xref: /reactos/dll/3rdparty/libtiff/tif_getimage.c (revision 845faec4)
1 /* $Id: tif_getimage.c,v 1.114 2017-11-17 20:21:00 erouault Exp $ */
2 
3 /*
4  * Copyright (c) 1991-1997 Sam Leffler
5  * Copyright (c) 1991-1997 Silicon Graphics, Inc.
6  *
7  * Permission to use, copy, modify, distribute, and sell this software and
8  * its documentation for any purpose is hereby granted without fee, provided
9  * that (i) the above copyright notices and this permission notice appear in
10  * all copies of the software and related documentation, and (ii) the names of
11  * Sam Leffler and Silicon Graphics may not be used in any advertising or
12  * publicity relating to the software without the specific, prior written
13  * permission of Sam Leffler and Silicon Graphics.
14  *
15  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18  *
19  * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24  * OF THIS SOFTWARE.
25  */
26 
27 /*
28  * TIFF Library
29  *
30  * Read and return a packed RGBA image.
31  */
32 #include <precomp.h>
33 //#include <stdio.h>
34 
35 static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32);
36 static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
37 static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32);
38 static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
39 static int PickContigCase(TIFFRGBAImage*);
40 static int PickSeparateCase(TIFFRGBAImage*);
41 
42 static int BuildMapUaToAa(TIFFRGBAImage* img);
43 static int BuildMapBitdepth16To8(TIFFRGBAImage* img);
44 
45 static const char photoTag[] = "PhotometricInterpretation";
46 
47 /*
48  * Helper constants used in Orientation tag handling
49  */
50 #define FLIP_VERTICALLY 0x01
51 #define FLIP_HORIZONTALLY 0x02
52 
53 /*
54  * Color conversion constants. We will define display types here.
55  */
56 
57 static const TIFFDisplay display_sRGB = {
58 	{			/* XYZ -> luminance matrix */
59 		{  3.2410F, -1.5374F, -0.4986F },
60 		{  -0.9692F, 1.8760F, 0.0416F },
61 		{  0.0556F, -0.2040F, 1.0570F }
62 	},
63 	100.0F, 100.0F, 100.0F,	/* Light o/p for reference white */
64 	255, 255, 255,		/* Pixel values for ref. white */
65 	1.0F, 1.0F, 1.0F,	/* Residual light o/p for black pixel */
66 	2.4F, 2.4F, 2.4F,	/* Gamma values for the three guns */
67 };
68 
69 /*
70  * Check the image to see if TIFFReadRGBAImage can deal with it.
71  * 1/0 is returned according to whether or not the image can
72  * be handled.  If 0 is returned, emsg contains the reason
73  * why it is being rejected.
74  */
75 int
76 TIFFRGBAImageOK(TIFF* tif, char emsg[1024])
77 {
78 	TIFFDirectory* td = &tif->tif_dir;
79 	uint16 photometric;
80 	int colorchannels;
81 
82 	if (!tif->tif_decodestatus) {
83 		sprintf(emsg, "Sorry, requested compression method is not configured");
84 		return (0);
85 	}
86 	switch (td->td_bitspersample) {
87 		case 1:
88 		case 2:
89 		case 4:
90 		case 8:
91 		case 16:
92 			break;
93 		default:
94 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
95 			    td->td_bitspersample);
96 			return (0);
97 	}
98         if (td->td_sampleformat == SAMPLEFORMAT_IEEEFP) {
99                 sprintf(emsg, "Sorry, can not handle images with IEEE floating-point samples");
100                 return (0);
101         }
102 	colorchannels = td->td_samplesperpixel - td->td_extrasamples;
103 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
104 		switch (colorchannels) {
105 			case 1:
106 				photometric = PHOTOMETRIC_MINISBLACK;
107 				break;
108 			case 3:
109 				photometric = PHOTOMETRIC_RGB;
110 				break;
111 			default:
112 				sprintf(emsg, "Missing needed %s tag", photoTag);
113 				return (0);
114 		}
115 	}
116 	switch (photometric) {
117 		case PHOTOMETRIC_MINISWHITE:
118 		case PHOTOMETRIC_MINISBLACK:
119 		case PHOTOMETRIC_PALETTE:
120 			if (td->td_planarconfig == PLANARCONFIG_CONTIG
121 			    && td->td_samplesperpixel != 1
122 			    && td->td_bitspersample < 8 ) {
123 				sprintf(emsg,
124 				    "Sorry, can not handle contiguous data with %s=%d, "
125 				    "and %s=%d and Bits/Sample=%d",
126 				    photoTag, photometric,
127 				    "Samples/pixel", td->td_samplesperpixel,
128 				    td->td_bitspersample);
129 				return (0);
130 			}
131 			/*
132 			 * We should likely validate that any extra samples are either
133 			 * to be ignored, or are alpha, and if alpha we should try to use
134 			 * them.  But for now we won't bother with this.
135 			*/
136 			break;
137 		case PHOTOMETRIC_YCBCR:
138 			/*
139 			 * TODO: if at all meaningful and useful, make more complete
140 			 * support check here, or better still, refactor to let supporting
141 			 * code decide whether there is support and what meaningful
142 			 * error to return
143 			 */
144 			break;
145 		case PHOTOMETRIC_RGB:
146 			if (colorchannels < 3) {
147 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
148 				    "Color channels", colorchannels);
149 				return (0);
150 			}
151 			break;
152 		case PHOTOMETRIC_SEPARATED:
153 			{
154 				uint16 inkset;
155 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
156 				if (inkset != INKSET_CMYK) {
157 					sprintf(emsg,
158 					    "Sorry, can not handle separated image with %s=%d",
159 					    "InkSet", inkset);
160 					return 0;
161 				}
162 				if (td->td_samplesperpixel < 4) {
163 					sprintf(emsg,
164 					    "Sorry, can not handle separated image with %s=%d",
165 					    "Samples/pixel", td->td_samplesperpixel);
166 					return 0;
167 				}
168 				break;
169 			}
170 		case PHOTOMETRIC_LOGL:
171 			if (td->td_compression != COMPRESSION_SGILOG) {
172 				sprintf(emsg, "Sorry, LogL data must have %s=%d",
173 				    "Compression", COMPRESSION_SGILOG);
174 				return (0);
175 			}
176 			break;
177 		case PHOTOMETRIC_LOGLUV:
178 			if (td->td_compression != COMPRESSION_SGILOG &&
179 			    td->td_compression != COMPRESSION_SGILOG24) {
180 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
181 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
182 				return (0);
183 			}
184 			if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
185 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
186 				    "Planarconfiguration", td->td_planarconfig);
187 				return (0);
188 			}
189 			if ( td->td_samplesperpixel != 3 || colorchannels != 3 ) {
190                                 sprintf(emsg,
191                                         "Sorry, can not handle image with %s=%d, %s=%d",
192                                         "Samples/pixel", td->td_samplesperpixel,
193                                         "colorchannels", colorchannels);
194                                 return 0;
195                         }
196 			break;
197 		case PHOTOMETRIC_CIELAB:
198                         if ( td->td_samplesperpixel != 3 || colorchannels != 3 || td->td_bitspersample != 8 ) {
199                                 sprintf(emsg,
200                                         "Sorry, can not handle image with %s=%d, %s=%d and %s=%d",
201                                         "Samples/pixel", td->td_samplesperpixel,
202                                         "colorchannels", colorchannels,
203                                         "Bits/sample", td->td_bitspersample);
204                                 return 0;
205                         }
206 			break;
207                 default:
208 			sprintf(emsg, "Sorry, can not handle image with %s=%d",
209 			    photoTag, photometric);
210 			return (0);
211 	}
212 	return (1);
213 }
214 
215 void
216 TIFFRGBAImageEnd(TIFFRGBAImage* img)
217 {
218 	if (img->Map) {
219 		_TIFFfree(img->Map);
220 		img->Map = NULL;
221 	}
222 	if (img->BWmap) {
223 		_TIFFfree(img->BWmap);
224 		img->BWmap = NULL;
225 	}
226 	if (img->PALmap) {
227 		_TIFFfree(img->PALmap);
228 		img->PALmap = NULL;
229 	}
230 	if (img->ycbcr) {
231 		_TIFFfree(img->ycbcr);
232 		img->ycbcr = NULL;
233 	}
234 	if (img->cielab) {
235 		_TIFFfree(img->cielab);
236 		img->cielab = NULL;
237 	}
238 	if (img->UaToAa) {
239 		_TIFFfree(img->UaToAa);
240 		img->UaToAa = NULL;
241 	}
242 	if (img->Bitdepth16To8) {
243 		_TIFFfree(img->Bitdepth16To8);
244 		img->Bitdepth16To8 = NULL;
245 	}
246 
247 	if( img->redcmap ) {
248 		_TIFFfree( img->redcmap );
249 		_TIFFfree( img->greencmap );
250 		_TIFFfree( img->bluecmap );
251                 img->redcmap = img->greencmap = img->bluecmap = NULL;
252 	}
253 }
254 
255 static int
256 isCCITTCompression(TIFF* tif)
257 {
258     uint16 compress;
259     TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
260     return (compress == COMPRESSION_CCITTFAX3 ||
261 	    compress == COMPRESSION_CCITTFAX4 ||
262 	    compress == COMPRESSION_CCITTRLE ||
263 	    compress == COMPRESSION_CCITTRLEW);
264 }
265 
266 int
267 TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024])
268 {
269 	uint16* sampleinfo;
270 	uint16 extrasamples;
271 	uint16 planarconfig;
272 	uint16 compress;
273 	int colorchannels;
274 	uint16 *red_orig, *green_orig, *blue_orig;
275 	int n_color;
276 
277 	if( !TIFFRGBAImageOK(tif, emsg) )
278 		return 0;
279 
280 	/* Initialize to normal values */
281 	img->row_offset = 0;
282 	img->col_offset = 0;
283 	img->redcmap = NULL;
284 	img->greencmap = NULL;
285 	img->bluecmap = NULL;
286 	img->Map = NULL;
287 	img->BWmap = NULL;
288 	img->PALmap = NULL;
289 	img->ycbcr = NULL;
290 	img->cielab = NULL;
291 	img->UaToAa = NULL;
292 	img->Bitdepth16To8 = NULL;
293 	img->req_orientation = ORIENTATION_BOTLEFT;     /* It is the default */
294 
295 	img->tif = tif;
296 	img->stoponerr = stop;
297 	TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
298 	switch (img->bitspersample) {
299 		case 1:
300 		case 2:
301 		case 4:
302 		case 8:
303 		case 16:
304 			break;
305 		default:
306 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
307 			    img->bitspersample);
308 			goto fail_return;
309 	}
310 	img->alpha = 0;
311 	TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
312 	TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
313 	    &extrasamples, &sampleinfo);
314 	if (extrasamples >= 1)
315 	{
316 		switch (sampleinfo[0]) {
317 			case EXTRASAMPLE_UNSPECIFIED:          /* Workaround for some images without */
318 				if (img->samplesperpixel > 3)  /* correct info about alpha channel */
319 					img->alpha = EXTRASAMPLE_ASSOCALPHA;
320 				break;
321 			case EXTRASAMPLE_ASSOCALPHA:           /* data is pre-multiplied */
322 			case EXTRASAMPLE_UNASSALPHA:           /* data is not pre-multiplied */
323 				img->alpha = sampleinfo[0];
324 				break;
325 		}
326 	}
327 
328 #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA
329 	if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
330 		img->photometric = PHOTOMETRIC_MINISWHITE;
331 
332 	if( extrasamples == 0
333 	    && img->samplesperpixel == 4
334 	    && img->photometric == PHOTOMETRIC_RGB )
335 	{
336 		img->alpha = EXTRASAMPLE_ASSOCALPHA;
337 		extrasamples = 1;
338 	}
339 #endif
340 
341 	colorchannels = img->samplesperpixel - extrasamples;
342 	TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
343 	TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
344 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
345 		switch (colorchannels) {
346 			case 1:
347 				if (isCCITTCompression(tif))
348 					img->photometric = PHOTOMETRIC_MINISWHITE;
349 				else
350 					img->photometric = PHOTOMETRIC_MINISBLACK;
351 				break;
352 			case 3:
353 				img->photometric = PHOTOMETRIC_RGB;
354 				break;
355 			default:
356 				sprintf(emsg, "Missing needed %s tag", photoTag);
357                                 goto fail_return;
358 		}
359 	}
360 	switch (img->photometric) {
361 		case PHOTOMETRIC_PALETTE:
362 			if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
363 			    &red_orig, &green_orig, &blue_orig)) {
364 				sprintf(emsg, "Missing required \"Colormap\" tag");
365                                 goto fail_return;
366 			}
367 
368 			/* copy the colormaps so we can modify them */
369 			n_color = (1U << img->bitspersample);
370 			img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
371 			img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
372 			img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
373 			if( !img->redcmap || !img->greencmap || !img->bluecmap ) {
374 				sprintf(emsg, "Out of memory for colormap copy");
375                                 goto fail_return;
376 			}
377 
378 			_TIFFmemcpy( img->redcmap, red_orig, n_color * 2 );
379 			_TIFFmemcpy( img->greencmap, green_orig, n_color * 2 );
380 			_TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 );
381 
382 			/* fall through... */
383 		case PHOTOMETRIC_MINISWHITE:
384 		case PHOTOMETRIC_MINISBLACK:
385 			if (planarconfig == PLANARCONFIG_CONTIG
386 			    && img->samplesperpixel != 1
387 			    && img->bitspersample < 8 ) {
388 				sprintf(emsg,
389 				    "Sorry, can not handle contiguous data with %s=%d, "
390 				    "and %s=%d and Bits/Sample=%d",
391 				    photoTag, img->photometric,
392 				    "Samples/pixel", img->samplesperpixel,
393 				    img->bitspersample);
394                                 goto fail_return;
395 			}
396 			break;
397 		case PHOTOMETRIC_YCBCR:
398 			/* It would probably be nice to have a reality check here. */
399 			if (planarconfig == PLANARCONFIG_CONTIG)
400 				/* can rely on libjpeg to convert to RGB */
401 				/* XXX should restore current state on exit */
402 				switch (compress) {
403 					case COMPRESSION_JPEG:
404 						/*
405 						 * TODO: when complete tests verify complete desubsampling
406 						 * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in
407 						 * favor of tif_getimage.c native handling
408 						 */
409 						TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
410 						img->photometric = PHOTOMETRIC_RGB;
411 						break;
412 					default:
413 						/* do nothing */;
414 						break;
415 				}
416 			/*
417 			 * TODO: if at all meaningful and useful, make more complete
418 			 * support check here, or better still, refactor to let supporting
419 			 * code decide whether there is support and what meaningful
420 			 * error to return
421 			 */
422 			break;
423 		case PHOTOMETRIC_RGB:
424 			if (colorchannels < 3) {
425 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
426 				    "Color channels", colorchannels);
427                                 goto fail_return;
428 			}
429 			break;
430 		case PHOTOMETRIC_SEPARATED:
431 			{
432 				uint16 inkset;
433 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
434 				if (inkset != INKSET_CMYK) {
435 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
436 					    "InkSet", inkset);
437                                         goto fail_return;
438 				}
439 				if (img->samplesperpixel < 4) {
440 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
441 					    "Samples/pixel", img->samplesperpixel);
442                                         goto fail_return;
443 				}
444 			}
445 			break;
446 		case PHOTOMETRIC_LOGL:
447 			if (compress != COMPRESSION_SGILOG) {
448 				sprintf(emsg, "Sorry, LogL data must have %s=%d",
449 				    "Compression", COMPRESSION_SGILOG);
450                                 goto fail_return;
451 			}
452 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
453 			img->photometric = PHOTOMETRIC_MINISBLACK;	/* little white lie */
454 			img->bitspersample = 8;
455 			break;
456 		case PHOTOMETRIC_LOGLUV:
457 			if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
458 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
459 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
460                                 goto fail_return;
461 			}
462 			if (planarconfig != PLANARCONFIG_CONTIG) {
463 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
464 				    "Planarconfiguration", planarconfig);
465 				return (0);
466 			}
467 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
468 			img->photometric = PHOTOMETRIC_RGB;		/* little white lie */
469 			img->bitspersample = 8;
470 			break;
471 		case PHOTOMETRIC_CIELAB:
472 			break;
473 		default:
474 			sprintf(emsg, "Sorry, can not handle image with %s=%d",
475 			    photoTag, img->photometric);
476                         goto fail_return;
477 	}
478 	TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
479 	TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
480 	TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
481 	img->isContig =
482 	    !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1);
483 	if (img->isContig) {
484 		if (!PickContigCase(img)) {
485 			sprintf(emsg, "Sorry, can not handle image");
486 			goto fail_return;
487 		}
488 	} else {
489 		if (!PickSeparateCase(img)) {
490 			sprintf(emsg, "Sorry, can not handle image");
491 			goto fail_return;
492 		}
493 	}
494 	return 1;
495 
496   fail_return:
497         TIFFRGBAImageEnd( img );
498         return 0;
499 }
500 
501 int
502 TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
503 {
504     if (img->get == NULL) {
505 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup");
506 		return (0);
507 	}
508 	if (img->put.any == NULL) {
509 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
510 		"No \"put\" routine setupl; probably can not handle image format");
511 		return (0);
512     }
513     return (*img->get)(img, raster, w, h);
514 }
515 
516 /*
517  * Read the specified image into an ABGR-format rastertaking in account
518  * specified orientation.
519  */
520 int
521 TIFFReadRGBAImageOriented(TIFF* tif,
522 			  uint32 rwidth, uint32 rheight, uint32* raster,
523 			  int orientation, int stop)
524 {
525     char emsg[1024] = "";
526     TIFFRGBAImage img;
527     int ok;
528 
529 	if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) {
530 		img.req_orientation = (uint16)orientation;
531 		/* XXX verify rwidth and rheight against width and height */
532 		ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth,
533 			rwidth, img.height);
534 		TIFFRGBAImageEnd(&img);
535 	} else {
536 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
537 		ok = 0;
538     }
539     return (ok);
540 }
541 
542 /*
543  * Read the specified image into an ABGR-format raster. Use bottom left
544  * origin for raster by default.
545  */
546 int
547 TIFFReadRGBAImage(TIFF* tif,
548 		  uint32 rwidth, uint32 rheight, uint32* raster, int stop)
549 {
550 	return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster,
551 					 ORIENTATION_BOTLEFT, stop);
552 }
553 
554 static int
555 setorientation(TIFFRGBAImage* img)
556 {
557 	switch (img->orientation) {
558 		case ORIENTATION_TOPLEFT:
559 		case ORIENTATION_LEFTTOP:
560 			if (img->req_orientation == ORIENTATION_TOPRIGHT ||
561 			    img->req_orientation == ORIENTATION_RIGHTTOP)
562 				return FLIP_HORIZONTALLY;
563 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
564 			    img->req_orientation == ORIENTATION_RIGHTBOT)
565 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
566 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
567 			    img->req_orientation == ORIENTATION_LEFTBOT)
568 				return FLIP_VERTICALLY;
569 			else
570 				return 0;
571 		case ORIENTATION_TOPRIGHT:
572 		case ORIENTATION_RIGHTTOP:
573 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
574 			    img->req_orientation == ORIENTATION_LEFTTOP)
575 				return FLIP_HORIZONTALLY;
576 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
577 			    img->req_orientation == ORIENTATION_RIGHTBOT)
578 				return FLIP_VERTICALLY;
579 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
580 			    img->req_orientation == ORIENTATION_LEFTBOT)
581 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
582 			else
583 				return 0;
584 		case ORIENTATION_BOTRIGHT:
585 		case ORIENTATION_RIGHTBOT:
586 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
587 			    img->req_orientation == ORIENTATION_LEFTTOP)
588 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
589 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
590 			    img->req_orientation == ORIENTATION_RIGHTTOP)
591 				return FLIP_VERTICALLY;
592 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
593 			    img->req_orientation == ORIENTATION_LEFTBOT)
594 				return FLIP_HORIZONTALLY;
595 			else
596 				return 0;
597 		case ORIENTATION_BOTLEFT:
598 		case ORIENTATION_LEFTBOT:
599 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
600 			    img->req_orientation == ORIENTATION_LEFTTOP)
601 				return FLIP_VERTICALLY;
602 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
603 			    img->req_orientation == ORIENTATION_RIGHTTOP)
604 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
605 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
606 			    img->req_orientation == ORIENTATION_RIGHTBOT)
607 				return FLIP_HORIZONTALLY;
608 			else
609 				return 0;
610 		default:	/* NOTREACHED */
611 			return 0;
612 	}
613 }
614 
615 /*
616  * Get an tile-organized image that has
617  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
618  * or
619  *	SamplesPerPixel == 1
620  */
621 static int
622 gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
623 {
624     TIFF* tif = img->tif;
625     tileContigRoutine put = img->put.contig;
626     uint32 col, row, y, rowstoread;
627     tmsize_t pos;
628     uint32 tw, th;
629     unsigned char* buf = NULL;
630     int32 fromskew, toskew;
631     uint32 nrow;
632     int ret = 1, flip;
633     uint32 this_tw, tocol;
634     int32 this_toskew, leftmost_toskew;
635     int32 leftmost_fromskew;
636     uint32 leftmost_tw;
637     tmsize_t bufsize;
638 
639     bufsize = TIFFTileSize(tif);
640     if (bufsize == 0) {
641         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
642         return (0);
643     }
644 
645     TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
646     TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
647 
648     flip = setorientation(img);
649     if (flip & FLIP_VERTICALLY) {
650 	    y = h - 1;
651 	    toskew = -(int32)(tw + w);
652     }
653     else {
654 	    y = 0;
655 	    toskew = -(int32)(tw - w);
656     }
657 
658     /*
659      *	Leftmost tile is clipped on left side if col_offset > 0.
660      */
661     leftmost_fromskew = img->col_offset % tw;
662     leftmost_tw = tw - leftmost_fromskew;
663     leftmost_toskew = toskew + leftmost_fromskew;
664     for (row = 0; ret != 0 && row < h; row += nrow)
665     {
666         rowstoread = th - (row + img->row_offset) % th;
667     	nrow = (row + rowstoread > h ? h - row : rowstoread);
668 	fromskew = leftmost_fromskew;
669 	this_tw = leftmost_tw;
670 	this_toskew = leftmost_toskew;
671 	tocol = 0;
672 	col = img->col_offset;
673 	while (tocol < w)
674         {
675 	    if (_TIFFReadTileAndAllocBuffer(tif, (void**) &buf, bufsize, col,
676 			     row+img->row_offset, 0, 0)==(tmsize_t)(-1) &&
677                 (buf == NULL || img->stoponerr))
678             {
679                 ret = 0;
680                 break;
681             }
682             pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
683 		   ((tmsize_t) fromskew * img->samplesperpixel);
684 	    if (tocol + this_tw > w)
685 	    {
686 		/*
687 		 * Rightmost tile is clipped on right side.
688 		 */
689 		fromskew = tw - (w - tocol);
690 		this_tw = tw - fromskew;
691 		this_toskew = toskew + fromskew;
692 	    }
693 	    (*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, buf + pos);
694 	    tocol += this_tw;
695 	    col += this_tw;
696 	    /*
697 	     * After the leftmost tile, tiles are no longer clipped on left side.
698 	     */
699 	    fromskew = 0;
700 	    this_tw = tw;
701 	    this_toskew = toskew;
702 	}
703 
704         y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
705     }
706     _TIFFfree(buf);
707 
708     if (flip & FLIP_HORIZONTALLY) {
709 	    uint32 line;
710 
711 	    for (line = 0; line < h; line++) {
712 		    uint32 *left = raster + (line * w);
713 		    uint32 *right = left + w - 1;
714 
715 		    while ( left < right ) {
716 			    uint32 temp = *left;
717 			    *left = *right;
718 			    *right = temp;
719 			    left++;
720 				right--;
721 		    }
722 	    }
723     }
724 
725     return (ret);
726 }
727 
728 /*
729  * Get an tile-organized image that has
730  *	 SamplesPerPixel > 1
731  *	 PlanarConfiguration separated
732  * We assume that all such images are RGB.
733  */
734 static int
735 gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
736 {
737 	TIFF* tif = img->tif;
738 	tileSeparateRoutine put = img->put.separate;
739 	uint32 col, row, y, rowstoread;
740 	tmsize_t pos;
741 	uint32 tw, th;
742 	unsigned char* buf = NULL;
743 	unsigned char* p0 = NULL;
744 	unsigned char* p1 = NULL;
745 	unsigned char* p2 = NULL;
746 	unsigned char* pa = NULL;
747 	tmsize_t tilesize;
748 	tmsize_t bufsize;
749 	int32 fromskew, toskew;
750 	int alpha = img->alpha;
751 	uint32 nrow;
752 	int ret = 1, flip;
753         uint16 colorchannels;
754 	uint32 this_tw, tocol;
755 	int32 this_toskew, leftmost_toskew;
756 	int32 leftmost_fromskew;
757 	uint32 leftmost_tw;
758 
759 	tilesize = TIFFTileSize(tif);
760 	bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize);
761 	if (bufsize == 0) {
762 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtTileSeparate");
763 		return (0);
764 	}
765 
766 	TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
767 	TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
768 
769 	flip = setorientation(img);
770 	if (flip & FLIP_VERTICALLY) {
771 		y = h - 1;
772 		toskew = -(int32)(tw + w);
773 	}
774 	else {
775 		y = 0;
776 		toskew = -(int32)(tw - w);
777 	}
778 
779         switch( img->photometric )
780         {
781           case PHOTOMETRIC_MINISWHITE:
782           case PHOTOMETRIC_MINISBLACK:
783           case PHOTOMETRIC_PALETTE:
784             colorchannels = 1;
785             break;
786 
787           default:
788             colorchannels = 3;
789             break;
790         }
791 
792 	/*
793 	 *	Leftmost tile is clipped on left side if col_offset > 0.
794 	 */
795 	leftmost_fromskew = img->col_offset % tw;
796 	leftmost_tw = tw - leftmost_fromskew;
797 	leftmost_toskew = toskew + leftmost_fromskew;
798 	for (row = 0; ret != 0 && row < h; row += nrow)
799 	{
800 		rowstoread = th - (row + img->row_offset) % th;
801 		nrow = (row + rowstoread > h ? h - row : rowstoread);
802 		fromskew = leftmost_fromskew;
803 		this_tw = leftmost_tw;
804 		this_toskew = leftmost_toskew;
805 		tocol = 0;
806 		col = img->col_offset;
807 		while (tocol < w)
808 		{
809                         if( buf == NULL )
810                         {
811                             if (_TIFFReadTileAndAllocBuffer(
812                                     tif, (void**) &buf, bufsize, col,
813                                     row+img->row_offset,0,0)==(tmsize_t)(-1)
814                                 && (buf == NULL || img->stoponerr))
815                             {
816                                     ret = 0;
817                                     break;
818                             }
819                             p0 = buf;
820                             if( colorchannels == 1 )
821                             {
822                                 p2 = p1 = p0;
823                                 pa = (alpha?(p0+3*tilesize):NULL);
824                             }
825                             else
826                             {
827                                 p1 = p0 + tilesize;
828                                 p2 = p1 + tilesize;
829                                 pa = (alpha?(p2+tilesize):NULL);
830                             }
831                         }
832 			else if (TIFFReadTile(tif, p0, col,
833 			    row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr)
834 			{
835 				ret = 0;
836 				break;
837 			}
838 			if (colorchannels > 1
839                             && TIFFReadTile(tif, p1, col,
840                                             row+img->row_offset,0,1) == (tmsize_t)(-1)
841                             && img->stoponerr)
842 			{
843 				ret = 0;
844 				break;
845 			}
846 			if (colorchannels > 1
847                             && TIFFReadTile(tif, p2, col,
848                                             row+img->row_offset,0,2) == (tmsize_t)(-1)
849                             && img->stoponerr)
850 			{
851 				ret = 0;
852 				break;
853 			}
854 			if (alpha
855                             && TIFFReadTile(tif,pa,col,
856                                             row+img->row_offset,0,colorchannels) == (tmsize_t)(-1)
857                             && img->stoponerr)
858                         {
859                             ret = 0;
860                             break;
861 			}
862 
863 			pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
864 			   ((tmsize_t) fromskew * img->samplesperpixel);
865 			if (tocol + this_tw > w)
866 			{
867 				/*
868 				 * Rightmost tile is clipped on right side.
869 				 */
870 				fromskew = tw - (w - tocol);
871 				this_tw = tw - fromskew;
872 				this_toskew = toskew + fromskew;
873 			}
874 			(*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, \
875 				p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL));
876 			tocol += this_tw;
877 			col += this_tw;
878 			/*
879 			* After the leftmost tile, tiles are no longer clipped on left side.
880 			*/
881 			fromskew = 0;
882 			this_tw = tw;
883 			this_toskew = toskew;
884 		}
885 
886 		y += ((flip & FLIP_VERTICALLY) ?-(int32) nrow : (int32) nrow);
887 	}
888 
889 	if (flip & FLIP_HORIZONTALLY) {
890 		uint32 line;
891 
892 		for (line = 0; line < h; line++) {
893 			uint32 *left = raster + (line * w);
894 			uint32 *right = left + w - 1;
895 
896 			while ( left < right ) {
897 				uint32 temp = *left;
898 				*left = *right;
899 				*right = temp;
900 				left++;
901 				right--;
902 			}
903 		}
904 	}
905 
906 	_TIFFfree(buf);
907 	return (ret);
908 }
909 
910 /*
911  * Get a strip-organized image that has
912  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
913  * or
914  *	SamplesPerPixel == 1
915  */
916 static int
917 gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
918 {
919 	TIFF* tif = img->tif;
920 	tileContigRoutine put = img->put.contig;
921 	uint32 row, y, nrow, nrowsub, rowstoread;
922 	tmsize_t pos;
923 	unsigned char* buf = NULL;
924 	uint32 rowsperstrip;
925 	uint16 subsamplinghor,subsamplingver;
926 	uint32 imagewidth = img->width;
927 	tmsize_t scanline;
928 	int32 fromskew, toskew;
929 	int ret = 1, flip;
930         tmsize_t maxstripsize;
931 
932 	TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver);
933 	if( subsamplingver == 0 ) {
934 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Invalid vertical YCbCr subsampling");
935 		return (0);
936 	}
937 
938 	maxstripsize = TIFFStripSize(tif);
939 
940 	flip = setorientation(img);
941 	if (flip & FLIP_VERTICALLY) {
942 		y = h - 1;
943 		toskew = -(int32)(w + w);
944 	} else {
945 		y = 0;
946 		toskew = -(int32)(w - w);
947 	}
948 
949 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
950 
951 	scanline = TIFFScanlineSize(tif);
952 	fromskew = (w < imagewidth ? imagewidth - w : 0);
953 	for (row = 0; row < h; row += nrow)
954 	{
955 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
956 		nrow = (row + rowstoread > h ? h - row : rowstoread);
957 		nrowsub = nrow;
958 		if ((nrowsub%subsamplingver)!=0)
959 			nrowsub+=subsamplingver-nrowsub%subsamplingver;
960 		if (_TIFFReadEncodedStripAndAllocBuffer(tif,
961 		    TIFFComputeStrip(tif,row+img->row_offset, 0),
962 		    (void**)(&buf),
963                     maxstripsize,
964 		    ((row + img->row_offset)%rowsperstrip + nrowsub) * scanline)==(tmsize_t)(-1)
965 		    && (buf == NULL || img->stoponerr))
966 		{
967 			ret = 0;
968 			break;
969 		}
970 
971 		pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
972 			((tmsize_t) img->col_offset * img->samplesperpixel);
973 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos);
974 		y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
975 	}
976 
977 	if (flip & FLIP_HORIZONTALLY) {
978 		uint32 line;
979 
980 		for (line = 0; line < h; line++) {
981 			uint32 *left = raster + (line * w);
982 			uint32 *right = left + w - 1;
983 
984 			while ( left < right ) {
985 				uint32 temp = *left;
986 				*left = *right;
987 				*right = temp;
988 				left++;
989 				right--;
990 			}
991 		}
992 	}
993 
994 	_TIFFfree(buf);
995 	return (ret);
996 }
997 
998 /*
999  * Get a strip-organized image with
1000  *	 SamplesPerPixel > 1
1001  *	 PlanarConfiguration separated
1002  * We assume that all such images are RGB.
1003  */
1004 static int
1005 gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
1006 {
1007 	TIFF* tif = img->tif;
1008 	tileSeparateRoutine put = img->put.separate;
1009 	unsigned char *buf = NULL;
1010 	unsigned char *p0 = NULL, *p1 = NULL, *p2 = NULL, *pa = NULL;
1011 	uint32 row, y, nrow, rowstoread;
1012 	tmsize_t pos;
1013 	tmsize_t scanline;
1014 	uint32 rowsperstrip, offset_row;
1015 	uint32 imagewidth = img->width;
1016 	tmsize_t stripsize;
1017 	tmsize_t bufsize;
1018 	int32 fromskew, toskew;
1019 	int alpha = img->alpha;
1020 	int ret = 1, flip;
1021         uint16 colorchannels;
1022 
1023 	stripsize = TIFFStripSize(tif);
1024 	bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize);
1025 	if (bufsize == 0) {
1026 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtStripSeparate");
1027 		return (0);
1028 	}
1029 
1030 	flip = setorientation(img);
1031 	if (flip & FLIP_VERTICALLY) {
1032 		y = h - 1;
1033 		toskew = -(int32)(w + w);
1034 	}
1035 	else {
1036 		y = 0;
1037 		toskew = -(int32)(w - w);
1038 	}
1039 
1040         switch( img->photometric )
1041         {
1042           case PHOTOMETRIC_MINISWHITE:
1043           case PHOTOMETRIC_MINISBLACK:
1044           case PHOTOMETRIC_PALETTE:
1045             colorchannels = 1;
1046             break;
1047 
1048           default:
1049             colorchannels = 3;
1050             break;
1051         }
1052 
1053 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
1054 	scanline = TIFFScanlineSize(tif);
1055 	fromskew = (w < imagewidth ? imagewidth - w : 0);
1056 	for (row = 0; row < h; row += nrow)
1057 	{
1058 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
1059 		nrow = (row + rowstoread > h ? h - row : rowstoread);
1060 		offset_row = row + img->row_offset;
1061                 if( buf == NULL )
1062                 {
1063                     if (_TIFFReadEncodedStripAndAllocBuffer(
1064                             tif, TIFFComputeStrip(tif, offset_row, 0),
1065                             (void**) &buf, bufsize,
1066                             ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1067                         && (buf == NULL || img->stoponerr))
1068                     {
1069                             ret = 0;
1070                             break;
1071                     }
1072                     p0 = buf;
1073                     if( colorchannels == 1 )
1074                     {
1075                         p2 = p1 = p0;
1076                         pa = (alpha?(p0+3*stripsize):NULL);
1077                     }
1078                     else
1079                     {
1080                         p1 = p0 + stripsize;
1081                         p2 = p1 + stripsize;
1082                         pa = (alpha?(p2+stripsize):NULL);
1083                     }
1084                 }
1085 		else if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
1086 		    p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1087 		    && img->stoponerr)
1088 		{
1089 			ret = 0;
1090 			break;
1091 		}
1092 		if (colorchannels > 1
1093                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1),
1094                                             p1, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
1095 		    && img->stoponerr)
1096 		{
1097 			ret = 0;
1098 			break;
1099 		}
1100 		if (colorchannels > 1
1101                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2),
1102                                             p2, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
1103 		    && img->stoponerr)
1104 		{
1105 			ret = 0;
1106 			break;
1107 		}
1108 		if (alpha)
1109 		{
1110 			if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels),
1111 			    pa, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1112 			    && img->stoponerr)
1113 			{
1114 				ret = 0;
1115 				break;
1116 			}
1117 		}
1118 
1119 		pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
1120 			((tmsize_t) img->col_offset * img->samplesperpixel);
1121 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos,
1122 		    p2 + pos, (alpha?(pa+pos):NULL));
1123 		y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
1124 	}
1125 
1126 	if (flip & FLIP_HORIZONTALLY) {
1127 		uint32 line;
1128 
1129 		for (line = 0; line < h; line++) {
1130 			uint32 *left = raster + (line * w);
1131 			uint32 *right = left + w - 1;
1132 
1133 			while ( left < right ) {
1134 				uint32 temp = *left;
1135 				*left = *right;
1136 				*right = temp;
1137 				left++;
1138 				right--;
1139 			}
1140 		}
1141 	}
1142 
1143 	_TIFFfree(buf);
1144 	return (ret);
1145 }
1146 
1147 /*
1148  * The following routines move decoded data returned
1149  * from the TIFF library into rasters filled with packed
1150  * ABGR pixels (i.e. suitable for passing to lrecwrite.)
1151  *
1152  * The routines have been created according to the most
1153  * important cases and optimized.  PickContigCase and
1154  * PickSeparateCase analyze the parameters and select
1155  * the appropriate "get" and "put" routine to use.
1156  */
1157 #define	REPEAT8(op)	REPEAT4(op); REPEAT4(op)
1158 #define	REPEAT4(op)	REPEAT2(op); REPEAT2(op)
1159 #define	REPEAT2(op)	op; op
1160 #define	CASE8(x,op)			\
1161     switch (x) {			\
1162     case 7: op; /*-fallthrough*/ \
1163     case 6: op; /*-fallthrough*/ \
1164     case 5: op; /*-fallthrough*/ \
1165     case 4: op; /*-fallthrough*/ \
1166     case 3: op; /*-fallthrough*/ \
1167     case 2: op; /*-fallthrough*/ \
1168     case 1: op;				\
1169     }
1170 #define	CASE4(x,op)	switch (x) { case 3: op; /*-fallthrough*/ case 2: op; /*-fallthrough*/ case 1: op; }
1171 #define	NOP
1172 
1173 #define	UNROLL8(w, op1, op2) {		\
1174     uint32 _x;				\
1175     for (_x = w; _x >= 8; _x -= 8) {	\
1176 	op1;				\
1177 	REPEAT8(op2);			\
1178     }					\
1179     if (_x > 0) {			\
1180 	op1;				\
1181 	CASE8(_x,op2);			\
1182     }					\
1183 }
1184 #define	UNROLL4(w, op1, op2) {		\
1185     uint32 _x;				\
1186     for (_x = w; _x >= 4; _x -= 4) {	\
1187 	op1;				\
1188 	REPEAT4(op2);			\
1189     }					\
1190     if (_x > 0) {			\
1191 	op1;				\
1192 	CASE4(_x,op2);			\
1193     }					\
1194 }
1195 #define	UNROLL2(w, op1, op2) {		\
1196     uint32 _x;				\
1197     for (_x = w; _x >= 2; _x -= 2) {	\
1198 	op1;				\
1199 	REPEAT2(op2);			\
1200     }					\
1201     if (_x) {				\
1202 	op1;				\
1203 	op2;				\
1204     }					\
1205 }
1206 
1207 #define	SKEW(r,g,b,skew)	{ r += skew; g += skew; b += skew; }
1208 #define	SKEW4(r,g,b,a,skew)	{ r += skew; g += skew; b += skew; a+= skew; }
1209 
1210 #define A1 (((uint32)0xffL)<<24)
1211 #define	PACK(r,g,b)	\
1212 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1)
1213 #define	PACK4(r,g,b,a)	\
1214 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24))
1215 #define W2B(v) (((v)>>8)&0xff)
1216 /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */
1217 #define	PACKW(r,g,b)	\
1218 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1)
1219 #define	PACKW4(r,g,b,a)	\
1220 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24))
1221 
1222 #define	DECLAREContigPutFunc(name) \
1223 static void name(\
1224     TIFFRGBAImage* img, \
1225     uint32* cp, \
1226     uint32 x, uint32 y, \
1227     uint32 w, uint32 h, \
1228     int32 fromskew, int32 toskew, \
1229     unsigned char* pp \
1230 )
1231 
1232 /*
1233  * 8-bit palette => colormap/RGB
1234  */
1235 DECLAREContigPutFunc(put8bitcmaptile)
1236 {
1237     uint32** PALmap = img->PALmap;
1238     int samplesperpixel = img->samplesperpixel;
1239 
1240     (void) y;
1241     for( ; h > 0; --h) {
1242 	for (x = w; x > 0; --x)
1243         {
1244 	    *cp++ = PALmap[*pp][0];
1245             pp += samplesperpixel;
1246         }
1247 	cp += toskew;
1248 	pp += fromskew;
1249     }
1250 }
1251 
1252 /*
1253  * 4-bit palette => colormap/RGB
1254  */
1255 DECLAREContigPutFunc(put4bitcmaptile)
1256 {
1257     uint32** PALmap = img->PALmap;
1258 
1259     (void) x; (void) y;
1260     fromskew /= 2;
1261     for( ; h > 0; --h) {
1262 	uint32* bw;
1263 	UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
1264 	cp += toskew;
1265 	pp += fromskew;
1266     }
1267 }
1268 
1269 /*
1270  * 2-bit palette => colormap/RGB
1271  */
1272 DECLAREContigPutFunc(put2bitcmaptile)
1273 {
1274     uint32** PALmap = img->PALmap;
1275 
1276     (void) x; (void) y;
1277     fromskew /= 4;
1278     for( ; h > 0; --h) {
1279 	uint32* bw;
1280 	UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
1281 	cp += toskew;
1282 	pp += fromskew;
1283     }
1284 }
1285 
1286 /*
1287  * 1-bit palette => colormap/RGB
1288  */
1289 DECLAREContigPutFunc(put1bitcmaptile)
1290 {
1291     uint32** PALmap = img->PALmap;
1292 
1293     (void) x; (void) y;
1294     fromskew /= 8;
1295     for( ; h > 0; --h) {
1296 	uint32* bw;
1297 	UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
1298 	cp += toskew;
1299 	pp += fromskew;
1300     }
1301 }
1302 
1303 /*
1304  * 8-bit greyscale => colormap/RGB
1305  */
1306 DECLAREContigPutFunc(putgreytile)
1307 {
1308     int samplesperpixel = img->samplesperpixel;
1309     uint32** BWmap = img->BWmap;
1310 
1311     (void) y;
1312     for( ; h > 0; --h) {
1313 	for (x = w; x > 0; --x)
1314         {
1315 	    *cp++ = BWmap[*pp][0];
1316             pp += samplesperpixel;
1317         }
1318 	cp += toskew;
1319 	pp += fromskew;
1320     }
1321 }
1322 
1323 /*
1324  * 8-bit greyscale with associated alpha => colormap/RGBA
1325  */
1326 DECLAREContigPutFunc(putagreytile)
1327 {
1328     int samplesperpixel = img->samplesperpixel;
1329     uint32** BWmap = img->BWmap;
1330 
1331     (void) y;
1332     for( ; h > 0; --h) {
1333 	for (x = w; x > 0; --x)
1334         {
1335             *cp++ = BWmap[*pp][0] & ((uint32)*(pp+1) << 24 | ~A1);
1336             pp += samplesperpixel;
1337         }
1338 	cp += toskew;
1339 	pp += fromskew;
1340     }
1341 }
1342 
1343 /*
1344  * 16-bit greyscale => colormap/RGB
1345  */
1346 DECLAREContigPutFunc(put16bitbwtile)
1347 {
1348     int samplesperpixel = img->samplesperpixel;
1349     uint32** BWmap = img->BWmap;
1350 
1351     (void) y;
1352     for( ; h > 0; --h) {
1353         uint16 *wp = (uint16 *) pp;
1354 
1355 	for (x = w; x > 0; --x)
1356         {
1357             /* use high order byte of 16bit value */
1358 
1359 	    *cp++ = BWmap[*wp >> 8][0];
1360             pp += 2 * samplesperpixel;
1361             wp += samplesperpixel;
1362         }
1363 	cp += toskew;
1364 	pp += fromskew;
1365     }
1366 }
1367 
1368 /*
1369  * 1-bit bilevel => colormap/RGB
1370  */
1371 DECLAREContigPutFunc(put1bitbwtile)
1372 {
1373     uint32** BWmap = img->BWmap;
1374 
1375     (void) x; (void) y;
1376     fromskew /= 8;
1377     for( ; h > 0; --h) {
1378 	uint32* bw;
1379 	UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
1380 	cp += toskew;
1381 	pp += fromskew;
1382     }
1383 }
1384 
1385 /*
1386  * 2-bit greyscale => colormap/RGB
1387  */
1388 DECLAREContigPutFunc(put2bitbwtile)
1389 {
1390     uint32** BWmap = img->BWmap;
1391 
1392     (void) x; (void) y;
1393     fromskew /= 4;
1394     for( ; h > 0; --h) {
1395 	uint32* bw;
1396 	UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
1397 	cp += toskew;
1398 	pp += fromskew;
1399     }
1400 }
1401 
1402 /*
1403  * 4-bit greyscale => colormap/RGB
1404  */
1405 DECLAREContigPutFunc(put4bitbwtile)
1406 {
1407     uint32** BWmap = img->BWmap;
1408 
1409     (void) x; (void) y;
1410     fromskew /= 2;
1411     for( ; h > 0; --h) {
1412 	uint32* bw;
1413 	UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
1414 	cp += toskew;
1415 	pp += fromskew;
1416     }
1417 }
1418 
1419 /*
1420  * 8-bit packed samples, no Map => RGB
1421  */
1422 DECLAREContigPutFunc(putRGBcontig8bittile)
1423 {
1424     int samplesperpixel = img->samplesperpixel;
1425 
1426     (void) x; (void) y;
1427     fromskew *= samplesperpixel;
1428     for( ; h > 0; --h) {
1429 	UNROLL8(w, NOP,
1430 	    *cp++ = PACK(pp[0], pp[1], pp[2]);
1431 	    pp += samplesperpixel);
1432 	cp += toskew;
1433 	pp += fromskew;
1434     }
1435 }
1436 
1437 /*
1438  * 8-bit packed samples => RGBA w/ associated alpha
1439  * (known to have Map == NULL)
1440  */
1441 DECLAREContigPutFunc(putRGBAAcontig8bittile)
1442 {
1443     int samplesperpixel = img->samplesperpixel;
1444 
1445     (void) x; (void) y;
1446     fromskew *= samplesperpixel;
1447     for( ; h > 0; --h) {
1448 	UNROLL8(w, NOP,
1449 	    *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
1450 	    pp += samplesperpixel);
1451 	cp += toskew;
1452 	pp += fromskew;
1453     }
1454 }
1455 
1456 /*
1457  * 8-bit packed samples => RGBA w/ unassociated alpha
1458  * (known to have Map == NULL)
1459  */
1460 DECLAREContigPutFunc(putRGBUAcontig8bittile)
1461 {
1462 	int samplesperpixel = img->samplesperpixel;
1463 	(void) y;
1464 	fromskew *= samplesperpixel;
1465 	for( ; h > 0; --h) {
1466 		uint32 r, g, b, a;
1467 		uint8* m;
1468 		for (x = w; x > 0; --x) {
1469 			a = pp[3];
1470 			m = img->UaToAa+((size_t) a<<8);
1471 			r = m[pp[0]];
1472 			g = m[pp[1]];
1473 			b = m[pp[2]];
1474 			*cp++ = PACK4(r,g,b,a);
1475 			pp += samplesperpixel;
1476 		}
1477 		cp += toskew;
1478 		pp += fromskew;
1479 	}
1480 }
1481 
1482 /*
1483  * 16-bit packed samples => RGB
1484  */
1485 DECLAREContigPutFunc(putRGBcontig16bittile)
1486 {
1487 	int samplesperpixel = img->samplesperpixel;
1488 	uint16 *wp = (uint16 *)pp;
1489 	(void) y;
1490 	fromskew *= samplesperpixel;
1491 	for( ; h > 0; --h) {
1492 		for (x = w; x > 0; --x) {
1493 			*cp++ = PACK(img->Bitdepth16To8[wp[0]],
1494 			    img->Bitdepth16To8[wp[1]],
1495 			    img->Bitdepth16To8[wp[2]]);
1496 			wp += samplesperpixel;
1497 		}
1498 		cp += toskew;
1499 		wp += fromskew;
1500 	}
1501 }
1502 
1503 /*
1504  * 16-bit packed samples => RGBA w/ associated alpha
1505  * (known to have Map == NULL)
1506  */
1507 DECLAREContigPutFunc(putRGBAAcontig16bittile)
1508 {
1509 	int samplesperpixel = img->samplesperpixel;
1510 	uint16 *wp = (uint16 *)pp;
1511 	(void) y;
1512 	fromskew *= samplesperpixel;
1513 	for( ; h > 0; --h) {
1514 		for (x = w; x > 0; --x) {
1515 			*cp++ = PACK4(img->Bitdepth16To8[wp[0]],
1516 			    img->Bitdepth16To8[wp[1]],
1517 			    img->Bitdepth16To8[wp[2]],
1518 			    img->Bitdepth16To8[wp[3]]);
1519 			wp += samplesperpixel;
1520 		}
1521 		cp += toskew;
1522 		wp += fromskew;
1523 	}
1524 }
1525 
1526 /*
1527  * 16-bit packed samples => RGBA w/ unassociated alpha
1528  * (known to have Map == NULL)
1529  */
1530 DECLAREContigPutFunc(putRGBUAcontig16bittile)
1531 {
1532 	int samplesperpixel = img->samplesperpixel;
1533 	uint16 *wp = (uint16 *)pp;
1534 	(void) y;
1535 	fromskew *= samplesperpixel;
1536 	for( ; h > 0; --h) {
1537 		uint32 r,g,b,a;
1538 		uint8* m;
1539 		for (x = w; x > 0; --x) {
1540 			a = img->Bitdepth16To8[wp[3]];
1541 			m = img->UaToAa+((size_t) a<<8);
1542 			r = m[img->Bitdepth16To8[wp[0]]];
1543 			g = m[img->Bitdepth16To8[wp[1]]];
1544 			b = m[img->Bitdepth16To8[wp[2]]];
1545 			*cp++ = PACK4(r,g,b,a);
1546 			wp += samplesperpixel;
1547 		}
1548 		cp += toskew;
1549 		wp += fromskew;
1550 	}
1551 }
1552 
1553 /*
1554  * 8-bit packed CMYK samples w/o Map => RGB
1555  *
1556  * NB: The conversion of CMYK->RGB is *very* crude.
1557  */
1558 DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
1559 {
1560     int samplesperpixel = img->samplesperpixel;
1561     uint16 r, g, b, k;
1562 
1563     (void) x; (void) y;
1564     fromskew *= samplesperpixel;
1565     for( ; h > 0; --h) {
1566 	UNROLL8(w, NOP,
1567 	    k = 255 - pp[3];
1568 	    r = (k*(255-pp[0]))/255;
1569 	    g = (k*(255-pp[1]))/255;
1570 	    b = (k*(255-pp[2]))/255;
1571 	    *cp++ = PACK(r, g, b);
1572 	    pp += samplesperpixel);
1573 	cp += toskew;
1574 	pp += fromskew;
1575     }
1576 }
1577 
1578 /*
1579  * 8-bit packed CMYK samples w/Map => RGB
1580  *
1581  * NB: The conversion of CMYK->RGB is *very* crude.
1582  */
1583 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
1584 {
1585     int samplesperpixel = img->samplesperpixel;
1586     TIFFRGBValue* Map = img->Map;
1587     uint16 r, g, b, k;
1588 
1589     (void) y;
1590     fromskew *= samplesperpixel;
1591     for( ; h > 0; --h) {
1592 	for (x = w; x > 0; --x) {
1593 	    k = 255 - pp[3];
1594 	    r = (k*(255-pp[0]))/255;
1595 	    g = (k*(255-pp[1]))/255;
1596 	    b = (k*(255-pp[2]))/255;
1597 	    *cp++ = PACK(Map[r], Map[g], Map[b]);
1598 	    pp += samplesperpixel;
1599 	}
1600 	pp += fromskew;
1601 	cp += toskew;
1602     }
1603 }
1604 
1605 #define	DECLARESepPutFunc(name) \
1606 static void name(\
1607     TIFFRGBAImage* img,\
1608     uint32* cp,\
1609     uint32 x, uint32 y, \
1610     uint32 w, uint32 h,\
1611     int32 fromskew, int32 toskew,\
1612     unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\
1613 )
1614 
1615 /*
1616  * 8-bit unpacked samples => RGB
1617  */
1618 DECLARESepPutFunc(putRGBseparate8bittile)
1619 {
1620     (void) img; (void) x; (void) y; (void) a;
1621     for( ; h > 0; --h) {
1622 	UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
1623 	SKEW(r, g, b, fromskew);
1624 	cp += toskew;
1625     }
1626 }
1627 
1628 /*
1629  * 8-bit unpacked samples => RGBA w/ associated alpha
1630  */
1631 DECLARESepPutFunc(putRGBAAseparate8bittile)
1632 {
1633 	(void) img; (void) x; (void) y;
1634 	for( ; h > 0; --h) {
1635 		UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
1636 		SKEW4(r, g, b, a, fromskew);
1637 		cp += toskew;
1638 	}
1639 }
1640 
1641 /*
1642  * 8-bit unpacked CMYK samples => RGBA
1643  */
1644 DECLARESepPutFunc(putCMYKseparate8bittile)
1645 {
1646 	(void) img; (void) y;
1647 	for( ; h > 0; --h) {
1648 		uint32 rv, gv, bv, kv;
1649 		for (x = w; x > 0; --x) {
1650 			kv = 255 - *a++;
1651 			rv = (kv*(255-*r++))/255;
1652 			gv = (kv*(255-*g++))/255;
1653 			bv = (kv*(255-*b++))/255;
1654 			*cp++ = PACK4(rv,gv,bv,255);
1655 		}
1656 		SKEW4(r, g, b, a, fromskew);
1657 		cp += toskew;
1658 	}
1659 }
1660 
1661 /*
1662  * 8-bit unpacked samples => RGBA w/ unassociated alpha
1663  */
1664 DECLARESepPutFunc(putRGBUAseparate8bittile)
1665 {
1666 	(void) img; (void) y;
1667 	for( ; h > 0; --h) {
1668 		uint32 rv, gv, bv, av;
1669 		uint8* m;
1670 		for (x = w; x > 0; --x) {
1671 			av = *a++;
1672 			m = img->UaToAa+((size_t) av<<8);
1673 			rv = m[*r++];
1674 			gv = m[*g++];
1675 			bv = m[*b++];
1676 			*cp++ = PACK4(rv,gv,bv,av);
1677 		}
1678 		SKEW4(r, g, b, a, fromskew);
1679 		cp += toskew;
1680 	}
1681 }
1682 
1683 /*
1684  * 16-bit unpacked samples => RGB
1685  */
1686 DECLARESepPutFunc(putRGBseparate16bittile)
1687 {
1688 	uint16 *wr = (uint16*) r;
1689 	uint16 *wg = (uint16*) g;
1690 	uint16 *wb = (uint16*) b;
1691 	(void) img; (void) y; (void) a;
1692 	for( ; h > 0; --h) {
1693 		for (x = 0; x < w; x++)
1694 			*cp++ = PACK(img->Bitdepth16To8[*wr++],
1695 			    img->Bitdepth16To8[*wg++],
1696 			    img->Bitdepth16To8[*wb++]);
1697 		SKEW(wr, wg, wb, fromskew);
1698 		cp += toskew;
1699 	}
1700 }
1701 
1702 /*
1703  * 16-bit unpacked samples => RGBA w/ associated alpha
1704  */
1705 DECLARESepPutFunc(putRGBAAseparate16bittile)
1706 {
1707 	uint16 *wr = (uint16*) r;
1708 	uint16 *wg = (uint16*) g;
1709 	uint16 *wb = (uint16*) b;
1710 	uint16 *wa = (uint16*) a;
1711 	(void) img; (void) y;
1712 	for( ; h > 0; --h) {
1713 		for (x = 0; x < w; x++)
1714 			*cp++ = PACK4(img->Bitdepth16To8[*wr++],
1715 			    img->Bitdepth16To8[*wg++],
1716 			    img->Bitdepth16To8[*wb++],
1717 			    img->Bitdepth16To8[*wa++]);
1718 		SKEW4(wr, wg, wb, wa, fromskew);
1719 		cp += toskew;
1720 	}
1721 }
1722 
1723 /*
1724  * 16-bit unpacked samples => RGBA w/ unassociated alpha
1725  */
1726 DECLARESepPutFunc(putRGBUAseparate16bittile)
1727 {
1728 	uint16 *wr = (uint16*) r;
1729 	uint16 *wg = (uint16*) g;
1730 	uint16 *wb = (uint16*) b;
1731 	uint16 *wa = (uint16*) a;
1732 	(void) img; (void) y;
1733 	for( ; h > 0; --h) {
1734 		uint32 r2,g2,b2,a2;
1735 		uint8* m;
1736 		for (x = w; x > 0; --x) {
1737 			a2 = img->Bitdepth16To8[*wa++];
1738 			m = img->UaToAa+((size_t) a2<<8);
1739 			r2 = m[img->Bitdepth16To8[*wr++]];
1740 			g2 = m[img->Bitdepth16To8[*wg++]];
1741 			b2 = m[img->Bitdepth16To8[*wb++]];
1742 			*cp++ = PACK4(r2,g2,b2,a2);
1743 		}
1744 		SKEW4(wr, wg, wb, wa, fromskew);
1745 		cp += toskew;
1746 	}
1747 }
1748 
1749 /*
1750  * 8-bit packed CIE L*a*b 1976 samples => RGB
1751  */
1752 DECLAREContigPutFunc(putcontig8bitCIELab)
1753 {
1754 	float X, Y, Z;
1755 	uint32 r, g, b;
1756 	(void) y;
1757 	fromskew *= 3;
1758 	for( ; h > 0; --h) {
1759 		for (x = w; x > 0; --x) {
1760 			TIFFCIELabToXYZ(img->cielab,
1761 					(unsigned char)pp[0],
1762 					(signed char)pp[1],
1763 					(signed char)pp[2],
1764 					&X, &Y, &Z);
1765 			TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
1766 			*cp++ = PACK(r, g, b);
1767 			pp += 3;
1768 		}
1769 		cp += toskew;
1770 		pp += fromskew;
1771 	}
1772 }
1773 
1774 /*
1775  * YCbCr -> RGB conversion and packing routines.
1776  */
1777 
1778 #define	YCbCrtoRGB(dst, Y) {						\
1779 	uint32 r, g, b;							\
1780 	TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b);		\
1781 	dst = PACK(r, g, b);						\
1782 }
1783 
1784 /*
1785  * 8-bit packed YCbCr samples => RGB
1786  * This function is generic for different sampling sizes,
1787  * and can handle blocks sizes that aren't multiples of the
1788  * sampling size.  However, it is substantially less optimized
1789  * than the specific sampling cases.  It is used as a fallback
1790  * for difficult blocks.
1791  */
1792 #ifdef notdef
1793 static void putcontig8bitYCbCrGenericTile(
1794     TIFFRGBAImage* img,
1795     uint32* cp,
1796     uint32 x, uint32 y,
1797     uint32 w, uint32 h,
1798     int32 fromskew, int32 toskew,
1799     unsigned char* pp,
1800     int h_group,
1801     int v_group )
1802 
1803 {
1804     uint32* cp1 = cp+w+toskew;
1805     uint32* cp2 = cp1+w+toskew;
1806     uint32* cp3 = cp2+w+toskew;
1807     int32 incr = 3*w+4*toskew;
1808     int32   Cb, Cr;
1809     int     group_size = v_group * h_group + 2;
1810 
1811     (void) y;
1812     fromskew = (fromskew * group_size) / h_group;
1813 
1814     for( yy = 0; yy < h; yy++ )
1815     {
1816         unsigned char *pp_line;
1817         int     y_line_group = yy / v_group;
1818         int     y_remainder = yy - y_line_group * v_group;
1819 
1820         pp_line = pp + v_line_group *
1821 
1822 
1823         for( xx = 0; xx < w; xx++ )
1824         {
1825             Cb = pp
1826         }
1827     }
1828     for (; h >= 4; h -= 4) {
1829 	x = w>>2;
1830 	do {
1831 	    Cb = pp[16];
1832 	    Cr = pp[17];
1833 
1834 	    YCbCrtoRGB(cp [0], pp[ 0]);
1835 	    YCbCrtoRGB(cp [1], pp[ 1]);
1836 	    YCbCrtoRGB(cp [2], pp[ 2]);
1837 	    YCbCrtoRGB(cp [3], pp[ 3]);
1838 	    YCbCrtoRGB(cp1[0], pp[ 4]);
1839 	    YCbCrtoRGB(cp1[1], pp[ 5]);
1840 	    YCbCrtoRGB(cp1[2], pp[ 6]);
1841 	    YCbCrtoRGB(cp1[3], pp[ 7]);
1842 	    YCbCrtoRGB(cp2[0], pp[ 8]);
1843 	    YCbCrtoRGB(cp2[1], pp[ 9]);
1844 	    YCbCrtoRGB(cp2[2], pp[10]);
1845 	    YCbCrtoRGB(cp2[3], pp[11]);
1846 	    YCbCrtoRGB(cp3[0], pp[12]);
1847 	    YCbCrtoRGB(cp3[1], pp[13]);
1848 	    YCbCrtoRGB(cp3[2], pp[14]);
1849 	    YCbCrtoRGB(cp3[3], pp[15]);
1850 
1851 	    cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
1852 	    pp += 18;
1853 	} while (--x);
1854 	cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1855 	pp += fromskew;
1856     }
1857 }
1858 #endif
1859 
1860 /*
1861  * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
1862  */
1863 DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
1864 {
1865     uint32* cp1 = cp+w+toskew;
1866     uint32* cp2 = cp1+w+toskew;
1867     uint32* cp3 = cp2+w+toskew;
1868     int32 incr = 3*w+4*toskew;
1869 
1870     (void) y;
1871     /* adjust fromskew */
1872     fromskew = (fromskew / 4) * (4*2+2);
1873     if ((h & 3) == 0 && (w & 3) == 0) {
1874         for (; h >= 4; h -= 4) {
1875             x = w>>2;
1876             do {
1877                 int32 Cb = pp[16];
1878                 int32 Cr = pp[17];
1879 
1880                 YCbCrtoRGB(cp [0], pp[ 0]);
1881                 YCbCrtoRGB(cp [1], pp[ 1]);
1882                 YCbCrtoRGB(cp [2], pp[ 2]);
1883                 YCbCrtoRGB(cp [3], pp[ 3]);
1884                 YCbCrtoRGB(cp1[0], pp[ 4]);
1885                 YCbCrtoRGB(cp1[1], pp[ 5]);
1886                 YCbCrtoRGB(cp1[2], pp[ 6]);
1887                 YCbCrtoRGB(cp1[3], pp[ 7]);
1888                 YCbCrtoRGB(cp2[0], pp[ 8]);
1889                 YCbCrtoRGB(cp2[1], pp[ 9]);
1890                 YCbCrtoRGB(cp2[2], pp[10]);
1891                 YCbCrtoRGB(cp2[3], pp[11]);
1892                 YCbCrtoRGB(cp3[0], pp[12]);
1893                 YCbCrtoRGB(cp3[1], pp[13]);
1894                 YCbCrtoRGB(cp3[2], pp[14]);
1895                 YCbCrtoRGB(cp3[3], pp[15]);
1896 
1897                 cp += 4;
1898                 cp1 += 4;
1899                 cp2 += 4;
1900                 cp3 += 4;
1901                 pp += 18;
1902             } while (--x);
1903             cp += incr;
1904             cp1 += incr;
1905             cp2 += incr;
1906             cp3 += incr;
1907             pp += fromskew;
1908         }
1909     } else {
1910         while (h > 0) {
1911             for (x = w; x > 0;) {
1912                 int32 Cb = pp[16];
1913                 int32 Cr = pp[17];
1914                 switch (x) {
1915                 default:
1916                     switch (h) {
1917                     default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */
1918                     case 3:  YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */
1919                     case 2:  YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
1920                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
1921                     }                                    /* FALLTHROUGH */
1922                 case 3:
1923                     switch (h) {
1924                     default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */
1925                     case 3:  YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */
1926                     case 2:  YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
1927                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
1928                     }                                    /* FALLTHROUGH */
1929                 case 2:
1930                     switch (h) {
1931                     default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */
1932                     case 3:  YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */
1933                     case 2:  YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
1934                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1935                     }                                    /* FALLTHROUGH */
1936                 case 1:
1937                     switch (h) {
1938                     default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */
1939                     case 3:  YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */
1940                     case 2:  YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
1941                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1942                     }                                    /* FALLTHROUGH */
1943                 }
1944                 if (x < 4) {
1945                     cp += x; cp1 += x; cp2 += x; cp3 += x;
1946                     x = 0;
1947                 }
1948                 else {
1949                     cp += 4; cp1 += 4; cp2 += 4; cp3 += 4;
1950                     x -= 4;
1951                 }
1952                 pp += 18;
1953             }
1954             if (h <= 4)
1955                 break;
1956             h -= 4;
1957             cp += incr;
1958             cp1 += incr;
1959             cp2 += incr;
1960             cp3 += incr;
1961             pp += fromskew;
1962         }
1963     }
1964 }
1965 
1966 /*
1967  * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
1968  */
1969 DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
1970 {
1971     uint32* cp1 = cp+w+toskew;
1972     int32 incr = 2*toskew+w;
1973 
1974     (void) y;
1975     fromskew = (fromskew / 4) * (4*2+2);
1976     if ((w & 3) == 0 && (h & 1) == 0) {
1977         for (; h >= 2; h -= 2) {
1978             x = w>>2;
1979             do {
1980                 int32 Cb = pp[8];
1981                 int32 Cr = pp[9];
1982 
1983                 YCbCrtoRGB(cp [0], pp[0]);
1984                 YCbCrtoRGB(cp [1], pp[1]);
1985                 YCbCrtoRGB(cp [2], pp[2]);
1986                 YCbCrtoRGB(cp [3], pp[3]);
1987                 YCbCrtoRGB(cp1[0], pp[4]);
1988                 YCbCrtoRGB(cp1[1], pp[5]);
1989                 YCbCrtoRGB(cp1[2], pp[6]);
1990                 YCbCrtoRGB(cp1[3], pp[7]);
1991 
1992                 cp += 4;
1993                 cp1 += 4;
1994                 pp += 10;
1995             } while (--x);
1996             cp += incr;
1997             cp1 += incr;
1998             pp += fromskew;
1999         }
2000     } else {
2001         while (h > 0) {
2002             for (x = w; x > 0;) {
2003                 int32 Cb = pp[8];
2004                 int32 Cr = pp[9];
2005                 switch (x) {
2006                 default:
2007                     switch (h) {
2008                     default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
2009                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
2010                     }                                    /* FALLTHROUGH */
2011                 case 3:
2012                     switch (h) {
2013                     default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
2014                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
2015                     }                                    /* FALLTHROUGH */
2016                 case 2:
2017                     switch (h) {
2018                     default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
2019                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
2020                     }                                    /* FALLTHROUGH */
2021                 case 1:
2022                     switch (h) {
2023                     default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
2024                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
2025                     }                                    /* FALLTHROUGH */
2026                 }
2027                 if (x < 4) {
2028                     cp += x; cp1 += x;
2029                     x = 0;
2030                 }
2031                 else {
2032                     cp += 4; cp1 += 4;
2033                     x -= 4;
2034                 }
2035                 pp += 10;
2036             }
2037             if (h <= 2)
2038                 break;
2039             h -= 2;
2040             cp += incr;
2041             cp1 += incr;
2042             pp += fromskew;
2043         }
2044     }
2045 }
2046 
2047 /*
2048  * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
2049  */
2050 DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
2051 {
2052     (void) y;
2053     fromskew = (fromskew / 4) * (4*1+2);
2054     do {
2055 	x = w>>2;
2056 	while(x>0) {
2057 	    int32 Cb = pp[4];
2058 	    int32 Cr = pp[5];
2059 
2060 	    YCbCrtoRGB(cp [0], pp[0]);
2061 	    YCbCrtoRGB(cp [1], pp[1]);
2062 	    YCbCrtoRGB(cp [2], pp[2]);
2063 	    YCbCrtoRGB(cp [3], pp[3]);
2064 
2065 	    cp += 4;
2066 	    pp += 6;
2067 		x--;
2068 	}
2069 
2070         if( (w&3) != 0 )
2071         {
2072 	    int32 Cb = pp[4];
2073 	    int32 Cr = pp[5];
2074 
2075             switch( (w&3) ) {
2076               case 3: YCbCrtoRGB(cp [2], pp[2]); /*-fallthrough*/
2077               case 2: YCbCrtoRGB(cp [1], pp[1]); /*-fallthrough*/
2078               case 1: YCbCrtoRGB(cp [0], pp[0]); /*-fallthrough*/
2079               case 0: break;
2080             }
2081 
2082             cp += (w&3);
2083             pp += 6;
2084         }
2085 
2086 	cp += toskew;
2087 	pp += fromskew;
2088     } while (--h);
2089 
2090 }
2091 
2092 /*
2093  * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
2094  */
2095 DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
2096 {
2097 	uint32* cp2;
2098 	int32 incr = 2*toskew+w;
2099 	(void) y;
2100 	fromskew = (fromskew / 2) * (2*2+2);
2101 	cp2 = cp+w+toskew;
2102 	while (h>=2) {
2103 		x = w;
2104 		while (x>=2) {
2105 			uint32 Cb = pp[4];
2106 			uint32 Cr = pp[5];
2107 			YCbCrtoRGB(cp[0], pp[0]);
2108 			YCbCrtoRGB(cp[1], pp[1]);
2109 			YCbCrtoRGB(cp2[0], pp[2]);
2110 			YCbCrtoRGB(cp2[1], pp[3]);
2111 			cp += 2;
2112 			cp2 += 2;
2113 			pp += 6;
2114 			x -= 2;
2115 		}
2116 		if (x==1) {
2117 			uint32 Cb = pp[4];
2118 			uint32 Cr = pp[5];
2119 			YCbCrtoRGB(cp[0], pp[0]);
2120 			YCbCrtoRGB(cp2[0], pp[2]);
2121 			cp ++ ;
2122 			cp2 ++ ;
2123 			pp += 6;
2124 		}
2125 		cp += incr;
2126 		cp2 += incr;
2127 		pp += fromskew;
2128 		h-=2;
2129 	}
2130 	if (h==1) {
2131 		x = w;
2132 		while (x>=2) {
2133 			uint32 Cb = pp[4];
2134 			uint32 Cr = pp[5];
2135 			YCbCrtoRGB(cp[0], pp[0]);
2136 			YCbCrtoRGB(cp[1], pp[1]);
2137 			cp += 2;
2138 			cp2 += 2;
2139 			pp += 6;
2140 			x -= 2;
2141 		}
2142 		if (x==1) {
2143 			uint32 Cb = pp[4];
2144 			uint32 Cr = pp[5];
2145 			YCbCrtoRGB(cp[0], pp[0]);
2146 		}
2147 	}
2148 }
2149 
2150 /*
2151  * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
2152  */
2153 DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
2154 {
2155 	(void) y;
2156 	fromskew = (fromskew / 2) * (2*1+2);
2157 	do {
2158 		x = w>>1;
2159 		while(x>0) {
2160 			int32 Cb = pp[2];
2161 			int32 Cr = pp[3];
2162 
2163 			YCbCrtoRGB(cp[0], pp[0]);
2164 			YCbCrtoRGB(cp[1], pp[1]);
2165 
2166 			cp += 2;
2167 			pp += 4;
2168 			x --;
2169 		}
2170 
2171 		if( (w&1) != 0 )
2172 		{
2173 			int32 Cb = pp[2];
2174 			int32 Cr = pp[3];
2175 
2176 			YCbCrtoRGB(cp[0], pp[0]);
2177 
2178 			cp += 1;
2179 			pp += 4;
2180 		}
2181 
2182 		cp += toskew;
2183 		pp += fromskew;
2184 	} while (--h);
2185 }
2186 
2187 /*
2188  * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB
2189  */
2190 DECLAREContigPutFunc(putcontig8bitYCbCr12tile)
2191 {
2192 	uint32* cp2;
2193 	int32 incr = 2*toskew+w;
2194 	(void) y;
2195 	fromskew = (fromskew / 1) * (1 * 2 + 2);
2196 	cp2 = cp+w+toskew;
2197 	while (h>=2) {
2198 		x = w;
2199 		do {
2200 			uint32 Cb = pp[2];
2201 			uint32 Cr = pp[3];
2202 			YCbCrtoRGB(cp[0], pp[0]);
2203 			YCbCrtoRGB(cp2[0], pp[1]);
2204 			cp ++;
2205 			cp2 ++;
2206 			pp += 4;
2207 		} while (--x);
2208 		cp += incr;
2209 		cp2 += incr;
2210 		pp += fromskew;
2211 		h-=2;
2212 	}
2213 	if (h==1) {
2214 		x = w;
2215 		do {
2216 			uint32 Cb = pp[2];
2217 			uint32 Cr = pp[3];
2218 			YCbCrtoRGB(cp[0], pp[0]);
2219 			cp ++;
2220 			pp += 4;
2221 		} while (--x);
2222 	}
2223 }
2224 
2225 /*
2226  * 8-bit packed YCbCr samples w/ no subsampling => RGB
2227  */
2228 DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
2229 {
2230 	(void) y;
2231 	fromskew = (fromskew / 1) * (1 * 1 + 2);
2232 	do {
2233 		x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */
2234 		do {
2235 			int32 Cb = pp[1];
2236 			int32 Cr = pp[2];
2237 
2238 			YCbCrtoRGB(*cp++, pp[0]);
2239 
2240 			pp += 3;
2241 		} while (--x);
2242 		cp += toskew;
2243 		pp += fromskew;
2244 	} while (--h);
2245 }
2246 
2247 /*
2248  * 8-bit packed YCbCr samples w/ no subsampling => RGB
2249  */
2250 DECLARESepPutFunc(putseparate8bitYCbCr11tile)
2251 {
2252 	(void) y;
2253 	(void) a;
2254 	/* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */
2255 	for( ; h > 0; --h) {
2256 		x = w;
2257 		do {
2258 			uint32 dr, dg, db;
2259 			TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db);
2260 			*cp++ = PACK(dr,dg,db);
2261 		} while (--x);
2262 		SKEW(r, g, b, fromskew);
2263 		cp += toskew;
2264 	}
2265 }
2266 #undef YCbCrtoRGB
2267 
2268 static int isInRefBlackWhiteRange(float f)
2269 {
2270     return f > (float)(-0x7FFFFFFF + 128) && f < (float)0x7FFFFFFF;
2271 }
2272 
2273 static int
2274 initYCbCrConversion(TIFFRGBAImage* img)
2275 {
2276 	static const char module[] = "initYCbCrConversion";
2277 
2278 	float *luma, *refBlackWhite;
2279 
2280 	if (img->ycbcr == NULL) {
2281 		img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc(
2282 		    TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long))
2283 		    + 4*256*sizeof (TIFFRGBValue)
2284 		    + 2*256*sizeof (int)
2285 		    + 3*256*sizeof (int32)
2286 		    );
2287 		if (img->ycbcr == NULL) {
2288 			TIFFErrorExt(img->tif->tif_clientdata, module,
2289 			    "No space for YCbCr->RGB conversion state");
2290 			return (0);
2291 		}
2292 	}
2293 
2294 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
2295 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE,
2296 	    &refBlackWhite);
2297 
2298         /* Do some validation to avoid later issues. Detect NaN for now */
2299         /* and also if lumaGreen is zero since we divide by it later */
2300         if( luma[0] != luma[0] ||
2301             luma[1] != luma[1] ||
2302             luma[1] == 0.0 ||
2303             luma[2] != luma[2] )
2304         {
2305             TIFFErrorExt(img->tif->tif_clientdata, module,
2306                 "Invalid values for YCbCrCoefficients tag");
2307             return (0);
2308         }
2309 
2310         if( !isInRefBlackWhiteRange(refBlackWhite[0]) ||
2311             !isInRefBlackWhiteRange(refBlackWhite[1]) ||
2312             !isInRefBlackWhiteRange(refBlackWhite[2]) ||
2313             !isInRefBlackWhiteRange(refBlackWhite[3]) ||
2314             !isInRefBlackWhiteRange(refBlackWhite[4]) ||
2315             !isInRefBlackWhiteRange(refBlackWhite[5]) )
2316         {
2317             TIFFErrorExt(img->tif->tif_clientdata, module,
2318                 "Invalid values for ReferenceBlackWhite tag");
2319             return (0);
2320         }
2321 
2322 	if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0)
2323 		return(0);
2324 	return (1);
2325 }
2326 
2327 static tileContigRoutine
2328 initCIELabConversion(TIFFRGBAImage* img)
2329 {
2330 	static const char module[] = "initCIELabConversion";
2331 
2332 	float   *whitePoint;
2333 	float   refWhite[3];
2334 
2335 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint);
2336 	if (whitePoint[1] == 0.0f ) {
2337 		TIFFErrorExt(img->tif->tif_clientdata, module,
2338 		    "Invalid value for WhitePoint tag.");
2339 		return NULL;
2340         }
2341 
2342 	if (!img->cielab) {
2343 		img->cielab = (TIFFCIELabToRGB *)
2344 			_TIFFmalloc(sizeof(TIFFCIELabToRGB));
2345 		if (!img->cielab) {
2346 			TIFFErrorExt(img->tif->tif_clientdata, module,
2347 			    "No space for CIE L*a*b*->RGB conversion state.");
2348 			return NULL;
2349 		}
2350 	}
2351 
2352 	refWhite[1] = 100.0F;
2353 	refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
2354 	refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1])
2355 		      / whitePoint[1] * refWhite[1];
2356 	if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) {
2357 		TIFFErrorExt(img->tif->tif_clientdata, module,
2358 		    "Failed to initialize CIE L*a*b*->RGB conversion state.");
2359 		_TIFFfree(img->cielab);
2360 		return NULL;
2361 	}
2362 
2363 	return putcontig8bitCIELab;
2364 }
2365 
2366 /*
2367  * Greyscale images with less than 8 bits/sample are handled
2368  * with a table to avoid lots of shifts and masks.  The table
2369  * is setup so that put*bwtile (below) can retrieve 8/bitspersample
2370  * pixel values simply by indexing into the table with one
2371  * number.
2372  */
2373 static int
2374 makebwmap(TIFFRGBAImage* img)
2375 {
2376     TIFFRGBValue* Map = img->Map;
2377     int bitspersample = img->bitspersample;
2378     int nsamples = 8 / bitspersample;
2379     int i;
2380     uint32* p;
2381 
2382     if( nsamples == 0 )
2383         nsamples = 1;
2384 
2385     img->BWmap = (uint32**) _TIFFmalloc(
2386 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2387     if (img->BWmap == NULL) {
2388 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table");
2389 		return (0);
2390     }
2391     p = (uint32*)(img->BWmap + 256);
2392     for (i = 0; i < 256; i++) {
2393 	TIFFRGBValue c;
2394 	img->BWmap[i] = p;
2395 	switch (bitspersample) {
2396 #define	GREY(x)	c = Map[x]; *p++ = PACK(c,c,c);
2397 	case 1:
2398 	    GREY(i>>7);
2399 	    GREY((i>>6)&1);
2400 	    GREY((i>>5)&1);
2401 	    GREY((i>>4)&1);
2402 	    GREY((i>>3)&1);
2403 	    GREY((i>>2)&1);
2404 	    GREY((i>>1)&1);
2405 	    GREY(i&1);
2406 	    break;
2407 	case 2:
2408 	    GREY(i>>6);
2409 	    GREY((i>>4)&3);
2410 	    GREY((i>>2)&3);
2411 	    GREY(i&3);
2412 	    break;
2413 	case 4:
2414 	    GREY(i>>4);
2415 	    GREY(i&0xf);
2416 	    break;
2417 	case 8:
2418         case 16:
2419 	    GREY(i);
2420 	    break;
2421 	}
2422 #undef	GREY
2423     }
2424     return (1);
2425 }
2426 
2427 /*
2428  * Construct a mapping table to convert from the range
2429  * of the data samples to [0,255] --for display.  This
2430  * process also handles inverting B&W images when needed.
2431  */
2432 static int
2433 setupMap(TIFFRGBAImage* img)
2434 {
2435     int32 x, range;
2436 
2437     range = (int32)((1L<<img->bitspersample)-1);
2438 
2439     /* treat 16 bit the same as eight bit */
2440     if( img->bitspersample == 16 )
2441         range = (int32) 255;
2442 
2443     img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue));
2444     if (img->Map == NULL) {
2445 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
2446 			"No space for photometric conversion table");
2447 		return (0);
2448     }
2449     if (img->photometric == PHOTOMETRIC_MINISWHITE) {
2450 	for (x = 0; x <= range; x++)
2451 	    img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range);
2452     } else {
2453 	for (x = 0; x <= range; x++)
2454 	    img->Map[x] = (TIFFRGBValue) ((x * 255) / range);
2455     }
2456     if (img->bitspersample <= 16 &&
2457 	(img->photometric == PHOTOMETRIC_MINISBLACK ||
2458 	 img->photometric == PHOTOMETRIC_MINISWHITE)) {
2459 	/*
2460 	 * Use photometric mapping table to construct
2461 	 * unpacking tables for samples <= 8 bits.
2462 	 */
2463 	if (!makebwmap(img))
2464 	    return (0);
2465 	/* no longer need Map, free it */
2466 	_TIFFfree(img->Map);
2467 	img->Map = NULL;
2468     }
2469     return (1);
2470 }
2471 
2472 static int
2473 checkcmap(TIFFRGBAImage* img)
2474 {
2475     uint16* r = img->redcmap;
2476     uint16* g = img->greencmap;
2477     uint16* b = img->bluecmap;
2478     long n = 1L<<img->bitspersample;
2479 
2480     while (n-- > 0)
2481 	if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
2482 	    return (16);
2483     return (8);
2484 }
2485 
2486 static void
2487 cvtcmap(TIFFRGBAImage* img)
2488 {
2489     uint16* r = img->redcmap;
2490     uint16* g = img->greencmap;
2491     uint16* b = img->bluecmap;
2492     long i;
2493 
2494     for (i = (1L<<img->bitspersample)-1; i >= 0; i--) {
2495 #define	CVT(x)		((uint16)((x)>>8))
2496 	r[i] = CVT(r[i]);
2497 	g[i] = CVT(g[i]);
2498 	b[i] = CVT(b[i]);
2499 #undef	CVT
2500     }
2501 }
2502 
2503 /*
2504  * Palette images with <= 8 bits/sample are handled
2505  * with a table to avoid lots of shifts and masks.  The table
2506  * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
2507  * pixel values simply by indexing into the table with one
2508  * number.
2509  */
2510 static int
2511 makecmap(TIFFRGBAImage* img)
2512 {
2513     int bitspersample = img->bitspersample;
2514     int nsamples = 8 / bitspersample;
2515     uint16* r = img->redcmap;
2516     uint16* g = img->greencmap;
2517     uint16* b = img->bluecmap;
2518     uint32 *p;
2519     int i;
2520 
2521     img->PALmap = (uint32**) _TIFFmalloc(
2522 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2523     if (img->PALmap == NULL) {
2524 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table");
2525 		return (0);
2526 	}
2527     p = (uint32*)(img->PALmap + 256);
2528     for (i = 0; i < 256; i++) {
2529 	TIFFRGBValue c;
2530 	img->PALmap[i] = p;
2531 #define	CMAP(x)	c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff);
2532 	switch (bitspersample) {
2533 	case 1:
2534 	    CMAP(i>>7);
2535 	    CMAP((i>>6)&1);
2536 	    CMAP((i>>5)&1);
2537 	    CMAP((i>>4)&1);
2538 	    CMAP((i>>3)&1);
2539 	    CMAP((i>>2)&1);
2540 	    CMAP((i>>1)&1);
2541 	    CMAP(i&1);
2542 	    break;
2543 	case 2:
2544 	    CMAP(i>>6);
2545 	    CMAP((i>>4)&3);
2546 	    CMAP((i>>2)&3);
2547 	    CMAP(i&3);
2548 	    break;
2549 	case 4:
2550 	    CMAP(i>>4);
2551 	    CMAP(i&0xf);
2552 	    break;
2553 	case 8:
2554 	    CMAP(i);
2555 	    break;
2556 	}
2557 #undef CMAP
2558     }
2559     return (1);
2560 }
2561 
2562 /*
2563  * Construct any mapping table used
2564  * by the associated put routine.
2565  */
2566 static int
2567 buildMap(TIFFRGBAImage* img)
2568 {
2569     switch (img->photometric) {
2570     case PHOTOMETRIC_RGB:
2571     case PHOTOMETRIC_YCBCR:
2572     case PHOTOMETRIC_SEPARATED:
2573 	if (img->bitspersample == 8)
2574 	    break;
2575 	/* fall through... */
2576     case PHOTOMETRIC_MINISBLACK:
2577     case PHOTOMETRIC_MINISWHITE:
2578 	if (!setupMap(img))
2579 	    return (0);
2580 	break;
2581     case PHOTOMETRIC_PALETTE:
2582 	/*
2583 	 * Convert 16-bit colormap to 8-bit (unless it looks
2584 	 * like an old-style 8-bit colormap).
2585 	 */
2586 	if (checkcmap(img) == 16)
2587 	    cvtcmap(img);
2588 	else
2589 	    TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap");
2590 	/*
2591 	 * Use mapping table and colormap to construct
2592 	 * unpacking tables for samples < 8 bits.
2593 	 */
2594 	if (img->bitspersample <= 8 && !makecmap(img))
2595 	    return (0);
2596 	break;
2597     }
2598     return (1);
2599 }
2600 
2601 /*
2602  * Select the appropriate conversion routine for packed data.
2603  */
2604 static int
2605 PickContigCase(TIFFRGBAImage* img)
2606 {
2607 	img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig;
2608 	img->put.contig = NULL;
2609 	switch (img->photometric) {
2610 		case PHOTOMETRIC_RGB:
2611 			switch (img->bitspersample) {
2612 				case 8:
2613 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
2614 						img->samplesperpixel >= 4)
2615 						img->put.contig = putRGBAAcontig8bittile;
2616 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
2617 							 img->samplesperpixel >= 4)
2618 					{
2619 						if (BuildMapUaToAa(img))
2620 							img->put.contig = putRGBUAcontig8bittile;
2621 					}
2622 					else if( img->samplesperpixel >= 3 )
2623 						img->put.contig = putRGBcontig8bittile;
2624 					break;
2625 				case 16:
2626 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
2627 						img->samplesperpixel >=4 )
2628 					{
2629 						if (BuildMapBitdepth16To8(img))
2630 							img->put.contig = putRGBAAcontig16bittile;
2631 					}
2632 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
2633 							 img->samplesperpixel >=4 )
2634 					{
2635 						if (BuildMapBitdepth16To8(img) &&
2636 						    BuildMapUaToAa(img))
2637 							img->put.contig = putRGBUAcontig16bittile;
2638 					}
2639 					else if( img->samplesperpixel >=3 )
2640 					{
2641 						if (BuildMapBitdepth16To8(img))
2642 							img->put.contig = putRGBcontig16bittile;
2643 					}
2644 					break;
2645 			}
2646 			break;
2647 		case PHOTOMETRIC_SEPARATED:
2648 			if (img->samplesperpixel >=4 && buildMap(img)) {
2649 				if (img->bitspersample == 8) {
2650 					if (!img->Map)
2651 						img->put.contig = putRGBcontig8bitCMYKtile;
2652 					else
2653 						img->put.contig = putRGBcontig8bitCMYKMaptile;
2654 				}
2655 			}
2656 			break;
2657 		case PHOTOMETRIC_PALETTE:
2658 			if (buildMap(img)) {
2659 				switch (img->bitspersample) {
2660 					case 8:
2661 						img->put.contig = put8bitcmaptile;
2662 						break;
2663 					case 4:
2664 						img->put.contig = put4bitcmaptile;
2665 						break;
2666 					case 2:
2667 						img->put.contig = put2bitcmaptile;
2668 						break;
2669 					case 1:
2670 						img->put.contig = put1bitcmaptile;
2671 						break;
2672 				}
2673 			}
2674 			break;
2675 		case PHOTOMETRIC_MINISWHITE:
2676 		case PHOTOMETRIC_MINISBLACK:
2677 			if (buildMap(img)) {
2678 				switch (img->bitspersample) {
2679 					case 16:
2680 						img->put.contig = put16bitbwtile;
2681 						break;
2682 					case 8:
2683 						if (img->alpha && img->samplesperpixel == 2)
2684 							img->put.contig = putagreytile;
2685 						else
2686 							img->put.contig = putgreytile;
2687 						break;
2688 					case 4:
2689 						img->put.contig = put4bitbwtile;
2690 						break;
2691 					case 2:
2692 						img->put.contig = put2bitbwtile;
2693 						break;
2694 					case 1:
2695 						img->put.contig = put1bitbwtile;
2696 						break;
2697 				}
2698 			}
2699 			break;
2700 		case PHOTOMETRIC_YCBCR:
2701 			if ((img->bitspersample==8) && (img->samplesperpixel==3))
2702 			{
2703 				if (initYCbCrConversion(img)!=0)
2704 				{
2705 					/*
2706 					 * The 6.0 spec says that subsampling must be
2707 					 * one of 1, 2, or 4, and that vertical subsampling
2708 					 * must always be <= horizontal subsampling; so
2709 					 * there are only a few possibilities and we just
2710 					 * enumerate the cases.
2711 					 * Joris: added support for the [1,2] case, nonetheless, to accommodate
2712 					 * some OJPEG files
2713 					 */
2714 					uint16 SubsamplingHor;
2715 					uint16 SubsamplingVer;
2716 					TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer);
2717 					switch ((SubsamplingHor<<4)|SubsamplingVer) {
2718 						case 0x44:
2719 							img->put.contig = putcontig8bitYCbCr44tile;
2720 							break;
2721 						case 0x42:
2722 							img->put.contig = putcontig8bitYCbCr42tile;
2723 							break;
2724 						case 0x41:
2725 							img->put.contig = putcontig8bitYCbCr41tile;
2726 							break;
2727 						case 0x22:
2728 							img->put.contig = putcontig8bitYCbCr22tile;
2729 							break;
2730 						case 0x21:
2731 							img->put.contig = putcontig8bitYCbCr21tile;
2732 							break;
2733 						case 0x12:
2734 							img->put.contig = putcontig8bitYCbCr12tile;
2735 							break;
2736 						case 0x11:
2737 							img->put.contig = putcontig8bitYCbCr11tile;
2738 							break;
2739 					}
2740 				}
2741 			}
2742 			break;
2743 		case PHOTOMETRIC_CIELAB:
2744 			if (img->samplesperpixel == 3 && buildMap(img)) {
2745 				if (img->bitspersample == 8)
2746 					img->put.contig = initCIELabConversion(img);
2747 				break;
2748 			}
2749 	}
2750 	return ((img->get!=NULL) && (img->put.contig!=NULL));
2751 }
2752 
2753 /*
2754  * Select the appropriate conversion routine for unpacked data.
2755  *
2756  * NB: we assume that unpacked single channel data is directed
2757  *	 to the "packed routines.
2758  */
2759 static int
2760 PickSeparateCase(TIFFRGBAImage* img)
2761 {
2762 	img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate;
2763 	img->put.separate = NULL;
2764 	switch (img->photometric) {
2765 	case PHOTOMETRIC_MINISWHITE:
2766 	case PHOTOMETRIC_MINISBLACK:
2767 		/* greyscale images processed pretty much as RGB by gtTileSeparate */
2768 	case PHOTOMETRIC_RGB:
2769 		switch (img->bitspersample) {
2770 		case 8:
2771 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2772 				img->put.separate = putRGBAAseparate8bittile;
2773 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2774 			{
2775 				if (BuildMapUaToAa(img))
2776 					img->put.separate = putRGBUAseparate8bittile;
2777 			}
2778 			else
2779 				img->put.separate = putRGBseparate8bittile;
2780 			break;
2781 		case 16:
2782 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2783 			{
2784 				if (BuildMapBitdepth16To8(img))
2785 					img->put.separate = putRGBAAseparate16bittile;
2786 			}
2787 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2788 			{
2789 				if (BuildMapBitdepth16To8(img) &&
2790 				    BuildMapUaToAa(img))
2791 					img->put.separate = putRGBUAseparate16bittile;
2792 			}
2793 			else
2794 			{
2795 				if (BuildMapBitdepth16To8(img))
2796 					img->put.separate = putRGBseparate16bittile;
2797 			}
2798 			break;
2799 		}
2800 		break;
2801 	case PHOTOMETRIC_SEPARATED:
2802 		if (img->bitspersample == 8 && img->samplesperpixel == 4)
2803 		{
2804 			img->alpha = 1; // Not alpha, but seems like the only way to get 4th band
2805 			img->put.separate = putCMYKseparate8bittile;
2806 		}
2807 		break;
2808 	case PHOTOMETRIC_YCBCR:
2809 		if ((img->bitspersample==8) && (img->samplesperpixel==3))
2810 		{
2811 			if (initYCbCrConversion(img)!=0)
2812 			{
2813 				uint16 hs, vs;
2814 				TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
2815 				switch ((hs<<4)|vs) {
2816 				case 0x11:
2817 					img->put.separate = putseparate8bitYCbCr11tile;
2818 					break;
2819 					/* TODO: add other cases here */
2820 				}
2821 			}
2822 		}
2823 		break;
2824 	}
2825 	return ((img->get!=NULL) && (img->put.separate!=NULL));
2826 }
2827 
2828 static int
2829 BuildMapUaToAa(TIFFRGBAImage* img)
2830 {
2831 	static const char module[]="BuildMapUaToAa";
2832 	uint8* m;
2833 	uint16 na,nv;
2834 	assert(img->UaToAa==NULL);
2835 	img->UaToAa=_TIFFmalloc(65536);
2836 	if (img->UaToAa==NULL)
2837 	{
2838 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2839 		return(0);
2840 	}
2841 	m=img->UaToAa;
2842 	for (na=0; na<256; na++)
2843 	{
2844 		for (nv=0; nv<256; nv++)
2845 			*m++=(uint8)((nv*na+127)/255);
2846 	}
2847 	return(1);
2848 }
2849 
2850 static int
2851 BuildMapBitdepth16To8(TIFFRGBAImage* img)
2852 {
2853 	static const char module[]="BuildMapBitdepth16To8";
2854 	uint8* m;
2855 	uint32 n;
2856 	assert(img->Bitdepth16To8==NULL);
2857 	img->Bitdepth16To8=_TIFFmalloc(65536);
2858 	if (img->Bitdepth16To8==NULL)
2859 	{
2860 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2861 		return(0);
2862 	}
2863 	m=img->Bitdepth16To8;
2864 	for (n=0; n<65536; n++)
2865 		*m++=(uint8)((n+128)/257);
2866 	return(1);
2867 }
2868 
2869 
2870 /*
2871  * Read a whole strip off data from the file, and convert to RGBA form.
2872  * If this is the last strip, then it will only contain the portion of
2873  * the strip that is actually within the image space.  The result is
2874  * organized in bottom to top form.
2875  */
2876 
2877 
2878 int
2879 TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster )
2880 
2881 {
2882     return TIFFReadRGBAStripExt(tif, row, raster, 0 );
2883 }
2884 
2885 int
2886 TIFFReadRGBAStripExt(TIFF* tif, uint32 row, uint32 * raster, int stop_on_error)
2887 
2888 {
2889     char 	emsg[1024] = "";
2890     TIFFRGBAImage img;
2891     int 	ok;
2892     uint32	rowsperstrip, rows_to_read;
2893 
2894     if( TIFFIsTiled( tif ) )
2895     {
2896 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2897                   "Can't use TIFFReadRGBAStrip() with tiled file.");
2898 	return (0);
2899     }
2900 
2901     TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
2902     if( (row % rowsperstrip) != 0 )
2903     {
2904 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2905 				"Row passed to TIFFReadRGBAStrip() must be first in a strip.");
2906 		return (0);
2907     }
2908 
2909     if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) {
2910 
2911         img.row_offset = row;
2912         img.col_offset = 0;
2913 
2914         if( row + rowsperstrip > img.height )
2915             rows_to_read = img.height - row;
2916         else
2917             rows_to_read = rowsperstrip;
2918 
2919 	ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read );
2920 
2921 	TIFFRGBAImageEnd(&img);
2922     } else {
2923 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2924 		ok = 0;
2925     }
2926 
2927     return (ok);
2928 }
2929 
2930 /*
2931  * Read a whole tile off data from the file, and convert to RGBA form.
2932  * The returned RGBA data is organized from bottom to top of tile,
2933  * and may include zeroed areas if the tile extends off the image.
2934  */
2935 
2936 int
2937 TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster)
2938 
2939 {
2940     return TIFFReadRGBATileExt(tif, col, row, raster, 0 );
2941 }
2942 
2943 
2944 int
2945 TIFFReadRGBATileExt(TIFF* tif, uint32 col, uint32 row, uint32 * raster, int stop_on_error )
2946 {
2947     char 	emsg[1024] = "";
2948     TIFFRGBAImage img;
2949     int 	ok;
2950     uint32	tile_xsize, tile_ysize;
2951     uint32	read_xsize, read_ysize;
2952     uint32	i_row;
2953 
2954     /*
2955      * Verify that our request is legal - on a tile file, and on a
2956      * tile boundary.
2957      */
2958 
2959     if( !TIFFIsTiled( tif ) )
2960     {
2961 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2962 				  "Can't use TIFFReadRGBATile() with stripped file.");
2963 		return (0);
2964     }
2965 
2966     TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
2967     TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
2968     if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 )
2969     {
2970 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2971                   "Row/col passed to TIFFReadRGBATile() must be top"
2972                   "left corner of a tile.");
2973 	return (0);
2974     }
2975 
2976     /*
2977      * Setup the RGBA reader.
2978      */
2979 
2980     if (!TIFFRGBAImageOK(tif, emsg)
2981 	|| !TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) {
2982 	    TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2983 	    return( 0 );
2984     }
2985 
2986     /*
2987      * The TIFFRGBAImageGet() function doesn't allow us to get off the
2988      * edge of the image, even to fill an otherwise valid tile.  So we
2989      * figure out how much we can read, and fix up the tile buffer to
2990      * a full tile configuration afterwards.
2991      */
2992 
2993     if( row + tile_ysize > img.height )
2994         read_ysize = img.height - row;
2995     else
2996         read_ysize = tile_ysize;
2997 
2998     if( col + tile_xsize > img.width )
2999         read_xsize = img.width - col;
3000     else
3001         read_xsize = tile_xsize;
3002 
3003     /*
3004      * Read the chunk of imagery.
3005      */
3006 
3007     img.row_offset = row;
3008     img.col_offset = col;
3009 
3010     ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize );
3011 
3012     TIFFRGBAImageEnd(&img);
3013 
3014     /*
3015      * If our read was incomplete we will need to fix up the tile by
3016      * shifting the data around as if a full tile of data is being returned.
3017      *
3018      * This is all the more complicated because the image is organized in
3019      * bottom to top format.
3020      */
3021 
3022     if( read_xsize == tile_xsize && read_ysize == tile_ysize )
3023         return( ok );
3024 
3025     for( i_row = 0; i_row < read_ysize; i_row++ ) {
3026         memmove( raster + (tile_ysize - i_row - 1) * tile_xsize,
3027                  raster + (read_ysize - i_row - 1) * read_xsize,
3028                  read_xsize * sizeof(uint32) );
3029         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize,
3030                      0, sizeof(uint32) * (tile_xsize - read_xsize) );
3031     }
3032 
3033     for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) {
3034         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize,
3035                      0, sizeof(uint32) * tile_xsize );
3036     }
3037 
3038     return (ok);
3039 }
3040 
3041 /* vim: set ts=8 sts=8 sw=8 noet: */
3042 /*
3043  * Local Variables:
3044  * mode: c
3045  * c-basic-offset: 8
3046  * fill-column: 78
3047  * End:
3048  */
3049