1 /* 2 * Elliptic curve DSA 3 * 4 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved 5 * SPDX-License-Identifier: GPL-2.0 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License along 18 * with this program; if not, write to the Free Software Foundation, Inc., 19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * This file is part of mbed TLS (https://tls.mbed.org) 22 */ 23 24 /* 25 * References: 26 * 27 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg 28 */ 29 30 #if !defined(MBEDTLS_CONFIG_FILE) 31 #include "mbedtls/config.h" 32 #else 33 #include MBEDTLS_CONFIG_FILE 34 #endif 35 36 #if defined(MBEDTLS_ECDSA_C) 37 38 #include "mbedtls/ecdsa.h" 39 #include "mbedtls/asn1write.h" 40 41 #include <string.h> 42 43 #if defined(MBEDTLS_ECDSA_DETERMINISTIC) 44 #include "mbedtls/hmac_drbg.h" 45 #endif 46 47 /* 48 * Derive a suitable integer for group grp from a buffer of length len 49 * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3 50 */ 51 static int derive_mpi( const mbedtls_ecp_group *grp, mbedtls_mpi *x, 52 const unsigned char *buf, size_t blen ) 53 { 54 int ret; 55 size_t n_size = ( grp->nbits + 7 ) / 8; 56 size_t use_size = blen > n_size ? n_size : blen; 57 58 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( x, buf, use_size ) ); 59 if( use_size * 8 > grp->nbits ) 60 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( x, use_size * 8 - grp->nbits ) ); 61 62 /* While at it, reduce modulo N */ 63 if( mbedtls_mpi_cmp_mpi( x, &grp->N ) >= 0 ) 64 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( x, x, &grp->N ) ); 65 66 cleanup: 67 return( ret ); 68 } 69 70 #if !defined(MBEDTLS_ECDSA_SIGN_ALT) 71 /* 72 * Compute ECDSA signature of a hashed message (SEC1 4.1.3) 73 * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message) 74 */ 75 int mbedtls_ecdsa_sign( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s, 76 const mbedtls_mpi *d, const unsigned char *buf, size_t blen, 77 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) 78 { 79 int ret, key_tries, sign_tries, blind_tries; 80 mbedtls_ecp_point R; 81 mbedtls_mpi k, e, t; 82 83 /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */ 84 if( grp->N.p == NULL ) 85 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); 86 87 /* Make sure d is in range 1..n-1 */ 88 if( mbedtls_mpi_cmp_int( d, 1 ) < 0 || mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 ) 89 return( MBEDTLS_ERR_ECP_INVALID_KEY ); 90 91 mbedtls_ecp_point_init( &R ); 92 mbedtls_mpi_init( &k ); mbedtls_mpi_init( &e ); mbedtls_mpi_init( &t ); 93 94 sign_tries = 0; 95 do 96 { 97 /* 98 * Steps 1-3: generate a suitable ephemeral keypair 99 * and set r = xR mod n 100 */ 101 key_tries = 0; 102 do 103 { 104 MBEDTLS_MPI_CHK( mbedtls_ecp_gen_keypair( grp, &k, &R, f_rng, p_rng ) ); 105 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( r, &R.X, &grp->N ) ); 106 107 if( key_tries++ > 10 ) 108 { 109 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; 110 goto cleanup; 111 } 112 } 113 while( mbedtls_mpi_cmp_int( r, 0 ) == 0 ); 114 115 /* 116 * Step 5: derive MPI from hashed message 117 */ 118 MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); 119 120 /* 121 * Generate a random value to blind inv_mod in next step, 122 * avoiding a potential timing leak. 123 */ 124 blind_tries = 0; 125 do 126 { 127 size_t n_size = ( grp->nbits + 7 ) / 8; 128 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &t, n_size, f_rng, p_rng ) ); 129 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &t, 8 * n_size - grp->nbits ) ); 130 131 /* See mbedtls_ecp_gen_keypair() */ 132 if( ++blind_tries > 30 ) 133 return( MBEDTLS_ERR_ECP_RANDOM_FAILED ); 134 } 135 while( mbedtls_mpi_cmp_int( &t, 1 ) < 0 || 136 mbedtls_mpi_cmp_mpi( &t, &grp->N ) >= 0 ); 137 138 /* 139 * Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n 140 */ 141 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, r, d ) ); 142 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &e, &e, s ) ); 143 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &e, &e, &t ) ); 144 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &k, &k, &t ) ); 145 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( s, &k, &grp->N ) ); 146 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, s, &e ) ); 147 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( s, s, &grp->N ) ); 148 149 if( sign_tries++ > 10 ) 150 { 151 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; 152 goto cleanup; 153 } 154 } 155 while( mbedtls_mpi_cmp_int( s, 0 ) == 0 ); 156 157 cleanup: 158 mbedtls_ecp_point_free( &R ); 159 mbedtls_mpi_free( &k ); mbedtls_mpi_free( &e ); mbedtls_mpi_free( &t ); 160 161 return( ret ); 162 } 163 #endif /* MBEDTLS_ECDSA_SIGN_ALT */ 164 165 #if defined(MBEDTLS_ECDSA_DETERMINISTIC) 166 /* 167 * Deterministic signature wrapper 168 */ 169 int mbedtls_ecdsa_sign_det( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s, 170 const mbedtls_mpi *d, const unsigned char *buf, size_t blen, 171 mbedtls_md_type_t md_alg ) 172 { 173 int ret; 174 mbedtls_hmac_drbg_context rng_ctx; 175 unsigned char data[2 * MBEDTLS_ECP_MAX_BYTES]; 176 size_t grp_len = ( grp->nbits + 7 ) / 8; 177 const mbedtls_md_info_t *md_info; 178 mbedtls_mpi h; 179 180 if( ( md_info = mbedtls_md_info_from_type( md_alg ) ) == NULL ) 181 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); 182 183 mbedtls_mpi_init( &h ); 184 mbedtls_hmac_drbg_init( &rng_ctx ); 185 186 /* Use private key and message hash (reduced) to initialize HMAC_DRBG */ 187 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( d, data, grp_len ) ); 188 MBEDTLS_MPI_CHK( derive_mpi( grp, &h, buf, blen ) ); 189 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &h, data + grp_len, grp_len ) ); 190 mbedtls_hmac_drbg_seed_buf( &rng_ctx, md_info, data, 2 * grp_len ); 191 192 ret = mbedtls_ecdsa_sign( grp, r, s, d, buf, blen, 193 mbedtls_hmac_drbg_random, &rng_ctx ); 194 195 cleanup: 196 mbedtls_hmac_drbg_free( &rng_ctx ); 197 mbedtls_mpi_free( &h ); 198 199 return( ret ); 200 } 201 #endif /* MBEDTLS_ECDSA_DETERMINISTIC */ 202 203 #if !defined(MBEDTLS_ECDSA_VERIFY_ALT) 204 /* 205 * Verify ECDSA signature of hashed message (SEC1 4.1.4) 206 * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message) 207 */ 208 int mbedtls_ecdsa_verify( mbedtls_ecp_group *grp, 209 const unsigned char *buf, size_t blen, 210 const mbedtls_ecp_point *Q, const mbedtls_mpi *r, const mbedtls_mpi *s) 211 { 212 int ret; 213 mbedtls_mpi e, s_inv, u1, u2; 214 mbedtls_ecp_point R; 215 216 mbedtls_ecp_point_init( &R ); 217 mbedtls_mpi_init( &e ); mbedtls_mpi_init( &s_inv ); mbedtls_mpi_init( &u1 ); mbedtls_mpi_init( &u2 ); 218 219 /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */ 220 if( grp->N.p == NULL ) 221 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); 222 223 /* 224 * Step 1: make sure r and s are in range 1..n-1 225 */ 226 if( mbedtls_mpi_cmp_int( r, 1 ) < 0 || mbedtls_mpi_cmp_mpi( r, &grp->N ) >= 0 || 227 mbedtls_mpi_cmp_int( s, 1 ) < 0 || mbedtls_mpi_cmp_mpi( s, &grp->N ) >= 0 ) 228 { 229 ret = MBEDTLS_ERR_ECP_VERIFY_FAILED; 230 goto cleanup; 231 } 232 233 /* 234 * Additional precaution: make sure Q is valid 235 */ 236 MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, Q ) ); 237 238 /* 239 * Step 3: derive MPI from hashed message 240 */ 241 MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); 242 243 /* 244 * Step 4: u1 = e / s mod n, u2 = r / s mod n 245 */ 246 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &s_inv, s, &grp->N ) ); 247 248 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u1, &e, &s_inv ) ); 249 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &u1, &u1, &grp->N ) ); 250 251 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u2, r, &s_inv ) ); 252 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &u2, &u2, &grp->N ) ); 253 254 /* 255 * Step 5: R = u1 G + u2 Q 256 * 257 * Since we're not using any secret data, no need to pass a RNG to 258 * mbedtls_ecp_mul() for countermesures. 259 */ 260 MBEDTLS_MPI_CHK( mbedtls_ecp_muladd( grp, &R, &u1, &grp->G, &u2, Q ) ); 261 262 if( mbedtls_ecp_is_zero( &R ) ) 263 { 264 ret = MBEDTLS_ERR_ECP_VERIFY_FAILED; 265 goto cleanup; 266 } 267 268 /* 269 * Step 6: convert xR to an integer (no-op) 270 * Step 7: reduce xR mod n (gives v) 271 */ 272 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &R.X, &R.X, &grp->N ) ); 273 274 /* 275 * Step 8: check if v (that is, R.X) is equal to r 276 */ 277 if( mbedtls_mpi_cmp_mpi( &R.X, r ) != 0 ) 278 { 279 ret = MBEDTLS_ERR_ECP_VERIFY_FAILED; 280 goto cleanup; 281 } 282 283 cleanup: 284 mbedtls_ecp_point_free( &R ); 285 mbedtls_mpi_free( &e ); mbedtls_mpi_free( &s_inv ); mbedtls_mpi_free( &u1 ); mbedtls_mpi_free( &u2 ); 286 287 return( ret ); 288 } 289 #endif /* MBEDTLS_ECDSA_VERIFY_ALT */ 290 291 /* 292 * Convert a signature (given by context) to ASN.1 293 */ 294 static int ecdsa_signature_to_asn1( const mbedtls_mpi *r, const mbedtls_mpi *s, 295 unsigned char *sig, size_t *slen ) 296 { 297 int ret; 298 unsigned char buf[MBEDTLS_ECDSA_MAX_LEN]; 299 unsigned char *p = buf + sizeof( buf ); 300 size_t len = 0; 301 302 MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, s ) ); 303 MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, r ) ); 304 305 MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( &p, buf, len ) ); 306 MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( &p, buf, 307 MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ); 308 309 memcpy( sig, p, len ); 310 *slen = len; 311 312 return( 0 ); 313 } 314 315 /* 316 * Compute and write signature 317 */ 318 int mbedtls_ecdsa_write_signature( mbedtls_ecdsa_context *ctx, mbedtls_md_type_t md_alg, 319 const unsigned char *hash, size_t hlen, 320 unsigned char *sig, size_t *slen, 321 int (*f_rng)(void *, unsigned char *, size_t), 322 void *p_rng ) 323 { 324 int ret; 325 mbedtls_mpi r, s; 326 327 mbedtls_mpi_init( &r ); 328 mbedtls_mpi_init( &s ); 329 330 #if defined(MBEDTLS_ECDSA_DETERMINISTIC) 331 (void) f_rng; 332 (void) p_rng; 333 334 MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign_det( &ctx->grp, &r, &s, &ctx->d, 335 hash, hlen, md_alg ) ); 336 #else 337 (void) md_alg; 338 339 MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign( &ctx->grp, &r, &s, &ctx->d, 340 hash, hlen, f_rng, p_rng ) ); 341 #endif 342 343 MBEDTLS_MPI_CHK( ecdsa_signature_to_asn1( &r, &s, sig, slen ) ); 344 345 cleanup: 346 mbedtls_mpi_free( &r ); 347 mbedtls_mpi_free( &s ); 348 349 return( ret ); 350 } 351 352 #if ! defined(MBEDTLS_DEPRECATED_REMOVED) && \ 353 defined(MBEDTLS_ECDSA_DETERMINISTIC) 354 int mbedtls_ecdsa_write_signature_det( mbedtls_ecdsa_context *ctx, 355 const unsigned char *hash, size_t hlen, 356 unsigned char *sig, size_t *slen, 357 mbedtls_md_type_t md_alg ) 358 { 359 return( mbedtls_ecdsa_write_signature( ctx, md_alg, hash, hlen, sig, slen, 360 NULL, NULL ) ); 361 } 362 #endif 363 364 /* 365 * Read and check signature 366 */ 367 int mbedtls_ecdsa_read_signature( mbedtls_ecdsa_context *ctx, 368 const unsigned char *hash, size_t hlen, 369 const unsigned char *sig, size_t slen ) 370 { 371 int ret; 372 unsigned char *p = (unsigned char *) sig; 373 const unsigned char *end = sig + slen; 374 size_t len; 375 mbedtls_mpi r, s; 376 377 mbedtls_mpi_init( &r ); 378 mbedtls_mpi_init( &s ); 379 380 if( ( ret = mbedtls_asn1_get_tag( &p, end, &len, 381 MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 ) 382 { 383 ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA; 384 goto cleanup; 385 } 386 387 if( p + len != end ) 388 { 389 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA + 390 MBEDTLS_ERR_ASN1_LENGTH_MISMATCH; 391 goto cleanup; 392 } 393 394 if( ( ret = mbedtls_asn1_get_mpi( &p, end, &r ) ) != 0 || 395 ( ret = mbedtls_asn1_get_mpi( &p, end, &s ) ) != 0 ) 396 { 397 ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA; 398 goto cleanup; 399 } 400 401 if( ( ret = mbedtls_ecdsa_verify( &ctx->grp, hash, hlen, 402 &ctx->Q, &r, &s ) ) != 0 ) 403 goto cleanup; 404 405 /* At this point we know that the buffer starts with a valid signature. 406 * Return 0 if the buffer just contains the signature, and a specific 407 * error code if the valid signature is followed by more data. */ 408 if( p != end ) 409 ret = MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH; 410 411 cleanup: 412 mbedtls_mpi_free( &r ); 413 mbedtls_mpi_free( &s ); 414 415 return( ret ); 416 } 417 418 #if !defined(MBEDTLS_ECDSA_GENKEY_ALT) 419 /* 420 * Generate key pair 421 */ 422 int mbedtls_ecdsa_genkey( mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid, 423 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) 424 { 425 int ret = 0; 426 ret = mbedtls_ecp_group_load( &ctx->grp, gid ); 427 if( ret != 0 ) 428 return( ret ); 429 430 return( mbedtls_ecp_gen_keypair( &ctx->grp, &ctx->d, 431 &ctx->Q, f_rng, p_rng ) ); 432 } 433 #endif /* MBEDTLS_ECDSA_GENKEY_ALT */ 434 435 /* 436 * Set context from an mbedtls_ecp_keypair 437 */ 438 int mbedtls_ecdsa_from_keypair( mbedtls_ecdsa_context *ctx, const mbedtls_ecp_keypair *key ) 439 { 440 int ret; 441 442 if( ( ret = mbedtls_ecp_group_copy( &ctx->grp, &key->grp ) ) != 0 || 443 ( ret = mbedtls_mpi_copy( &ctx->d, &key->d ) ) != 0 || 444 ( ret = mbedtls_ecp_copy( &ctx->Q, &key->Q ) ) != 0 ) 445 { 446 mbedtls_ecdsa_free( ctx ); 447 } 448 449 return( ret ); 450 } 451 452 /* 453 * Initialize context 454 */ 455 void mbedtls_ecdsa_init( mbedtls_ecdsa_context *ctx ) 456 { 457 mbedtls_ecp_keypair_init( ctx ); 458 } 459 460 /* 461 * Free context 462 */ 463 void mbedtls_ecdsa_free( mbedtls_ecdsa_context *ctx ) 464 { 465 mbedtls_ecp_keypair_free( ctx ); 466 } 467 468 #endif /* MBEDTLS_ECDSA_C */ 469