941 1942 /* endpoints */ 1943 colorspace->end_points_xy = sRGB_xy; 1944 colorspace->end_points_XYZ = sRGB_XYZ; 1945 colorspace->flags |= 1946 (PNG_COLORSPACE_HAVE_ENDPOINTS|PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB); 1947 1948 /* gamma */ 1949 colorspace->gamma = PNG_GAMMA_sRGB_INVERSE; 1950 colorspace->flags |= PNG_COLORSPACE_HAVE_GAMMA; 1951 1952 /* Finally record that we have an sRGB profile */ 1953 colorspace->flags |= 1954 (PNG_COLORSPACE_MATCHES_sRGB|PNG_COLORSPACE_FROM_sRGB); 1955 1956 return 1; /* set */ 1957 } 1958 #endif /* sRGB */ 1959 1960 #ifdef PNG_iCCP_SUPPORTED 1961 /* Encoded value of D50 as an ICC XYZNumber. From the ICC 2010 spec the value 1962 * is XYZ(0.9642,1.0,0.8249), which scales to: 1963 * 1964 * (63189.8112, 65536, 54060.6464) 1965 */ 1966 static const png_byte D50_nCIEXYZ[12] = 1967 { 0x00, 0x00, 0xf6, 0xd6, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0xd3, 0x2d }; 1968 1969 static int /* bool */ 1970 icc_check_length(png_const_structrp png_ptr, png_colorspacerp colorspace, 1971 png_const_charp name, png_uint_32 profile_length) 1972 { 1973 if (profile_length < 132) 1974 return png_icc_profile_error(png_ptr, colorspace, name, profile_length, 1975 "too short"); 1976 return 1; 1977 } 1978 1979 #ifdef PNG_READ_iCCP_SUPPORTED 1980 int /* PRIVATE */ 1981 png_icc_check_length(png_const_structrp png_ptr, png_colorspacerp colorspace, 1982 png_const_charp name, png_uint_32 profile_length) 1983 { 1984 if (!icc_check_length(png_ptr, colorspace, name, profile_length)) 1985 return 0; 1986 1987 /* This needs to be here because the 'normal' check is in 1988 * png_decompress_chunk, yet this happens after the attempt to 1989 * png_malloc_base the required data. We only need this on read; on write 1990 * the caller supplies the profile buffer so libpng doesn't allocate it. See 1991 * the call to icc_check_length below (the write case). 1992 */ 1993 # ifdef PNG_SET_USER_LIMITS_SUPPORTED 1994 else if (png_ptr->user_chunk_malloc_max > 0 && 1995 png_ptr->user_chunk_malloc_max < profile_length) 1996 return png_icc_profile_error(png_ptr, colorspace, name, profile_length, 1997 "exceeds application limits"); 1998 # elif PNG_USER_CHUNK_MALLOC_MAX > 0 1999 else if (PNG_USER_CHUNK_MALLOC_MAX < profile_length) 2000 return png_icc_profile_error(png_ptr, colorspace, name, profile_length, 2001 "exceeds libpng limits"); 2002 # else /* !SET_USER_LIMITS */ 2003 /* This will get compiled out on all 32-bit and better systems. */ 2004 else if (PNG_SIZE_MAX < profile_length) 2005 return png_icc_profile_error(png_ptr, colorspace, name, profile_length, 2006 "exceeds system limits"); 2007 # endif /* !SET_USER_LIMITS */ 2008 2009 return 1; 2010 } 2011 #endif /* READ_iCCP */ 2012 2013 int /* PRIVATE */ 2014 png_icc_check_header(png_const_structrp png_ptr, png_colorspacerp colorspace, 2015 png_const_charp name, png_uint_32 profile_length, 2016 png_const_bytep profile/* first 132 bytes only */, int color_type) 2017 { 2018 png_uint_32 temp; 2019 2020 /* Length check; this cannot be ignored in this code because profile_length 2021 * is used later to check the tag table, so even if the profile seems over 2022 * long profile_length from the caller must be correct. The caller can fix 2023 * this up on read or write by just passing in the profile header length. 2024 */ 2025 temp = png_get_uint_32(profile); 2026 if (temp != profile_length) 2027 return png_icc_profile_error(png_ptr, colorspace, name, temp, 2028 "length does not match profile"); 2029 2030 temp = (png_uint_32) (*(profile+8)); 2031 if (temp > 3 && (profile_length & 3)) 2032 return png_icc_profile_error(png_ptr, colorspace, name, profile_length, 2033 "invalid length"); 2034 2035 temp = png_get_uint_32(profile+128); /* tag count: 12 bytes/tag */ 2036 if (temp > 357913930 || /* (2^32-4-132)/12: maximum possible tag count */ 2037 profile_length < 132+12*temp) /* truncated tag table */ 2038 return png_icc_profile_error(png_ptr, colorspace, name, temp, 2039 "tag count too large"); 2040 2041 /* The 'intent' must be valid or we can't store it, ICC limits the intent to 2042 * 16 bits. 2043 */ 2044 temp = png_get_uint_32(profile+64); 2045 if (temp >= 0xffff) /* The ICC limit */ 2046 return png_icc_profile_error(png_ptr, colorspace, name, temp, 2047 "invalid rendering intent"); 2048 2049 /* This is just a warning because the profile may be valid in future 2050 * versions. 2051 */ 2052 if (temp >= PNG_sRGB_INTENT_LAST) 2053 (void)png_icc_profile_error(png_ptr, NULL, name, temp, 2054 "intent outside defined range"); 2055 2056 /* At this point the tag table can't be checked because it hasn't necessarily 2057 * been loaded; however, various header fields can be checked. These checks 2058 * are for values permitted by the PNG spec in an ICC profile; the PNG spec 2059 * restricts the profiles that can be passed in an iCCP chunk (they must be 2060 * appropriate to processing PNG data!) 2061 */ 2062 2063 /* Data checks (could be skipped). These checks must be independent of the 2064 * version number; however, the version number doesn't accommodate changes in 2065 * the header fields (just the known tags and the interpretation of the 2066 * data.) 2067 */ 2068 temp = png_get_uint_32(profile+36); /* signature 'ascp' */ 2069 if (temp != 0x61637370) 2070 return png_icc_profile_error(png_ptr, colorspace, name, temp, 2071 "invalid signature"); 2072 2073 /* Currently the PCS illuminant/adopted white point (the computational 2074 * white point) are required to be D50, 2075 * however the profile contains a record of the illuminant so perhaps ICC 2076 * expects to be able to change this in the future (despite the rationale in 2077 * the introduction for using a fixed PCS adopted white.) Consequently the 2078 * following is just a warning. 2079 */ 2080 if (memcmp(profile+68, D50_nCIEXYZ, 12) != 0) 2081 (void)png_icc_profile_error(png_ptr, NULL, name, 0/*no tag value*/, 2082 "PCS illuminant is not D50"); 2083 2084 /* The PNG spec requires this: 2085 * "If the iCCP chunk is present, the image samples conform to the colour 2086 * space represented by the embedded ICC profile as defined by the 2087 * International Color Consortium [ICC]. The colour space of the ICC profile 2088 * shall be an RGB colour space for colour images (PNG colour types 2, 3, and 2089 * 6), or a greyscale colour space for greyscale images (PNG colour types 0 2090 * and 4)." 2091 * 2092 * This checking code ensures the embedded profile (on either read or write) 2093 * conforms to the specification requirements. Notice that an ICC 'gray' 2094 * color-space profile contains the information to transform the monochrome 2095 * data to XYZ or L*a*b (according to which PCS the profile uses) and this 2096 * should be used in preference to the standard libpng K channel replication 2097 * into R, G and B channels. 2098 * 2099 * Previously it was suggested that an RGB profile on grayscale data could be 2100 * handled. However it it is clear that using an RGB profile in this context 2101 * must be an error - there is no specification of what it means. Thus it is 2102 * almost certainly more correct to ignore the profile. 2103 */ 2104 temp = png_get_uint_32(profile+16); /* data colour space field */ 2105 switch (temp) 2106 { 2107 case 0x52474220: /* 'RGB ' */ 2108 if ((color_type & PNG_COLOR_MASK_COLOR) == 0) 2109 return png_icc_profile_error(png_ptr, colorspace, name, temp, 2110 "RGB color space not permitted on grayscale PNG"); 2111 break; 2112 2113 case 0x47524159: /* 'GRAY' */ 2114 if ((color_type & PNG_COLOR_MASK_COLOR) != 0) 2115 return png_icc_profile_error(png_ptr, colorspace, name, temp, 2116 "Gray color space not permitted on RGB PNG"); 2117 break; 2118 2119 default: 2120 return png_icc_profile_error(png_ptr, colorspace, name, temp, 2121 "invalid ICC profile color space"); 2122 } 2123 2124 /* It is up to the application to check that the profile class matches the 2125 * application requirements; the spec provides no guidance, but it's pretty 2126 * weird if the profile is not scanner ('scnr'), monitor ('mntr'), printer 2127 * ('prtr') or 'spac' (for generic color spaces). Issue a warning in these 2128 * cases. Issue an error for device link or abstract profiles - these don't 2129 * contain the records necessary to transform the color-space to anything 2130 * other than the target device (and not even that for an abstract profile). 2131 * Profiles of these classes may not be embedded in images. 2132 */ 2133 temp = png_get_uint_32(profile+12); /* profile/device class */ 2134 switch (temp) 2135 { 2136 case 0x73636e72: /* 'scnr' */ 2137 case 0x6d6e7472: /* 'mntr' */ 2138 case 0x70727472: /* 'prtr' */ 2139 case 0x73706163: /* 'spac' */ 2140 /* All supported */ 2141 break; 2142 2143 case 0x61627374: /* 'abst' */ 2144 /* May not be embedded in an image */ 2145 return png_icc_profile_error(png_ptr, colorspace, name, temp, 2146 "invalid embedded Abstract ICC profile"); 2147 2148 case 0x6c696e6b: /* 'link' */ 2149 /* DeviceLink profiles cannot be interpreted in a non-device specific 2150 * fashion, if an app uses the AToB0Tag in the profile the results are 2151 * undefined unless the result is sent to the intended device, 2152 * therefore a DeviceLink profile should not be found embedded in a 2153 * PNG. 2154 */ 2155 return png_icc_profile_error(png_ptr, colorspace, name, temp, 2156 "unexpected DeviceLink ICC profile class"); 2157 2158 case 0x6e6d636c: /* 'nmcl' */ 2159 /* A NamedColor profile is also device specific, however it doesn't 2160 * contain an AToB0 tag that is open to misinterpretation. Almost 2161 * certainly it will fail the tests below. 2162 */ 2163 (void)png_icc_profile_error(png_ptr, NULL, name, temp, 2164 "unexpected NamedColor ICC profile class"); 2165 break; 2166 2167 default: 2168 /* To allow for future enhancements to the profile accept unrecognized 2169 * profile classes with a warning, these then hit the test below on the 2170 * tag content to ensure they are backward compatible with one of the 2171 * understood profiles. 2172 */ 2173 (void)png_icc_profile_error(png_ptr, NULL, name, temp, 2174 "unrecognized ICC profile class"); 2175 break; 2176 } 2177 2178 /* For any profile other than a device link one the PCS must be encoded 2179 * either in XYZ or Lab. 2180 */ 2181 temp = png_get_uint_32(profile+20); 2182 switch (temp) 2183 { 2184 case 0x58595a20: /* 'XYZ ' */ 2185 case 0x4c616220: /* 'Lab ' */ 2186 break; 2187 2188 default: 2189 return png_icc_profile_error(png_ptr, colorspace, name, temp, 2190 "unexpected ICC PCS encoding"); 2191 } 2192 2193 return 1; 2194 } 2195 2196 int /* PRIVATE */ 2197 png_icc_check_tag_table(png_const_structrp png_ptr, png_colorspacerp colorspace, 2198 png_const_charp name, png_uint_32 profile_length, 2199 png_const_bytep profile /* header plus whole tag table */) 2200 { 2201 png_uint_32 tag_count = png_get_uint_32(profile+128); 2202 png_uint_32 itag; 2203 png_const_bytep tag = profile+132; /* The first tag */ 2204 2205 /* First scan all the tags in the table and add bits to the icc_info value 2206 * (temporarily in 'tags'). 2207 */ 2208 for (itag=0; itag < tag_count; ++itag, tag += 12) 2209 { 2210 png_uint_32 tag_id = png_get_uint_32(tag+0); 2211 png_uint_32 tag_start = png_get_uint_32(tag+4); /* must be aligned */ 2212 png_uint_32 tag_length = png_get_uint_32(tag+8);/* not padded */ 2213 2214 /* The ICC specification does not exclude zero length tags, therefore the 2215 * start might actually be anywhere if there is no data, but this would be 2216 * a clear abuse of the intent of the standard so the start is checked for 2217 * being in range. All defined tag types have an 8 byte header - a 4 byte 2218 * type signature then 0. 2219 */ 2220 2221 /* This is a hard error; potentially it can cause read outside the 2222 * profile. 2223 */ 2224 if (tag_start > profile_length || tag_length > profile_length - tag_start) 2225 return png_icc_profile_error(png_ptr, colorspace, name, tag_id, 2226 "ICC profile tag outside profile"); 2227 2228 if ((tag_start & 3) != 0) 2229 { 2230 /* CNHP730S.icc shipped with Microsoft Windows 64 violates this; it is 2231 * only a warning here because libpng does not care about the 2232 * alignment. 2233 */ 2234 (void)png_icc_profile_error(png_ptr, NULL, name, tag_id, 2235 "ICC profile tag start not a multiple of 4"); 2236 } 2237 } 2238 2239 return 1; /* success, maybe with warnings */ 2240 } 2241 2242 #ifdef PNG_sRGB_SUPPORTED 2243 #if PNG_sRGB_PROFILE_CHECKS >= 0 2244 /* Information about the known ICC sRGB profiles */ 2245 static const struct 2246 { 2247 png_uint_32 adler, crc, length; 2248 png_uint_32 md5[4]; 2249 png_byte have_md5; 2250 png_byte is_broken; 2251 png_uint_16 intent; 2252 2253 # define PNG_MD5(a,b,c,d) { a, b, c, d }, (a!=0)||(b!=0)||(c!=0)||(d!=0) 2254 # define PNG_ICC_CHECKSUM(adler, crc, md5, intent, broke, date, length, fname)\ 2255 { adler, crc, length, md5, broke, intent }, 2256 2257 } png_sRGB_checks[] = 2258 { 2259 /* This data comes from contrib/tools/checksum-icc run on downloads of 2260 * all four ICC sRGB profiles from www.color.org. 2261 */ 2262 /* adler32, crc32, MD5[4], intent, date, length, file-name */ 2263 PNG_ICC_CHECKSUM(0x0a3fd9f6, 0x3b8772b9, 2264 PNG_MD5(0x29f83dde, 0xaff255ae, 0x7842fae4, 0xca83390d), 0, 0, 2265 "2009/03/27 21:36:31", 3048, "sRGB_IEC61966-2-1_black_scaled.icc") 2266 2267 /* ICC sRGB v2 perceptual no black-compensation: */ 2268 PNG_ICC_CHECKSUM(0x4909e5e1, 0x427ebb21, 2269 PNG_MD5(0xc95bd637, 0xe95d8a3b, 0x0df38f99, 0xc1320389), 1, 0, 2270 "2009/03/27 21:37:45", 3052, "sRGB_IEC61966-2-1_no_black_scaling.icc") 2271 2272 PNG_ICC_CHECKSUM(0xfd2144a1, 0x306fd8ae, 2273 PNG_MD5(0xfc663378, 0x37e2886b, 0xfd72e983, 0x8228f1b8), 0, 0, 2274 "2009/08/10 17:28:01", 60988, "sRGB_v4_ICC_preference_displayclass.icc") 2275 2276 /* ICC sRGB v4 perceptual */ 2277 PNG_ICC_CHECKSUM(0x209c35d2, 0xbbef7812, 2278 PNG_MD5(0x34562abf, 0x994ccd06, 0x6d2c5721, 0xd0d68c5d), 0, 0, 2279 "2007/07/25 00:05:37", 60960, "sRGB_v4_ICC_preference.icc") 2280 2281 /* The following profiles have no known MD5 checksum. If there is a match 2282 * on the (empty) MD5 the other fields are used to attempt a match and 2283 * a warning is produced. The first two of these profiles have a 'cprt' tag 2284 * which suggests that they were also made by Hewlett Packard. 2285 */ 2286 PNG_ICC_CHECKSUM(0xa054d762, 0x5d5129ce, 2287 PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 0, 2288 "2004/07/21 18:57:42", 3024, "sRGB_IEC61966-2-1_noBPC.icc") 2289 2290 /* This is a 'mntr' (display) profile with a mediaWhitePointTag that does not 2291 * match the D50 PCS illuminant in the header (it is in fact the D65 values, 2292 * so the white point is recorded as the un-adapted value.) The profiles 2293 * below only differ in one byte - the intent - and are basically the same as 2294 * the previous profile except for the mediaWhitePointTag error and a missing 2295 * chromaticAdaptationTag. 2296 */ 2297 PNG_ICC_CHECKSUM(0xf784f3fb, 0x182ea552, 2298 PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 0, 1/*broken*/, 2299 "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 perceptual") 2300 2301 PNG_ICC_CHECKSUM(0x0398f3fc, 0xf29e526d, 2302 PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 1/*broken*/, 2303 "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 media-relative") 2304 }; 2305 2306 static int 2307 png_compare_ICC_profile_with_sRGB(png_const_structrp png_ptr, 2308 png_const_bytep profile, uLong adler) 2309 { 2310 /* The quick check is to verify just the MD5 signature and trust the 2311 * rest of the data. Because the profile has already been verified for 2312 * correctness this is safe. png_colorspace_set_sRGB will check the 'intent' 2313 * field too, so if the profile has been edited with an intent not defined 2314 * by sRGB (but maybe defined by a later ICC specification) the read of 2315 * the profile will fail at that point. 2316 */ 2317 2318 png_uint_32 length = 0; 2319 png_uint_32 intent = 0x10000; /* invalid */ 2320 #if PNG_sRGB_PROFILE_CHECKS > 1 2321 uLong crc = 0; /* the value for 0 length data */ 2322 #endif 2323 unsigned int i; 2324 2325 #ifdef PNG_SET_OPTION_SUPPORTED 2326 /* First see if PNG_SKIP_sRGB_CHECK_PROFILE has been set to "on" */ 2327 if (((png_ptr->options >> PNG_SKIP_sRGB_CHECK_PROFILE) & 3) == 2328 PNG_OPTION_ON) 2329 return 0; 2330 #endif 2331 2332 for (i=0; i < (sizeof png_sRGB_checks) / (sizeof png_sRGB_checks[0]); ++i) 2333 { 2334 if (png_get_uint_32(profile+84) == png_sRGB_checks[i].md5[0] && 2335 png_get_uint_32(profile+88) == png_sRGB_checks[i].md5[1] && 2336 png_get_uint_32(profile+92) == png_sRGB_checks[i].md5[2] && 2337 png_get_uint_32(profile+96) == png_sRGB_checks[i].md5[3]) 2338 { 2339 /* This may be one of the old HP profiles without an MD5, in that 2340 * case we can only use the length and Adler32 (note that these 2341 * are not used by default if there is an MD5!) 2342 */ 2343 # if PNG_sRGB_PROFILE_CHECKS == 0 2344 if (png_sRGB_checks[i].have_md5 != 0) 2345 return 1+png_sRGB_checks[i].is_broken; 2346 # endif 2347 2348 /* Profile is unsigned or more checks have been configured in. */ 2349 if (length == 0) 2350 { 2351 length = png_get_uint_32(profile); 2352 intent = png_get_uint_32(profile+64); 2353 } 2354 2355 /* Length *and* intent must match */ 2356 if (length == (png_uint_32) png_sRGB_checks[i].length && 2357 intent == (png_uint_32) png_sRGB_checks[i].intent) 2358 { 2359 /* Now calculate the adler32 if not done already. */ 2360 if (adler == 0) 2361 { 2362 adler = adler32(0, NULL, 0); 2363 adler = adler32(adler, profile, length); 2364 } 2365 2366 if (adler == png_sRGB_checks[i].adler) 2367 { 2368 /* These basic checks suggest that the data has not been 2369 * modified, but if the check level is more than 1 perform 2370 * our own crc32 checksum on the data. 2371 */ 2372 # if PNG_sRGB_PROFILE_CHECKS > 1 2373 if (crc == 0) 2374 { 2375 crc = crc32(0, NULL, 0); 2376 crc = crc32(crc, profile, length); 2377 } 2378 2379 /* So this check must pass for the 'return' below to happen. 2380 */ 2381 if (crc == png_sRGB_checks[i].crc) 2382 # endif 2383 { 2384 if (png_sRGB_checks[i].is_broken != 0) 2385 { 2386 /* These profiles are known to have bad data that may cause 2387 * problems if they are used, therefore attempt to 2388 * discourage their use, skip the 'have_md5' warning below, 2389 * which is made irrelevant by this error. 2390 */ 2391 png_chunk_report(png_ptr, "known incorrect sRGB profile", 2392 PNG_CHUNK_ERROR); 2393 } 2394 2395 /* Warn that this being done; this isn't even an error since 2396 * the profile is perfectly valid, but it would be nice if 2397 * people used the up-to-date ones. 2398 */ 2399 else if (png_sRGB_checks[i].have_md5 == 0) 2400 { 2401 png_chunk_report(png_ptr, 2402 "out-of-date sRGB profile with no signature", 2403 PNG_CHUNK_WARNING); 2404 } 2405 2406 return 1+png_sRGB_checks[i].is_broken; 2407 } 2408 } 2409 2410 # if PNG_sRGB_PROFILE_CHECKS > 0 2411 /* The signature matched, but the profile had been changed in some 2412 * way. This probably indicates a data error or uninformed hacking. 2413 * Fall through to "no match". 2414 */ 2415 png_chunk_report(png_ptr, 2416 "Not recognizing known sRGB profile that has been edited", 2417 PNG_CHUNK_WARNING); 2418 break; 2419 # endif 2420 } 2421 } 2422 } 2423 2424 return 0; /* no match */ 2425 } 2426 2427 void /* PRIVATE */ 2428 png_icc_set_sRGB(png_const_structrp png_ptr, 2429 png_colorspacerp colorspace, png_const_bytep profile, uLong adler) 2430 { 2431 /* Is this profile one of the known ICC sRGB profiles? If it is, just set 2432 * the sRGB information. 2433 */ 2434 if (png_compare_ICC_profile_with_sRGB(png_ptr, profile, adler) != 0) 2435 (void)png_colorspace_set_sRGB(png_ptr, colorspace, 2436 (int)/*already checked*/png_get_uint_32(profile+64)); 2437 } 2438 #endif /* PNG_sRGB_PROFILE_CHECKS >= 0 */ 2439 #endif /* sRGB */ 2440 2441 int /* PRIVATE */ 2442 png_colorspace_set_ICC(png_const_structrp png_ptr, png_colorspacerp colorspace, 2443 png_const_charp name, png_uint_32 profile_length, png_const_bytep profile, 2444 int color_type) 2445 { 2446 if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0) 2447 return 0; 2448 2449 if (icc_check_length(png_ptr, colorspace, name, profile_length) != 0 && 2450 png_icc_check_header(png_ptr, colorspace, name, profile_length, profile, 2451 color_type) != 0 && 2452 png_icc_check_tag_table(png_ptr, colorspace, name, profile_length, 2453 profile) != 0) 2454 { 2455 # if defined(PNG_sRGB_SUPPORTED) && PNG_sRGB_PROFILE_CHECKS >= 0 2456 /* If no sRGB support, don't try storing sRGB information */ 2457 png_icc_set_sRGB(png_ptr, colorspace, profile, 0); 2458 # endif 2459 return 1; 2460 } 2461 2462 /* Failure case */ 2463 return 0; 2464 } 2465 #endif /* iCCP */ 2466 2467 #ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED 2468 void /* PRIVATE */ 2469 png_colorspace_set_rgb_coefficients(png_structrp png_ptr) 2470 { 2471 /* Set the rgb_to_gray coefficients from the colorspace. */ 2472 if (png_ptr->rgb_to_gray_coefficients_set == 0 && 2473 (png_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0) 2474 { 2475 /* png_set_background has not been called, get the coefficients from the Y 2476 * values of the colorspace colorants. 2477 */ 2478 png_fixed_point r = png_ptr->colorspace.end_points_XYZ.red_Y; 2479 png_fixed_point g = png_ptr->colorspace.end_points_XYZ.green_Y; 2480 png_fixed_point b = png_ptr->colorspace.end_points_XYZ.blue_Y; 2481 png_fixed_point total = r+g+b; 2482 2483 if (total > 0 && 2484 r >= 0 && png_muldiv(&r, r, 32768, total) && r >= 0 && r <= 32768 && 2485 g >= 0 && png_muldiv(&g, g, 32768, total) && g >= 0 && g <= 32768 && 2486 b >= 0 && png_muldiv(&b, b, 32768, total) && b >= 0 && b <= 32768 && 2487 r+g+b <= 32769) 2488 { 2489 /* We allow 0 coefficients here. r+g+b may be 32769 if two or 2490 * all of the coefficients were rounded up. Handle this by 2491 * reducing the *largest* coefficient by 1; this matches the 2492 * approach used for the default coefficients in pngrtran.c 2493 */ 2494 int add = 0; 2495 2496 if (r+g+b > 32768) 2497 add = -1; 2498 else if (r+g+b < 32768) 2499 add = 1; 2500 2501 if (add != 0) 2502 { 2503 if (g >= r && g >= b) 2504 g += add; 2505 else if (r >= g && r >= b) 2506 r += add; 2507 else 2508 b += add; 2509 } 2510 2511 /* Check for an internal error. */ 2512 if (r+g+b != 32768) 2513 png_error(png_ptr, 2514 "internal error handling cHRM coefficients"); 2515 2516 else 2517 { 2518 png_ptr->rgb_to_gray_red_coeff = (png_uint_16)r; 2519 png_ptr->rgb_to_gray_green_coeff = (png_uint_16)g; 2520 } 2521 } 2522 2523 /* This is a png_error at present even though it could be ignored - 2524 * it should never happen, but it is important that if it does, the 2525 * bug is fixed. 2526 */ 2527 else 2528 png_error(png_ptr, "internal error handling cHRM->XYZ"); 2529 } 2530 } 2531 #endif /* READ_RGB_TO_GRAY */ 2532 2533 #endif /* COLORSPACE */ 2534 2535 #ifdef __GNUC__ 2536 /* This exists solely to work round a warning from GNU C. */ 2537 static int /* PRIVATE */ 2538 png_gt(size_t a, size_t b) 2539 { 2540 return a > b; 2541 } 2542 #else 2543 # define png_gt(a,b) ((a) > (b)) 2544 #endif 2545 2546 void /* PRIVATE */ 2547 png_check_IHDR(png_const_structrp png_ptr, 2548 png_uint_32 width, png_uint_32 height, int bit_depth, 2549 int color_type, int interlace_type, int compression_type, 2550 int filter_type) 2551 { 2552 int error = 0; 2553 2554 /* Check for width and height valid values */ 2555 if (width == 0) 2556 { 2557 png_warning(png_ptr, "Image width is zero in IHDR"); 2558 error = 1; 2559 } 2560 2561 if (width > PNG_UINT_31_MAX) 2562 { 2563 png_warning(png_ptr, "Invalid image width in IHDR"); 2564 error = 1; 2565 } 2566 2567 if (png_gt(((width + 7) & (~7U)), 2568 ((PNG_SIZE_MAX 2569 - 48 /* big_row_buf hack */ 2570 - 1) /* filter byte */ 2571 / 8) /* 8-byte RGBA pixels */ 2572 - 1)) /* extra max_pixel_depth pad */ 2573 { 2574 /* The size of the row must be within the limits of this architecture. 2575 * Because the read code can perform arbitrary transformations the 2576 * maximum size is checked here. Because the code in png_read_start_row 2577 * adds extra space "for safety's sake" in several places a conservative 2578 * limit is used here. 2579 * 2580 * NOTE: it would be far better to check the size that is actually used, 2581 * but the effect in the real world is minor and the changes are more 2582 * extensive, therefore much more dangerous and much more difficult to 2583 * write in a way that avoids compiler warnings. 2584 */ 2585 png_warning(png_ptr, "Image width is too large for this architecture"); 2586 error = 1; 2587 } 2588 2589 #ifdef PNG_SET_USER_LIMITS_SUPPORTED 2590 if (width > png_ptr->user_width_max) 2591 #else 2592 if (width > PNG_USER_WIDTH_MAX) 2593 #endif 2594 { 2595 png_warning(png_ptr, "Image width exceeds user limit in IHDR"); 2596 error = 1; 2597 } 2598 2599 if (height == 0) 2600 { 2601 png_warning(png_ptr, "Image height is zero in IHDR"); 2602 error = 1; 2603 } 2604 2605 if (height > PNG_UINT_31_MAX) 2606 { 2607 png_warning(png_ptr, "Invalid image height in IHDR"); 2608 error = 1; 2609 } 2610 2611 #ifdef PNG_SET_USER_LIMITS_SUPPORTED 2612 if (height > png_ptr->user_height_max) 2613 #else 2614 if (height > PNG_USER_HEIGHT_MAX) 2615 #endif 2616 { 2617 png_warning(png_ptr, "Image height exceeds user limit in IHDR"); 2618 error = 1; 2619 } 2620 2621 /* Check other values */ 2622 if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 && 2623 bit_depth != 8 && bit_depth != 16) 2624 { 2625 png_warning(png_ptr, "Invalid bit depth in IHDR"); 2626 error = 1; 2627 } 2628 2629 if (color_type < 0 || color_type == 1 || 2630 color_type == 5 || color_type > 6) 2631 { 2632 png_warning(png_ptr, "Invalid color type in IHDR"); 2633 error = 1; 2634 } 2635 2636 if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) || 2637 ((color_type == PNG_COLOR_TYPE_RGB || 2638 color_type == PNG_COLOR_TYPE_GRAY_ALPHA || 2639 color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8)) 2640 { 2641 png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR"); 2642 error = 1; 2643 } 2644 2645 if (interlace_type >= PNG_INTERLACE_LAST) 2646 { 2647 png_warning(png_ptr, "Unknown interlace method in IHDR"); 2648 error = 1; 2649 } 2650 2651 if (compression_type != PNG_COMPRESSION_TYPE_BASE) 2652 { 2653 png_warning(png_ptr, "Unknown compression method in IHDR"); 2654 error = 1; 2655 } 2656 2657 #ifdef PNG_MNG_FEATURES_SUPPORTED 2658 /* Accept filter_method 64 (intrapixel differencing) only if 2659 * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and 2660 * 2. Libpng did not read a PNG signature (this filter_method is only 2661 * used in PNG datastreams that are embedded in MNG datastreams) and 2662 * 3. The application called png_permit_mng_features with a mask that 2663 * included PNG_FLAG_MNG_FILTER_64 and 2664 * 4. The filter_method is 64 and 2665 * 5. The color_type is RGB or RGBA 2666 */ 2667 if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0 && 2668 png_ptr->mng_features_permitted != 0) 2669 png_warning(png_ptr, "MNG features are not allowed in a PNG datastream"); 2670 2671 if (filter_type != PNG_FILTER_TYPE_BASE) 2672 { 2673 if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) != 0 && 2674 (filter_type == PNG_INTRAPIXEL_DIFFERENCING) && 2675 ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) && 2676 (color_type == PNG_COLOR_TYPE_RGB || 2677 color_type == PNG_COLOR_TYPE_RGB_ALPHA))) 2678 { 2679 png_warning(png_ptr, "Unknown filter method in IHDR"); 2680 error = 1; 2681 } 2682 2683 if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0) 2684 { 2685 png_warning(png_ptr, "Invalid filter method in IHDR"); 2686 error = 1; 2687 } 2688 } 2689 2690 #else 2691 if (filter_type != PNG_FILTER_TYPE_BASE) 2692 { 2693 png_warning(png_ptr, "Unknown filter method in IHDR"); 2694 error = 1; 2695 } 2696 #endif 2697 2698 if (error == 1) 2699 png_error(png_ptr, "Invalid IHDR data"); 2700 } 2701 2702 #if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED) 2703 /* ASCII to fp functions */ 2704 /* Check an ASCII formatted floating point value, see the more detailed 2705 * comments in pngpriv.h 2706 */ 2707 /* The following is used internally to preserve the sticky flags */ 2708 #define png_fp_add(state, flags) ((state) |= (flags)) 2709 #define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY)) 2710 2711 int /* PRIVATE */ 2712 png_check_fp_number(png_const_charp string, size_t size, int *statep, 2713 size_t *whereami) 2714 { 2715 int state = *statep; 2716 size_t i = *whereami; 2717 2718 while (i < size) 2719 { 2720 int type; 2721 /* First find the type of the next character */ 2722 switch (string[i]) 2723 { 2724 case 43: type = PNG_FP_SAW_SIGN; break; 2725 case 45: type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break; 2726 case 46: type = PNG_FP_SAW_DOT; break; 2727 case 48: type = PNG_FP_SAW_DIGIT; break; 2728 case 49: case 50: case 51: case 52: 2729 case 53: case 54: case 55: case 56: 2730 case 57: type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break; 2731 case 69: 2732 case 101: type = PNG_FP_SAW_E; break; 2733 default: goto PNG_FP_End; 2734 } 2735 2736 /* Now deal with this type according to the current 2737 * state, the type is arranged to not overlap the 2738 * bits of the PNG_FP_STATE. 2739 */ 2740 switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY)) 2741 { 2742 case PNG_FP_INTEGER + PNG_FP_SAW_SIGN: 2743 if ((state & PNG_FP_SAW_ANY) != 0) 2744 goto PNG_FP_End; /* not a part of the number */ 2745 2746 png_fp_add(state, type); 2747 break; 2748 2749 case PNG_FP_INTEGER + PNG_FP_SAW_DOT: 2750 /* Ok as trailer, ok as lead of fraction. */ 2751 if ((state & PNG_FP_SAW_DOT) != 0) /* two dots */ 2752 goto PNG_FP_End; 2753 2754 else if ((state & PNG_FP_SAW_DIGIT) != 0) /* trailing dot? */ 2755 png_fp_add(state, type); 2756 2757 else 2758 png_fp_set(state, PNG_FP_FRACTION | type); 2759 2760 break; 2761 2762 case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT: 2763 if ((state & PNG_FP_SAW_DOT) != 0) /* delayed fraction */ 2764 png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT); 2765 2766 png_fp_add(state, type | PNG_FP_WAS_VALID); 2767 2768 break; 2769 2770 case PNG_FP_INTEGER + PNG_FP_SAW_E: 2771 if ((state & PNG_FP_SAW_DIGIT) == 0) 2772 goto PNG_FP_End; 2773 2774 png_fp_set(state, PNG_FP_EXPONENT); 2775 2776 break; 2777 2778 /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN: 2779 goto PNG_FP_End; ** no sign in fraction */ 2780 2781 /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT: 2782 goto PNG_FP_End; ** Because SAW_DOT is always set */ 2783 2784 case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT: 2785 png_fp_add(state, type | PNG_FP_WAS_VALID); 2786 break; 2787 2788 case PNG_FP_FRACTION + PNG_FP_SAW_E: 2789 /* This is correct because the trailing '.' on an 2790 * integer is handled above - so we can only get here 2791 * with the sequence ".E" (with no preceding digits). 2792 */ 2793 if ((state & PNG_FP_SAW_DIGIT) == 0) 2794 goto PNG_FP_End; 2795 2796 png_fp_set(state, PNG_FP_EXPONENT); 2797 2798 break; 2799 2800 case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN: 2801 if ((state & PNG_FP_SAW_ANY) != 0) 2802 goto PNG_FP_End; /* not a part of the number */ 2803 2804 png_fp_add(state, PNG_FP_SAW_SIGN); 2805 2806 break; 2807 2808 /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT: 2809 goto PNG_FP_End; */ 2810 2811 case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT: 2812 png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID); 2813 2814 break; 2815 2816 /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E: 2817 goto PNG_FP_End; */ 2818 2819 default: goto PNG_FP_End; /* I.e. break 2 */ 2820 } 2821 2822 /* The character seems ok, continue. */ 2823 ++i; 2824 } 2825 2826 PNG_FP_End: 2827 /* Here at the end, update the state and return the correct 2828 * return code. 2829 */ 2830 *statep = state; 2831 *whereami = i; 2832 2833 return (state & PNG_FP_SAW_DIGIT) != 0; 2834 } 2835 2836 2837 /* The same but for a complete string. */ 2838 int 2839 png_check_fp_string(png_const_charp string, size_t size) 2840 { 2841 int state=0; 2842 size_t char_index=0; 2843 2844 if (png_check_fp_number(string, size, &state, &char_index) != 0 && 2845 (char_index == size || string[char_index] == 0)) 2846 return state /* must be non-zero - see above */; 2847 2848 return 0; /* i.e. fail */ 2849 } 2850 #endif /* pCAL || sCAL */ 2851 2852 #ifdef PNG_sCAL_SUPPORTED 2853 # ifdef PNG_FLOATING_POINT_SUPPORTED 2854 /* Utility used below - a simple accurate power of ten from an integral 2855 * exponent. 2856 */ 2857 static double 2858 png_pow10(int power) 2859 { 2860 int recip = 0; 2861 double d = 1; 2862 2863 /* Handle negative exponent with a reciprocal at the end because 2864 * 10 is exact whereas .1 is inexact in base 2 2865 */ 2866 if (power < 0) 2867 { 2868 if (power < DBL_MIN_10_EXP) return 0; 2869 recip = 1; power = -power; 2870 } 2871 2872 if (power > 0) 2873 { 2874 /* Decompose power bitwise. */ 2875 double mult = 10; 2876 do 2877 { 2878 if (power & 1) d *= mult; 2879 mult *= mult; 2880 power >>= 1; 2881 } 2882 while (power > 0); 2883 2884 if (recip != 0) d = 1/d; 2885 } 2886 /* else power is 0 and d is 1 */ 2887 2888 return d; 2889 } 2890 2891 /* Function to format a floating point value in ASCII with a given 2892 * precision. 2893 */ 2894 #if GCC_STRICT_OVERFLOW 2895 #pragma GCC diagnostic push 2896 /* The problem arises below with exp_b10, which can never overflow because it 2897 * comes, originally, from frexp and is therefore limited to a range which is 2898 * typically +/-710 (log2(DBL_MAX)/log2(DBL_MIN)). 2899 */ 2900 #pragma GCC diagnostic warning "-Wstrict-overflow=2" 2901 #endif /* GCC_STRICT_OVERFLOW */ 2902 void /* PRIVATE */ 2903 png_ascii_from_fp(png_const_structrp png_ptr, png_charp ascii, size_t size, 2904 double fp, unsigned int precision) 2905 { 2906 /* We use standard functions from math.h, but not printf because 2907 * that would require stdio. The caller must supply a buffer of 2908 * sufficient size or we will png_error. The tests on size and 2909 * the space in ascii[] consumed are indicated below. 2910 */ 2911 if (precision < 1) 2912 precision = DBL_DIG; 2913 2914 /* Enforce the limit of the implementation precision too. */ 2915 if (precision > DBL_DIG+1) 2916 precision = DBL_DIG+1; 2917 2918 /* Basic sanity checks */ 2919 if (size >= precision+5) /* See the requirements below. */ 2920 { 2921 if (fp < 0) 2922 { 2923 fp = -fp; 2924 *ascii++ = 45; /* '-' PLUS 1 TOTAL 1 */ 2925 --size; 2926 } 2927 2928 if (fp >= DBL_MIN && fp <= DBL_MAX) 2929 { 2930 int exp_b10; /* A base 10 exponent */ 2931 double base; /* 10^exp_b10 */ 2932 2933 /* First extract a base 10 exponent of the number, 2934 * the calculation below rounds down when converting 2935 * from base 2 to base 10 (multiply by log10(2) - 2936 * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to 2937 * be increased. Note that the arithmetic shift 2938 * performs a floor() unlike C arithmetic - using a 2939 * C multiply would break the following for negative 2940 * exponents. 2941 */ 2942 (void)frexp(fp, &exp_b10); /* exponent to base 2 */ 2943 2944 exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */ 2945 2946 /* Avoid underflow here. */ 2947 base = png_pow10(exp_b10); /* May underflow */ 2948 2949 while (base < DBL_MIN || base < fp) 2950 { 2951 /* And this may overflow. */ 2952 double test = png_pow10(exp_b10+1); 2953 2954 if (test <= DBL_MAX) 2955 { 2956 ++exp_b10; base = test; 2957 } 2958 2959 else 2960 break; 2961 } 2962 2963 /* Normalize fp and correct exp_b10, after this fp is in the 2964 * range [.1,1) and exp_b10 is both the exponent and the digit 2965 * *before* which the decimal point should be inserted 2966 * (starting with 0 for the first digit). Note that this 2967 * works even if 10^exp_b10 is out of range because of the 2968 * test on DBL_MAX above. 2969 */ 2970 fp /= base; 2971 while (fp >= 1) 2972 { 2973 fp /= 10; ++exp_b10; 2974 } 2975 2976 /* Because of the code above fp may, at this point, be 2977 * less than .1, this is ok because the code below can 2978 * handle the leading zeros this generates, so no attempt 2979 * is made to correct that here. 2980 */ 2981 2982 { 2983 unsigned int czero, clead, cdigits; 2984 char exponent[10]; 2985 2986 /* Allow up to two leading zeros - this will not lengthen 2987 * the number compared to using E-n. 2988 */ 2989 if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */ 2990 { 2991 czero = 0U-exp_b10; /* PLUS 2 digits: TOTAL 3 */ 2992 exp_b10 = 0; /* Dot added below before first output. */ 2993 } 2994 else 2995 czero = 0; /* No zeros to add */ 2996 2997 /* Generate the digit list, stripping trailing zeros and 2998 * inserting a '.' before a digit if the exponent is 0. 2999 */ 3000 clead = czero; /* Count of leading zeros */ 3001 cdigits = 0; /* Count of digits in list. */ 3002 3003 do 3004 { 3005 double d; 3006 3007 fp *= 10; 3008 /* Use modf here, not floor and subtract, so that 3009 * the separation is done in one step. At the end 3010 * of the loop don't break the number into parts so 3011 * that the final digit is rounded. 3012 */ 3013 if (cdigits+czero+1 < precision+clead) 3014 fp = modf(fp, &d); 3015 3016 else 3017 { 3018 d = floor(fp + .5); 3019 3020 if (d > 9) 3021 { 3022 /* Rounding up to 10, handle that here. */ 3023 if (czero > 0) 3024 { 3025 --czero; d = 1; 3026 if (cdigits == 0) --clead; 3027 } 3028 else 3029 { 3030 while (cdigits > 0 && d > 9) 3031 { 3032 int ch = *--ascii; 3033 3034 if (exp_b10 != (-1)) 3035 ++exp_b10; 3036 3037 else if (ch == 46) 3038 { 3039 ch = *--ascii; ++size; 3040 /* Advance exp_b10 to '1', so that the 3041 * decimal point happens after the 3042 * previous digit. 3043 */ 3044 exp_b10 = 1; 3045 } 3046 3047 --cdigits; 3048 d = ch - 47; /* I.e. 1+(ch-48) */ 3049 } 3050 3051 /* Did we reach the beginning? If so adjust the 3052 * exponent but take into account the leading 3053 * decimal point. 3054 */ 3055 if (d > 9) /* cdigits == 0 */ 3056 { 3057 if (exp_b10 == (-1)) 3058 { 3059 /* Leading decimal point (plus zeros?), if 3060 * we lose the decimal point here it must 3061 * be reentered below. 3062 */ 3063 int ch = *--ascii; 3064 3065 if (ch == 46) 3066 { 3067 ++size; exp_b10 = 1; 3068 } 3069 3070 /* Else lost a leading zero, so 'exp_b10' is 3071 * still ok at (-1) 3072 */ 3073 } 3074 else 3075 ++exp_b10; 3076 3077 /* In all cases we output a '1' */ 3078 d = 1; 3079 } 3080 } 3081 } 3082 fp = 0; /* Guarantees termination below. */ 3083 } 3084 3085 if (d == 0) 3086 { 3087 ++czero; 3088 if (cdigits == 0) ++clead; 3089 } 3090 else 3091 { 3092 /* Included embedded zeros in the digit count. */ 3093 cdigits += czero - clead; 3094 clead = 0; 3095 3096 while (czero > 0) 3097 { 3098 /* exp_b10 == (-1) means we just output the decimal 3099 * place - after the DP don't adjust 'exp_b10' any 3100 * more! 3101 */ 3102 if (exp_b10 != (-1)) 3103 { 3104 if (exp_b10 == 0) 3105 { 3106 *ascii++ = 46; --size; 3107 } 3108 /* PLUS 1: TOTAL 4 */ 3109 --exp_b10; 3110 } 3111 *ascii++ = 48; --czero; 3112 } 3113 3114 if (exp_b10 != (-1)) 3115 { 3116 if (exp_b10 == 0) 3117 { 3118 *ascii++ = 46; --size; /* counted above */ 3119 } 3120 3121 --exp_b10; 3122 } 3123 *ascii++ = (char)(48 + (int)d); ++cdigits; 3124 } 3125 } 3126 while (cdigits+czero < precision+clead && fp > DBL_MIN); 3127 3128 /* The total output count (max) is now 4+precision */ 3129 3130 /* Check for an exponent, if we don't need one we are 3131 * done and just need to terminate the string. At this 3132 * point, exp_b10==(-1) is effectively a flag: it got 3133 * to '-1' because of the decrement, after outputting 3134 * the decimal point above. (The exponent required is 3135 * *not* -1.) 3136 */ 3137 if (exp_b10 >= (-1) && exp_b10 <= 2) 3138 { 3139 /* The following only happens if we didn't output the 3140 * leading zeros above for negative exponent, so this 3141 * doesn't add to the digit requirement. Note that the 3142 * two zeros here can only be output if the two leading 3143 * zeros were *not* output, so this doesn't increase 3144 * the output count. 3145 */ 3146 while (exp_b10-- > 0) *ascii++ = 48; 3147 3148 *ascii = 0; 3149 3150 /* Total buffer requirement (including the '\0') is 3151 * 5+precision - see check at the start. 3152 */ 3153 return; 3154 } 3155 3156 /* Here if an exponent is required, adjust size for 3157 * the digits we output but did not count. The total 3158 * digit output here so far is at most 1+precision - no 3159 * decimal point and no leading or trailing zeros have 3160 * been output. 3161 */ 3162 size -= cdigits; 3163 3164 *ascii++ = 69; --size; /* 'E': PLUS 1 TOTAL 2+precision */ 3165 3166 /* The following use of an unsigned temporary avoids ambiguities in 3167 * the signed arithmetic on exp_b10 and permits GCC at least to do 3168 * better optimization. 3169 */ 3170 { 3171 unsigned int uexp_b10; 3172 3173 if (exp_b10 < 0) 3174 { 3175 *ascii++ = 45; --size; /* '-': PLUS 1 TOTAL 3+precision */ 3176 uexp_b10 = 0U-exp_b10; 3177 } 3178 3179 else 3180 uexp_b10 = 0U+exp_b10; 3181 3182 cdigits = 0; 3183 3184 while (uexp_b10 > 0) 3185 { 3186 exponent[cdigits++] = (char)(48 + uexp_b10 % 10); 3187 uexp_b10 /= 10; 3188 } 3189 } 3190 3191 /* Need another size check here for the exponent digits, so 3192 * this need not be considered above. 3193 */ 3194 if (size > cdigits) 3195 { 3196 while (cdigits > 0) *ascii++ = exponent[--cdigits]; 3197 3198 *ascii = 0; 3199 3200 return; 3201 } 3202 } 3203 } 3204 else if (!(fp >= DBL_MIN)) 3205 { 3206 *ascii++ = 48; /* '0' */ 3207 *ascii = 0; 3208 return; 3209 } 3210 else 3211 { 3212 *ascii++ = 105; /* 'i' */ 3213 *ascii++ = 110; /* 'n' */ 3214 *ascii++ = 102; /* 'f' */ 3215 *ascii = 0; 3216 return; 3217 } 3218 } 3219 3220 /* Here on buffer too small. */ 3221 png_error(png_ptr, "ASCII conversion buffer too small"); 3222 } 3223 #if GCC_STRICT_OVERFLOW 3224 #pragma GCC diagnostic pop 3225 #endif /* GCC_STRICT_OVERFLOW */ 3226 3227 # endif /* FLOATING_POINT */ 3228 3229 # ifdef PNG_FIXED_POINT_SUPPORTED 3230 /* Function to format a fixed point value in ASCII. 3231 */ 3232 void /* PRIVATE */ 3233 png_ascii_from_fixed(png_const_structrp png_ptr, png_charp ascii, 3234 size_t size, png_fixed_point fp) 3235 { 3236 /* Require space for 10 decimal digits, a decimal point, a minus sign and a 3237 * trailing \0, 13 characters: 3238 */ 3239 if (size > 12) 3240 { 3241 png_uint_32 num; 3242 3243 /* Avoid overflow here on the minimum integer. */ 3244 if (fp < 0) 3245 { 3246 *ascii++ = 45; num = (png_uint_32)(-fp); 3247 } 3248 else 3249 num = (png_uint_32)fp; 3250 3251 if (num <= 0x80000000) /* else overflowed */ 3252 { 3253 unsigned int ndigits = 0, first = 16 /* flag value */; 3254 char digits[10]; 3255 3256 while (num) 3257 { 3258 /* Split the low digit off num: */ 3259 unsigned int tmp = num/10; 3260 num -= tmp*10; 3261 digits[ndigits++] = (char)(48 + num); 3262 /* Record the first non-zero digit, note that this is a number 3263 * starting at 1, it's not actually the array index. 3264 */ 3265 if (first == 16 && num > 0) 3266 first = ndigits; 3267 num = tmp; 3268 } 3269 3270 if (ndigits > 0) 3271 { 3272 while (ndigits > 5) *ascii++ = digits[--ndigits]; 3273 /* The remaining digits are fractional digits, ndigits is '5' or 3274 * smaller at this point. It is certainly not zero. Check for a 3275 * non-zero fractional digit: 3276 */ 3277 if (first <= 5) 3278 { 3279 unsigned int i; 3280 *ascii++ = 46; /* decimal point */ 3281 /* ndigits may be <5 for small numbers, output leading zeros 3282 * then ndigits digits to first: 3283 */ 3284 i = 5; 3285 while (ndigits < i) 3286 { 3287 *ascii++ = 48; --i; 3288 } 3289 while (ndigits >= first) *ascii++ = digits[--ndigits]; 3290 /* Don't output the trailing zeros! */ 3291 } 3292 } 3293 else 3294 *ascii++ = 48; 3295 3296 /* And null terminate the string: */ 3297 *ascii = 0; 3298 return; 3299 } 3300 } 3301 3302 /* Here on buffer too small. */ 3303 png_error(png_ptr, "ASCII conversion buffer too small"); 3304 } 3305 # endif /* FIXED_POINT */ 3306 #endif /* SCAL */ 3307 3308 #if defined(PNG_FLOATING_POINT_SUPPORTED) && \ 3309 !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \ 3310 (defined(PNG_gAMA_SUPPORTED) || defined(PNG_cHRM_SUPPORTED) || \ 3311 defined(PNG_sCAL_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) || \ 3312 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)) || \ 3313 (defined(PNG_sCAL_SUPPORTED) && \ 3314 defined(PNG_FLOATING_ARITHMETIC_SUPPORTED)) 3315 png_fixed_point 3316 png_fixed(png_const_structrp png_ptr, double fp, png_const_charp text) 3317 { 3318 double r = floor(100000 * fp + .5); 3319 3320 if (r > 2147483647. || r < -2147483648.) 3321 png_fixed_error(png_ptr, text); 3322 3323 # ifndef PNG_ERROR_TEXT_SUPPORTED 3324 PNG_UNUSED(text) 3325 # endif 3326 3327 return (png_fixed_point)r; 3328 } 3329 #endif 3330 3331 #if defined(PNG_GAMMA_SUPPORTED) || defined(PNG_COLORSPACE_SUPPORTED) ||\ 3332 defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG_READ_pHYs_SUPPORTED) 3333 /* muldiv functions */ 3334 /* This API takes signed arguments and rounds the result to the nearest 3335 * integer (or, for a fixed point number - the standard argument - to 3336 * the nearest .00001). Overflow and divide by zero are signalled in 3337 * the result, a boolean - true on success, false on overflow. 3338 */ 3339 #if GCC_STRICT_OVERFLOW /* from above */ 3340 /* It is not obvious which comparison below gets optimized in such a way that 3341 * signed overflow would change the result; looking through the code does not 3342 * reveal any tests which have the form GCC complains about, so presumably the 3343 * optimizer is moving an add or subtract into the 'if' somewhere. 3344 */ 3345 #pragma GCC diagnostic push 3346 #pragma GCC diagnostic warning "-Wstrict-overflow=2" 3347 #endif /* GCC_STRICT_OVERFLOW */ 3348 int 3349 png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times, 3350 png_int_32 divisor) 3351 { 3352 /* Return a * times / divisor, rounded. */ 3353 if (divisor != 0) 3354 { 3355 if (a == 0 || times == 0) 3356 { 3357 *res = 0; 3358 return 1; 3359 } 3360 else 3361 { 3362 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED 3363 double r = a; 3364 r *= times; 3365 r /= divisor; 3366 r = floor(r+.5); 3367 3368 /* A png_fixed_point is a 32-bit integer. */ 3369 if (r <= 2147483647. && r >= -2147483648.) 3370 { 3371 *res = (png_fixed_point)r; 3372 return 1; 3373 } 3374 #else 3375 int negative = 0; 3376 png_uint_32 A, T, D; 3377 png_uint_32 s16, s32, s00; 3378 3379 if (a < 0) 3380 negative = 1, A = -a; 3381 else 3382 A = a; 3383 3384 if (times < 0) 3385 negative = !negative, T = -times; 3386 else 3387 T = times; 3388 3389 if (divisor < 0) 3390 negative = !negative, D = -divisor; 3391 else 3392 D = divisor; 3393 3394 /* Following can't overflow because the arguments only 3395 * have 31 bits each, however the result may be 32 bits. 3396 */ 3397 s16 = (A >> 16) * (T & 0xffff) + 3398 (A & 0xffff) * (T >> 16); 3399 /* Can't overflow because the a*times bit is only 30 3400 * bits at most. 3401 */ 3402 s32 = (A >> 16) * (T >> 16) + (s16 >> 16); 3403 s00 = (A & 0xffff) * (T & 0xffff); 3404 3405 s16 = (s16 & 0xffff) << 16; 3406 s00 += s16; 3407 3408 if (s00 < s16) 3409 ++s32; /* carry */ 3410 3411 if (s32 < D) /* else overflow */ 3412 { 3413 /* s32.s00 is now the 64-bit product, do a standard 3414 * division, we know that s32 < D, so the maximum 3415 * required shift is 31. 3416 */ 3417 int bitshift = 32; 3418 png_fixed_point result = 0; /* NOTE: signed */ 3419 3420 while (--bitshift >= 0) 3421 { 3422 png_uint_32 d32, d00; 3423 3424 if (bitshift > 0) 3425 d32 = D >> (32-bitshift), d00 = D << bitshift; 3426 3427 else 3428 d32 = 0, d00 = D; 3429 3430 if (s32 > d32) 3431 { 3432 if (s00 < d00) --s32; /* carry */ 3433 s32 -= d32, s00 -= d00, result += 1<<bitshift; 3434 } 3435 3436 else 3437 if (s32 == d32 && s00 >= d00) 3438 s32 = 0, s00 -= d00, result += 1<<bitshift; 3439 } 3440 3441 /* Handle the rounding. */ 3442 if (s00 >= (D >> 1)) 3443 ++result; 3444 3445 if (negative != 0) 3446 result = -result; 3447 3448 /* Check for overflow. */ 3449 if ((negative != 0 && result <= 0) || 3450 (negative == 0 && result >= 0)) 3451 { 3452 *res = result; 3453 return 1; 3454 } 3455 } 3456 #endif 3457 } 3458 } 3459 3460 return 0; 3461 } 3462 #if GCC_STRICT_OVERFLOW 3463 #pragma GCC diagnostic pop 3464 #endif /* GCC_STRICT_OVERFLOW */ 3465 #endif /* READ_GAMMA || INCH_CONVERSIONS */ 3466 3467 #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED) 3468 /* The following is for when the caller doesn't much care about the 3469 * result. 3470 */ 3471 png_fixed_point 3472 png_muldiv_warn(png_const_structrp png_ptr, png_fixed_point a, png_int_32 times, 3473 png_int_32 divisor) 3474 { 3475 png_fixed_point result; 3476 3477 if (png_muldiv(&result, a, times, divisor) != 0) 3478 return result; 3479 3480 png_warning(png_ptr, "fixed point overflow ignored"); 3481 return 0; 3482 } 3483 #endif 3484 3485 #ifdef PNG_GAMMA_SUPPORTED /* more fixed point functions for gamma */ 3486 /* Calculate a reciprocal, return 0 on div-by-zero or overflow. */ 3487 png_fixed_point 3488 png_reciprocal(png_fixed_point a) 3489 { 3490 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED 3491 double r = floor(1E10/a+.5); 3492 3493 if (r <= 2147483647. && r >= -2147483648.) 3494 return (png_fixed_point)r; 3495 #else 3496 png_fixed_point res; 3497 3498 if (png_muldiv(&res, 100000, 100000, a) != 0) 3499 return res; 3500 #endif 3501 3502 return 0; /* error/overflow */ 3503 } 3504 3505 /* This is the shared test on whether a gamma value is 'significant' - whether 3506 * it is worth doing gamma correction. 3507 */ 3508 int /* PRIVATE */ 3509 png_gamma_significant(png_fixed_point gamma_val) 3510 { 3511 return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED || 3512 gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED; 3513 } 3514 #endif 3515 3516 #ifdef PNG_READ_GAMMA_SUPPORTED 3517 #ifdef PNG_16BIT_SUPPORTED 3518 /* A local convenience routine. */ 3519 static png_fixed_point 3520 png_product2(png_fixed_point a, png_fixed_point b) 3521 { 3522 /* The required result is 1/a * 1/b; the following preserves accuracy. */ 3523 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED 3524 double r = a * 1E-5; 3525 r *= b; 3526 r = floor(r+.5); 3527 3528 if (r <= 2147483647. && r >= -2147483648.) 3529 return (png_fixed_point)r; 3530 #else 3531 png_fixed_point res; 3532 3533 if (png_muldiv(&res, a, b, 100000) != 0) 3534 return res; 3535 #endif 3536 3537 return 0; /* overflow */ 3538 } 3539 #endif /* 16BIT */ 3540 3541 /* The inverse of the above. */ 3542 png_fixed_point 3543 png_reciprocal2(png_fixed_point a, png_fixed_point b) 3544 { 3545 /* The required result is 1/a * 1/b; the following preserves accuracy. */ 3546 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED 3547 if (a != 0 && b != 0) 3548 { 3549 double r = 1E15/a; 3550 r /= b; 3551 r = floor(r+.5); 3552 3553 if (r <= 2147483647. && r >= -2147483648.) 3554 return (png_fixed_point)r; 3555 } 3556 #else 3557 /* This may overflow because the range of png_fixed_point isn't symmetric, 3558 * but this API is only used for the product of file and screen gamma so it 3559 * doesn't matter that the smallest number it can produce is 1/21474, not 3560 * 1/100000 3561 */ 3562 png_fixed_point res = png_product2(a, b); 3563 3564 if (res != 0) 3565 return png_reciprocal(res); 3566 #endif 3567 3568 return 0; /* overflow */ 3569 } 3570 #endif /* READ_GAMMA */ 3571 3572 #ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */ 3573 #ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED 3574 /* Fixed point gamma. 3575 * 3576 * The code to calculate the tables used below can be found in the shell script 3577 * contrib/tools/intgamma.sh 3578 * 3579 * To calculate gamma this code implements fast log() and exp() calls using only 3580 * fixed point arithmetic. This code has sufficient precision for either 8-bit 3581 * or 16-bit sample values. 3582 * 3583 * The tables used here were calculated using simple 'bc' programs, but C double 3584 * precision floating point arithmetic would work fine. 3585 * 3586 * 8-bit log table 3587 * This is a table of -log(value/255)/log(2) for 'value' in the range 128 to 3588 * 255, so it's the base 2 logarithm of a normalized 8-bit floating point 3589 * mantissa. The numbers are 32-bit fractions. 3590 */ 3591 static const png_uint_32 3592 png_8bit_l2[128] = 3593 { 3594 4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U, 3595 3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U, 3596 3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U, 3597 3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U, 3598 3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U, 3599 2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U, 3600 2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U, 3601 2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U, 3602 2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U, 3603 2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U, 3604 1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U, 3605 1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U, 3606 1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U, 3607 1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U, 3608 1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U, 3609 971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U, 3610 803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U, 3611 639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U, 3612 479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U, 3613 324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U, 3614 172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U, 3615 24347096U, 0U 3616 3617 #if 0 3618 /* The following are the values for 16-bit tables - these work fine for the 3619 * 8-bit conversions but produce very slightly larger errors in the 16-bit 3620 * log (about 1.2 as opposed to 0.7 absolute error in the final value). To 3621 * use these all the shifts below must be adjusted appropriately. 3622 */ 3623 65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054, 3624 57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803, 3625 50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068, 3626 43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782, 3627 37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887, 3628 31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339, 3629 25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098, 3630 20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132, 3631 15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415, 3632 10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523, 3633 6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495, 3634 1119, 744, 372 3635 #endif 3636 }; 3637 3638 static png_int_32 3639 png_log8bit(unsigned int x) 3640 { 3641 unsigned int lg2 = 0; 3642 /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log, 3643 * because the log is actually negate that means adding 1. The final 3644 * returned value thus has the range 0 (for 255 input) to 7.994 (for 1 3645 * input), return -1 for the overflow (log 0) case, - so the result is 3646 * always at most 19 bits. 3647 */ 3648 if ((x &= 0xff) == 0) 3649 return -1; 3650 3651 if ((x & 0xf0) == 0) 3652 lg2 = 4, x <<= 4; 3653 3654 if ((x & 0xc0) == 0) 3655 lg2 += 2, x <<= 2; 3656 3657 if ((x & 0x80) == 0) 3658 lg2 += 1, x <<= 1; 3659 3660 /* result is at most 19 bits, so this cast is safe: */ 3661 return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16)); 3662 } 3663 3664 /* The above gives exact (to 16 binary places) log2 values for 8-bit images, 3665 * for 16-bit images we use the most significant 8 bits of the 16-bit value to 3666 * get an approximation then multiply the approximation by a correction factor 3667 * determined by the remaining up to 8 bits. This requires an additional step 3668 * in the 16-bit case. 3669 * 3670 * We want log2(value/65535), we have log2(v'/255), where: 3671 * 3672 * value = v' * 256 + v'' 3673 * = v' * f 3674 * 3675 * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128 3676 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less 3677 * than 258. The final factor also needs to correct for the fact that our 8-bit 3678 * value is scaled by 255, whereas the 16-bit values must be scaled by 65535. 3679 * 3680 * This gives a final formula using a calculated value 'x' which is value/v' and 3681 * scaling by 65536 to match the above table: 3682 * 3683 * log2(x/257) * 65536 3684 * 3685 * Since these numbers are so close to '1' we can use simple linear 3686 * interpolation between the two end values 256/257 (result -368.61) and 258/257 3687 * (result 367.179). The values used below are scaled by a further 64 to give 3688 * 16-bit precision in the interpolation: 3689 * 3690 * Start (256): -23591 3691 * Zero (257): 0 3692 * End (258): 23499 3693 */ 3694 #ifdef PNG_16BIT_SUPPORTED 3695 static png_int_32 3696 png_log16bit(png_uint_32 x) 3697 { 3698 unsigned int lg2 = 0; 3699 3700 /* As above, but now the input has 16 bits. */ 3701 if ((x &= 0xffff) == 0) 3702 return -1; 3703 3704 if ((x & 0xff00) == 0) 3705 lg2 = 8, x <<= 8; 3706 3707 if ((x & 0xf000) == 0) 3708 lg2 += 4, x <<= 4; 3709 3710 if ((x & 0xc000) == 0) 3711 lg2 += 2, x <<= 2; 3712 3713 if ((x & 0x8000) == 0) 3714 lg2 += 1, x <<= 1; 3715 3716 /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional 3717 * value. 3718 */ 3719 lg2 <<= 28; 3720 lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4; 3721 3722 /* Now we need to interpolate the factor, this requires a division by the top 3723 * 8 bits. Do this with maximum precision. 3724 */ 3725 x = ((x << 16) + (x >> 9)) / (x >> 8); 3726 3727 /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24, 3728 * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly 3729 * 16 bits to interpolate to get the low bits of the result. Round the 3730 * answer. Note that the end point values are scaled by 64 to retain overall 3731 * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust 3732 * the overall scaling by 6-12. Round at every step. 3733 */ 3734 x -= 1U << 24; 3735 3736 if (x <= 65536U) /* <= '257' */ 3737 lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12); 3738 3739 else 3740 lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12); 3741 3742 /* Safe, because the result can't have more than 20 bits: */ 3743 return (png_int_32)((lg2 + 2048) >> 12); 3744 } 3745 #endif /* 16BIT */ 3746 3747 /* The 'exp()' case must invert the above, taking a 20-bit fixed point 3748 * logarithmic value and returning a 16 or 8-bit number as appropriate. In 3749 * each case only the low 16 bits are relevant - the fraction - since the 3750 * integer bits (the top 4) simply determine a shift. 3751 * 3752 * The worst case is the 16-bit distinction between 65535 and 65534. This 3753 * requires perhaps spurious accuracy in the decoding of the logarithm to 3754 * distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance 3755 * of getting this accuracy in practice. 3756 * 3757 * To deal with this the following exp() function works out the exponent of the 3758 * fractional part of the logarithm by using an accurate 32-bit value from the 3759 * top four fractional bits then multiplying in the remaining bits. 3760 */ 3761 static const png_uint_32 3762 png_32bit_exp[16] = 3763 { 3764 /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */ 3765 4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U, 3766 3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U, 3767 2553802834U, 2445529972U, 2341847524U, 2242560872U 3768 }; 3769 3770 /* Adjustment table; provided to explain the numbers in the code below. */ 3771 #if 0 3772 for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"} 3773 11 44937.64284865548751208448 3774 10 45180.98734845585101160448 3775 9 45303.31936980687359311872 3776 8 45364.65110595323018870784 3777 7 45395.35850361789624614912 3778 6 45410.72259715102037508096 3779 5 45418.40724413220722311168 3780 4 45422.25021786898173001728 3781 3 45424.17186732298419044352 3782 2 45425.13273269940811464704 3783 1 45425.61317555035558641664 3784 0 45425.85339951654943850496 3785 #endif 3786 3787 static png_uint_32 3788 png_exp(png_fixed_point x) 3789 { 3790 if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */ 3791 { 3792 /* Obtain a 4-bit approximation */ 3793 png_uint_32 e = png_32bit_exp[(x >> 12) & 0x0f]; 3794 3795 /* Incorporate the low 12 bits - these decrease the returned value by 3796 * multiplying by a number less than 1 if the bit is set. The multiplier 3797 * is determined by the above table and the shift. Notice that the values 3798 * converge on 45426 and this is used to allow linear interpolation of the 3799 * low bits. 3800 */ 3801 if (x & 0x800) 3802 e -= (((e >> 16) * 44938U) + 16U) >> 5; 3803 3804 if (x & 0x400) 3805 e -= (((e >> 16) * 45181U) + 32U) >> 6; 3806 3807 if (x & 0x200) 3808 e -= (((e >> 16) * 45303U) + 64U) >> 7; 3809 3810 if (x & 0x100) 3811 e -= (((e >> 16) * 45365U) + 128U) >> 8; 3812 3813 if (x & 0x080) 3814 e -= (((e >> 16) * 45395U) + 256U) >> 9; 3815 3816 if (x & 0x040) 3817 e -= (((e >> 16) * 45410U) + 512U) >> 10; 3818 3819 /* And handle the low 6 bits in a single block. */ 3820 e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9; 3821 3822 /* Handle the upper bits of x. */ 3823 e >>= x >> 16; 3824 return e; 3825 } 3826 3827 /* Check for overflow */ 3828 if (x <= 0) 3829 return png_32bit_exp[0]; 3830 3831 /* Else underflow */ 3832 return 0; 3833 } 3834 3835 static png_byte 3836 png_exp8bit(png_fixed_point lg2) 3837 { 3838 /* Get a 32-bit value: */ 3839 png_uint_32 x = png_exp(lg2); 3840 3841 /* Convert the 32-bit value to 0..255 by multiplying by 256-1. Note that the 3842 * second, rounding, step can't overflow because of the first, subtraction, 3843 * step. 3844 */ 3845 x -= x >> 8; 3846 return (png_byte)(((x + 0x7fffffU) >> 24) & 0xff); 3847 } 3848 3849 #ifdef PNG_16BIT_SUPPORTED 3850 static png_uint_16 3851 png_exp16bit(png_fixed_point lg2) 3852 { 3853 /* Get a 32-bit value: */ 3854 png_uint_32 x = png_exp(lg2); 3855 3856 /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */ 3857 x -= x >> 16; 3858 return (png_uint_16)((x + 32767U) >> 16); 3859 } 3860 #endif /* 16BIT */ 3861 #endif /* FLOATING_ARITHMETIC */ 3862 3863 png_byte 3864 png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val) 3865 { 3866 if (value > 0 && value < 255) 3867 { 3868 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED 3869 /* 'value' is unsigned, ANSI-C90 requires the compiler to correctly 3870 * convert this to a floating point value. This includes values that 3871 * would overflow if 'value' were to be converted to 'int'. 3872 * 3873 * Apparently GCC, however, does an intermediate conversion to (int) 3874 * on some (ARM) but not all (x86) platforms, possibly because of 3875 * hardware FP limitations. (E.g. if the hardware conversion always 3876 * assumes the integer register contains a signed value.) This results 3877 * in ANSI-C undefined behavior for large values. 3878 * 3879 * Other implementations on the same machine might actually be ANSI-C90 3880 * conformant and therefore compile spurious extra code for the large 3881 * values. 3882 * 3883 * We can be reasonably sure that an unsigned to float conversion 3884 * won't be faster than an int to float one. Therefore this code 3885 * assumes responsibility for the undefined behavior, which it knows 3886 * can't happen because of the check above. 3887 * 3888 * Note the argument to this routine is an (unsigned int) because, on 3889 * 16-bit platforms, it is assigned a value which might be out of 3890 * range for an (int); that would result in undefined behavior in the 3891 * caller if the *argument* ('value') were to be declared (int). 3892 */ 3893 double r = floor(255*pow((int)/*SAFE*/value/255.,gamma_val*.00001)+.5); 3894 return (png_byte)r; 3895 # else 3896 png_int_32 lg2 = png_log8bit(value); 3897 png_fixed_point res; 3898 3899 if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0) 3900 return png_exp8bit(res); 3901 3902 /* Overflow. */ 3903 value = 0; 3904 # endif 3905 } 3906 3907 return (png_byte)(value & 0xff); 3908 } 3909 3910 #ifdef PNG_16BIT_SUPPORTED 3911 png_uint_16 3912 png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val) 3913 { 3914 if (value > 0 && value < 65535) 3915 { 3916 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED 3917 /* The same (unsigned int)->(double) constraints apply here as above, 3918 * however in this case the (unsigned int) to (int) conversion can 3919 * overflow on an ANSI-C90 compliant system so the cast needs to ensure 3920 * that this is not possible. 3921 */ 3922 double r = floor(65535*pow((png_int_32)value/65535., 3923 gamma_val*.00001)+.5); 3924 return (png_uint_16)r; 3925 # else 3926 png_int_32 lg2 = png_log16bit(value); 3927 png_fixed_point res; 3928 3929 if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0) 3930 return png_exp16bit(res); 3931 3932 /* Overflow. */ 3933 value = 0; 3934 # endif 3935 } 3936 3937 return (png_uint_16)value; 3938 } 3939 #endif /* 16BIT */ 3940 3941 /* This does the right thing based on the bit_depth field of the 3942 * png_struct, interpreting values as 8-bit or 16-bit. While the result 3943 * is nominally a 16-bit value if bit depth is 8 then the result is 3944 * 8-bit (as are the arguments.) 3945 */ 3946 png_uint_16 /* PRIVATE */ 3947 png_gamma_correct(png_structrp png_ptr, unsigned int value, 3948 png_fixed_point gamma_val) 3949 { 3950 if (png_ptr->bit_depth == 8) 3951 return png_gamma_8bit_correct(value, gamma_val); 3952 3953 #ifdef PNG_16BIT_SUPPORTED 3954 else 3955 return png_gamma_16bit_correct(value, gamma_val); 3956 #else 3957 /* should not reach this */ 3958 return 0; 3959 #endif /* 16BIT */ 3960 } 3961 3962 #ifdef PNG_16BIT_SUPPORTED 3963 /* Internal function to build a single 16-bit table - the table consists of 3964 * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount 3965 * to shift the input values right (or 16-number_of_signifiant_bits). 3966 * 3967 * The caller is responsible for ensuring that the table gets cleaned up on 3968 * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument 3969 * should be somewhere that will be cleaned. 3970 */ 3971 static void 3972 png_build_16bit_table(png_structrp png_ptr, png_uint_16pp *ptable, 3973 unsigned int shift, png_fixed_point gamma_val) 3974 { 3975 /* Various values derived from 'shift': */ 3976 unsigned int num = 1U << (8U - shift); 3977 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED 3978 /* CSE the division and work round wacky GCC warnings (see the comments 3979 * in png_gamma_8bit_correct for where these come from.) 3980 */ 3981 double fmax = 1.0 / (((png_int_32)1 << (16U - shift)) - 1); 3982 #endif 3983 unsigned int max = (1U << (16U - shift)) - 1U; 3984 unsigned int max_by_2 = 1U << (15U - shift); 3985 unsigned int i; 3986 3987 png_uint_16pp table = *ptable = 3988 (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p))); 3989 3990 for (i = 0; i < num; i++) 3991 { 3992 png_uint_16p sub_table = table[i] = 3993 (png_uint_16p)png_malloc(png_ptr, 256 * (sizeof (png_uint_16))); 3994 3995 /* The 'threshold' test is repeated here because it can arise for one of 3996 * the 16-bit tables even if the others don't hit it. 3997 */ 3998 if (png_gamma_significant(gamma_val) != 0) 3999 { 4000 /* The old code would overflow at the end and this would cause the 4001 * 'pow' function to return a result >1, resulting in an 4002 * arithmetic error. This code follows the spec exactly; ig is 4003 * the recovered input sample, it always has 8-16 bits. 4004 * 4005 * We want input * 65535/max, rounded, the arithmetic fits in 32 4006 * bits (unsigned) so long as max <= 32767. 4007 */ 4008 unsigned int j; 4009 for (j = 0; j < 256; j++) 4010 { 4011 png_uint_32 ig = (j << (8-shift)) + i; 4012 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED 4013 /* Inline the 'max' scaling operation: */ 4014 /* See png_gamma_8bit_correct for why the cast to (int) is 4015 * required here. 4016 */ 4017 double d = floor(65535.*pow(ig*fmax, gamma_val*.00001)+.5); 4018 sub_table[j] = (png_uint_16)d; 4019 # else 4020 if (shift != 0) 4021 ig = (ig * 65535U + max_by_2)/max; 4022 4023 sub_table[j] = png_gamma_16bit_correct(ig, gamma_val); 4024 # endif 4025 } 4026 } 4027 else 4028 { 4029 /* We must still build a table, but do it the fast way. */ 4030 unsigned int j; 4031 4032 for (j = 0; j < 256; j++) 4033 { 4034 png_uint_32 ig = (j << (8-shift)) + i; 4035 4036 if (shift != 0) 4037 ig = (ig * 65535U + max_by_2)/max; 4038 4039 sub_table[j] = (png_uint_16)ig; 4040 } 4041 } 4042 } 4043 } 4044 4045 /* NOTE: this function expects the *inverse* of the overall gamma transformation 4046 * required. 4047 */ 4048 static void 4049 png_build_16to8_table(png_structrp png_ptr, png_uint_16pp *ptable, 4050 unsigned int shift, png_fixed_point gamma_val) 4051 { 4052 unsigned int num = 1U << (8U - shift); 4053 unsigned int max = (1U << (16U - shift))-1U; 4054 unsigned int i; 4055 png_uint_32 last; 4056 4057 png_uint_16pp table = *ptable = 4058 (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p))); 4059 4060 /* 'num' is the number of tables and also the number of low bits of low 4061 * bits of the input 16-bit value used to select a table. Each table is 4062 * itself indexed by the high 8 bits of the value. 4063 */ 4064 for (i = 0; i < num; i++) 4065 table[i] = (png_uint_16p)png_malloc(png_ptr, 4066 256 * (sizeof (png_uint_16))); 4067 4068 /* 'gamma_val' is set to the reciprocal of the value calculated above, so 4069 * pow(out,g) is an *input* value. 'last' is the last input value set. 4070 * 4071 * In the loop 'i' is used to find output values. Since the output is 4072 * 8-bit there are only 256 possible values. The tables are set up to 4073 * select the closest possible output value for each input by finding 4074 * the input value at the boundary between each pair of output values 4075 * and filling the table up to that boundary with the lower output 4076 * value. 4077 * 4078 * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit 4079 * values the code below uses a 16-bit value in i; the values start at 4080 * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last 4081 * entries are filled with 255). Start i at 128 and fill all 'last' 4082 * table entries <= 'max' 4083 */ 4084 last = 0; 4085 for (i = 0; i < 255; ++i) /* 8-bit output value */ 4086 { 4087 /* Find the corresponding maximum input value */ 4088 png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */ 4089 4090 /* Find the boundary value in 16 bits: */ 4091 png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val); 4092 4093 /* Adjust (round) to (16-shift) bits: */ 4094 bound = (bound * max + 32768U)/65535U + 1U; 4095 4096 while (last < bound) 4097 { 4098 table[last & (0xffU >> shift)][last >> (8U - shift)] = out; 4099 last++; 4100 } 4101 } 4102 4103 /* And fill in the final entries. */ 4104 while (last < (num << 8)) 4105 { 4106 table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U; 4107 last++; 4108 } 4109 } 4110 #endif /* 16BIT */ 4111 4112 /* Build a single 8-bit table: same as the 16-bit case but much simpler (and 4113 * typically much faster). Note that libpng currently does no sBIT processing 4114 * (apparently contrary to the spec) so a 256-entry table is always generated. 4115 */ 4116 static void 4117 png_build_8bit_table(png_structrp png_ptr, png_bytepp ptable, 4118 png_fixed_point gamma_val) 4119 { 4120 unsigned int i; 4121 png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256); 4122 4123 if (png_gamma_significant(gamma_val) != 0) 4124 for (i=0; i<256; i++) 4125 table[i] = png_gamma_8bit_correct(i, gamma_val); 4126 4127 else 4128 for (i=0; i<256; ++i) 4129 table[i] = (png_byte)(i & 0xff); 4130 } 4131 4132 /* Used from png_read_destroy and below to release the memory used by the gamma 4133 * tables. 4134 */ 4135 void /* PRIVATE */ 4136 png_destroy_gamma_table(png_structrp png_ptr) 4137 { 4138 png_free(png_ptr, png_ptr->gamma_table); 4139 png_ptr->gamma_table = NULL; 4140 4141 #ifdef PNG_16BIT_SUPPORTED 4142 if (png_ptr->gamma_16_table != NULL) 4143 { 4144 int i; 4145 int istop = (1 << (8 - png_ptr->gamma_shift)); 4146 for (i = 0; i < istop; i++) 4147 { 4148 png_free(png_ptr, png_ptr->gamma_16_table[i]); 4149 } 4150 png_free(png_ptr, png_ptr->gamma_16_table); 4151 png_ptr->gamma_16_table = NULL; 4152 } 4153 #endif /* 16BIT */ 4154 4155 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ 4156 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ 4157 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) 4158 png_free(png_ptr, png_ptr->gamma_from_1); 4159 png_ptr->gamma_from_1 = NULL; 4160 png_free(png_ptr, png_ptr->gamma_to_1); 4161 png_ptr->gamma_to_1 = NULL; 4162 4163 #ifdef PNG_16BIT_SUPPORTED 4164 if (png_ptr->gamma_16_from_1 != NULL) 4165 { 4166 int i; 4167 int istop = (1 << (8 - png_ptr->gamma_shift)); 4168 for (i = 0; i < istop; i++) 4169 { 4170 png_free(png_ptr, png_ptr->gamma_16_from_1[i]); 4171 } 4172 png_free(png_ptr, png_ptr->gamma_16_from_1); 4173 png_ptr->gamma_16_from_1 = NULL; 4174 } 4175 if (png_ptr->gamma_16_to_1 != NULL) 4176 { 4177 int i; 4178 int istop = (1 << (8 - png_ptr->gamma_shift)); 4179 for (i = 0; i < istop; i++) 4180 { 4181 png_free(png_ptr, png_ptr->gamma_16_to_1[i]); 4182 } 4183 png_free(png_ptr, png_ptr->gamma_16_to_1); 4184 png_ptr->gamma_16_to_1 = NULL; 4185 } 4186 #endif /* 16BIT */ 4187 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ 4188 } 4189 4190 /* We build the 8- or 16-bit gamma tables here. Note that for 16-bit 4191 * tables, we don't make a full table if we are reducing to 8-bit in 4192 * the future. Note also how the gamma_16 tables are segmented so that 4193 * we don't need to allocate > 64K chunks for a full 16-bit table. 4194 */ 4195 void /* PRIVATE */ 4196 png_build_gamma_table(png_structrp png_ptr, int bit_depth) 4197 { 4198 png_debug(1, "in png_build_gamma_table"); 4199 4200 /* Remove any existing table; this copes with multiple calls to 4201 * png_read_update_info. The warning is because building the gamma tables 4202 * multiple times is a performance hit - it's harmless but the ability to 4203 * call png_read_update_info() multiple times is new in 1.5.6 so it seems 4204 * sensible to warn if the app introduces such a hit. 4205 */ 4206 if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL) 4207 { 4208 png_warning(png_ptr, "gamma table being rebuilt"); 4209 png_destroy_gamma_table(png_ptr); 4210 } 4211 4212 if (bit_depth <= 8) 4213 { 4214 png_build_8bit_table(png_ptr, &png_ptr->gamma_table, 4215 png_ptr->screen_gamma > 0 ? 4216 png_reciprocal2(png_ptr->colorspace.gamma, 4217 png_ptr->screen_gamma) : PNG_FP_1); 4218 4219 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ 4220 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ 4221 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) 4222 if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0) 4223 { 4224 png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1, 4225 png_reciprocal(png_ptr->colorspace.gamma)); 4226 4227 png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1, 4228 png_ptr->screen_gamma > 0 ? 4229 png_reciprocal(png_ptr->screen_gamma) : 4230 png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */); 4231 } 4232 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ 4233 } 4234 #ifdef PNG_16BIT_SUPPORTED 4235 else 4236 { 4237 png_byte shift, sig_bit; 4238 4239 if ((png_ptr->color_type & PNG_COLOR_MASK_COLOR) != 0) 4240 { 4241 sig_bit = png_ptr->sig_bit.red; 4242 4243 if (png_ptr->sig_bit.green > sig_bit) 4244 sig_bit = png_ptr->sig_bit.green; 4245 4246 if (png_ptr->sig_bit.blue > sig_bit) 4247 sig_bit = png_ptr->sig_bit.blue; 4248 } 4249 else 4250 sig_bit = png_ptr->sig_bit.gray; 4251 4252 /* 16-bit gamma code uses this equation: 4253 * 4254 * ov = table[(iv & 0xff) >> gamma_shift][iv >> 8] 4255 * 4256 * Where 'iv' is the input color value and 'ov' is the output value - 4257 * pow(iv, gamma). 4258 * 4259 * Thus the gamma table consists of up to 256 256-entry tables. The table 4260 * is selected by the (8-gamma_shift) most significant of the low 8 bits 4261 * of the color value then indexed by the upper 8 bits: 4262 * 4263 * table[low bits][high 8 bits] 4264 * 4265 * So the table 'n' corresponds to all those 'iv' of: 4266 * 4267 * <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1> 4268 * 4269 */ 4270 if (sig_bit > 0 && sig_bit < 16U) 4271 /* shift == insignificant bits */ 4272 shift = (png_byte)((16U - sig_bit) & 0xff); 4273 4274 else 4275 shift = 0; /* keep all 16 bits */ 4276 4277 if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0) 4278 { 4279 /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively 4280 * the significant bits in the *input* when the output will 4281 * eventually be 8 bits. By default it is 11. 4282 */ 4283 if (shift < (16U - PNG_MAX_GAMMA_8)) 4284 shift = (16U - PNG_MAX_GAMMA_8); 4285 } 4286 4287 if (shift > 8U) 4288 shift = 8U; /* Guarantees at least one table! */ 4289 4290 png_ptr->gamma_shift = shift; 4291 4292 /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now 4293 * PNG_COMPOSE). This effectively smashed the background calculation for 4294 * 16-bit output because the 8-bit table assumes the result will be 4295 * reduced to 8 bits. 4296 */ 4297 if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0) 4298 png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift, 4299 png_ptr->screen_gamma > 0 ? png_product2(png_ptr->colorspace.gamma, 4300 png_ptr->screen_gamma) : PNG_FP_1); 4301 4302 else 4303 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift, 4304 png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->colorspace.gamma, 4305 png_ptr->screen_gamma) : PNG_FP_1); 4306 4307 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ 4308 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ 4309 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) 4310 if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0) 4311 { 4312 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift, 4313 png_reciprocal(png_ptr->colorspace.gamma)); 4314 4315 /* Notice that the '16 from 1' table should be full precision, however 4316 * the lookup on this table still uses gamma_shift, so it can't be. 4317 * TODO: fix this. 4318 */ 4319 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift, 4320 png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) : 4321 png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */); 4322 } 4323 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ 4324 } 4325 #endif /* 16BIT */ 4326 } 4327 #endif /* READ_GAMMA */ 4328 4329 /* HARDWARE OR SOFTWARE OPTION SUPPORT */ 4330 #ifdef PNG_SET_OPTION_SUPPORTED 4331 int PNGAPI 4332 png_set_option(png_structrp png_ptr, int option, int onoff) 4333 { 4334 if (png_ptr != NULL && option >= 0 && option < PNG_OPTION_NEXT && 4335 (option & 1) == 0) 4336 { 4337 png_uint_32 mask = 3U << option; 4338 png_uint_32 setting = (2U + (onoff != 0)) << option; 4339 png_uint_32 current = png_ptr->options; 4340 4341 png_ptr->options = (png_uint_32)((current & ~mask) | setting); 4342 4343 return (int)(current & mask) >> option; 4344 } 4345 4346 return PNG_OPTION_INVALID; 4347 } 4348 #endif 4349 4350 /* sRGB support */ 4351 #if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\ 4352 defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) 4353 /* sRGB conversion tables; these are machine generated with the code in 4354 * contrib/tools/makesRGB.c. The actual sRGB transfer curve defined in the 4355 * specification (see the article at https://en.wikipedia.org/wiki/SRGB) 4356 * is used, not the gamma=1/2.2 approximation use elsewhere in libpng. 4357 * The sRGB to linear table is exact (to the nearest 16-bit linear fraction). 4358 * The inverse (linear to sRGB) table has accuracies as follows: 4359 * 4360 * For all possible (255*65535+1) input values: 4361 * 4362 * error: -0.515566 - 0.625971, 79441 (0.475369%) of readings inexact 4363 * 4364 * For the input values corresponding to the 65536 16-bit values: 4365 * 4366 * error: -0.513727 - 0.607759, 308 (0.469978%) of readings inexact 4367 * 4368 * In all cases the inexact readings are only off by one. 4369 */ 4370 4371 #ifdef PNG_SIMPLIFIED_READ_SUPPORTED 4372 /* The convert-to-sRGB table is only currently required for read. */ 4373 const png_uint_16 png_sRGB_table[256] = 4374 { 4375 0,20,40,60,80,99,119,139, 4376 159,179,199,219,241,264,288,313, 4377 340,367,396,427,458,491,526,562, 4378 599,637,677,718,761,805,851,898, 4379 947,997,1048,1101,1156,1212,1270,1330, 4380 1391,1453,1517,1583,1651,1720,1790,1863, 4381 1937,2013,2090,2170,2250,2333,2418,2504, 4382 2592,2681,2773,2866,2961,3058,3157,3258, 4383 3360,3464,3570,3678,3788,3900,4014,4129, 4384 4247,4366,4488,4611,4736,4864,4993,5124, 4385 5257,5392,5530,5669,5810,5953,6099,6246, 4386 6395,6547,6700,6856,7014,7174,7335,7500, 4387 7666,7834,8004,8177,8352,8528,8708,8889, 4388 9072,9258,9445,9635,9828,10022,10219,10417, 4389 10619,10822,11028,11235,11446,11658,11873,12090, 4390 12309,12530,12754,12980,13209,13440,13673,13909, 4391 14146,14387,14629,14874,15122,15371,15623,15878, 4392 16135,16394,16656,16920,17187,17456,17727,18001, 4393 18277,18556,18837,19121,19407,19696,19987,20281, 4394 20577,20876,21177,21481,21787,22096,22407,22721, 4395 23038,23357,23678,24002,24329,24658,24990,25325, 4396 25662,26001,26344,26688,27036,27386,27739,28094, 4397 28452,28813,29176,29542,29911,30282,30656,31033, 4398 31412,31794,32179,32567,32957,33350,33745,34143, 4399 34544,34948,35355,35764,36176,36591,37008,37429, 4400 37852,38278,38706,39138,39572,40009,40449,40891, 4401 41337,41785,42236,42690,43147,43606,44069,44534, 4402 45002,45473,45947,46423,46903,47385,47871,48359, 4403 48850,49344,49841,50341,50844,51349,51858,52369, 4404 52884,53401,53921,54445,54971,55500,56032,56567, 4405 57105,57646,58190,58737,59287,59840,60396,60955, 4406 61517,62082,62650,63221,63795,64372,64952,65535 4407 }; 4408 #endif /* SIMPLIFIED_READ */ 4409 4410 /* The base/delta tables are required for both read and write (but currently 4411 * only the simplified versions.) 4412 */ 4413 const png_uint_16 png_sRGB_base[512] = 4414 { 4415 128,1782,3383,4644,5675,6564,7357,8074, 4416 8732,9346,9921,10463,10977,11466,11935,12384, 4417 12816,13233,13634,14024,14402,14769,15125,15473, 4418 15812,16142,16466,16781,17090,17393,17690,17981, 4419 18266,18546,18822,19093,19359,19621,19879,20133, 4420 20383,20630,20873,21113,21349,21583,21813,22041, 4421 22265,22487,22707,22923,23138,23350,23559,23767, 4422 23972,24175,24376,24575,24772,24967,25160,25352, 4423 25542,25730,25916,26101,26284,26465,26645,26823, 4424 27000,27176,27350,27523,27695,27865,28034,28201, 4425 28368,28533,28697,28860,29021,29182,29341,29500, 4426 29657,29813,29969,30123,30276,30429,30580,30730, 4427 30880,31028,31176,31323,31469,31614,31758,31902, 4428 32045,32186,32327,32468,32607,32746,32884,33021, 4429 33158,33294,33429,33564,33697,33831,33963,34095, 4430 34226,34357,34486,34616,34744,34873,35000,35127, 4431 35253,35379,35504,35629,35753,35876,35999,36122, 4432 36244,36365,36486,36606,36726,36845,36964,37083, 4433 37201,37318,37435,37551,37668,37783,37898,38013, 4434 38127,38241,38354,38467,38580,38692,38803,38915, 4435 39026,39136,39246,39356,39465,39574,39682,39790, 4436 39898,40005,40112,40219,40325,40431,40537,40642, 4437 40747,40851,40955,41059,41163,41266,41369,41471, 4438 41573,41675,41777,41878,41979,42079,42179,42279, 4439 42379,42478,42577,42676,42775,42873,42971,43068, 4440 43165,43262,43359,43456,43552,43648,43743,43839, 4441 43934,44028,44123,44217,44311,44405,44499,44592, 4442 44685,44778,44870,44962,45054,45146,45238,45329, 4443 45420,45511,45601,45692,45782,45872,45961,46051, 4444 46140,46229,46318,46406,46494,46583,46670,46758, 4445 46846,46933,47020,47107,47193,47280,47366,47452, 4446 47538,47623,47709,47794,47879,47964,48048,48133, 4447 48217,48301,48385,48468,48552,48635,48718,48801, 4448 48884,48966,49048,49131,49213,49294,49376,49458, 4449 49539,49620,49701,49782,49862,49943,50023,50103, 4450 50183,50263,50342,50422,50501,50580,50659,50738, 4451 50816,50895,50973,51051,51129,51207,51285,51362, 4452 51439,51517,51594,51671,51747,51824,51900,51977, 4453 52053,52129,52205,52280,52356,52432,52507,52582, 4454 52657,52732,52807,52881,52956,53030,53104,53178, 4455 53252,53326,53400,53473,53546,53620,53693,53766, 4456 53839,53911,53984,54056,54129,54201,54273,54345, 4457 54417,54489,54560,54632,54703,54774,54845,54916, 4458 54987,55058,55129,55199,55269,55340,55410,55480, 4459 55550,55620,55689,55759,55828,55898,55967,56036, 4460 56105,56174,56243,56311,56380,56448,56517,56585, 4461 56653,56721,56789,56857,56924,56992,57059,57127, 4462 57194,57261,57328,57395,57462,57529,57595,57662, 4463 57728,57795,57861,57927,57993,58059,58125,58191, 4464 58256,58322,58387,58453,58518,58583,58648,58713, 4465 58778,58843,58908,58972,59037,59101,59165,59230, 4466 59294,59358,59422,59486,59549,59613,59677,59740, 4467 59804,59867,59930,59993,60056,60119,60182,60245, 4468 60308,60370,60433,60495,60558,60620,60682,60744, 4469 60806,60868,60930,60992,61054,61115,61177,61238, 4470 61300,61361,61422,61483,61544,61605,61666,61727, 4471 61788,61848,61909,61969,62030,62090,62150,62211, 4472 62271,62331,62391,62450,62510,62570,62630,62689, 4473 62749,62808,62867,62927,62986,63045,63104,63163, 4474 63222,63281,63340,63398,63457,63515,63574,63632, 4475 63691,63749,63807,63865,63923,63981,64039,64097, 4476 64155,64212,64270,64328,64385,64443,64500,64557, 4477 64614,64672,64729,64786,64843,64900,64956,65013, 4478 65070,65126,65183,65239,65296,65352,65409,65465 4479 }; 4480 4481 const png_byte png_sRGB_delta[512] = 4482 { 4483 207,201,158,129,113,100,90,82,77,72,68,64,61,59,56,54, 4484 52,50,49,47,46,45,43,42,41,40,39,39,38,37,36,36, 4485 35,34,34,33,33,32,32,31,31,30,30,30,29,29,28,28, 4486 28,27,27,27,27,26,26,26,25,25,25,25,24,24,24,24, 4487 23,23,23,23,23,22,22,22,22,22,22,21,21,21,21,21, 4488 21,20,20,20,20,20,20,20,20,19,19,19,19,19,19,19, 4489 19,18,18,18,18,18,18,18,18,18,18,17,17,17,17,17, 4490 17,17,17,17,17,17,16,16,16,16,16,16,16,16,16,16, 4491 16,16,16,16,15,15,15,15,15,15,15,15,15,15,15,15, 4492 15,15,15,15,14,14,14,14,14,14,14,14,14,14,14,14, 4493 14,14,14,14,14,14,14,13,13,13,13,13,13,13,13,13, 4494 13,13,13,13,13,13,13,13,13,13,13,13,13,13,12,12, 4495 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 4496 12,12,12,12,12,12,12,12,12,12,12,12,11,11,11,11, 4497 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 4498 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, 4499 11,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 4500 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 4501 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 4502 10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 4503 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 4504 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 4505 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 4506 9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 4507 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 4508 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 4509 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 4510 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 4511 8,8,8,8,8,8,8,8,8,7,7,7,7,7,7,7, 4512 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 4513 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 4514 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 4515 }; 4516 #endif /* SIMPLIFIED READ/WRITE sRGB support */ 4517 4518 /* SIMPLIFIED READ/WRITE SUPPORT */ 4519 #if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\ 4520 defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) 4521 static int 4522 png_image_free_function(png_voidp argument) 4523 { 4524 png_imagep image = png_voidcast(png_imagep, argument); 4525 png_controlp cp = image->opaque; 4526 png_control c; 4527 4528 /* Double check that we have a png_ptr - it should be impossible to get here 4529 * without one. 4530 */ 4531 if (cp->png_ptr == NULL) 4532 return 0; 4533 4534 /* First free any data held in the control structure. */ 4535 # ifdef PNG_STDIO_SUPPORTED 4536 if (cp->owned_file != 0) 4537 { 4538 FILE *fp = png_voidcast(FILE*, cp->png_ptr->io_ptr); 4539 cp->owned_file = 0; 4540 4541 /* Ignore errors here. */ 4542 if (fp != NULL) 4543 { 4544 cp->png_ptr->io_ptr = NULL; 4545 (void)fclose(fp); 4546 } 4547 } 4548 # endif 4549 4550 /* Copy the control structure so that the original, allocated, version can be 4551 * safely freed. Notice that a png_error here stops the remainder of the 4552 * cleanup, but this is probably fine because that would indicate bad memory 4553 * problems anyway. 4554 */ 4555 c = *cp; 4556 image->opaque = &c; 4557 png_free(c.png_ptr, cp); 4558 4559 /* Then the structures, calling the correct API. */ 4560 if (c.for_write != 0) 4561 { 4562 # ifdef PNG_SIMPLIFIED_WRITE_SUPPORTED 4563 png_destroy_write_struct(&c.png_ptr, &c.info_ptr); 4564 # else 4565 png_error(c.png_ptr, "simplified write not supported"); 4566 # endif 4567 } 4568 else 4569 { 4570 # ifdef PNG_SIMPLIFIED_READ_SUPPORTED 4571 png_destroy_read_struct(&c.png_ptr, &c.info_ptr, NULL); 4572 # else 4573 png_error(c.png_ptr, "simplified read not supported"); 4574 # endif 4575 } 4576 4577 /* Success. */ 4578 return 1; 4579 } 4580 4581 void PNGAPI 4582 png_image_free(png_imagep image) 4583 { 4584 /* Safely call the real function, but only if doing so is safe at this point 4585 * (if not inside an error handling context). Otherwise assume 4586 * png_safe_execute will call this API after the return. 4587 */ 4588 if (image != NULL && image->opaque != NULL && 4589 image->opaque->error_buf == NULL) 4590 { 4591 png_image_free_function(image); 4592 image->opaque = NULL; 4593 } 4594 } 4595 4596 int /* PRIVATE */ 4597 png_image_error(png_imagep image, png_const_charp error_message) 4598 { 4599 /* Utility to log an error. */ 4600 png_safecat(image->message, (sizeof image->message), 0, error_message); 4601 image->warning_or_error |= PNG_IMAGE_ERROR; 4602 png_image_free(image); 4603 return 0; 4604 } 4605 4606 #endif /* SIMPLIFIED READ/WRITE */ 4607 #endif /* READ || WRITE */ 4608