1 /* 2 * Elliptic curve DSA 3 * 4 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved 5 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later 6 * 7 * This file is provided under the Apache License 2.0, or the 8 * GNU General Public License v2.0 or later. 9 * 10 * ********** 11 * Apache License 2.0: 12 * 13 * Licensed under the Apache License, Version 2.0 (the "License"); you may 14 * not use this file except in compliance with the License. 15 * You may obtain a copy of the License at 16 * 17 * http://www.apache.org/licenses/LICENSE-2.0 18 * 19 * Unless required by applicable law or agreed to in writing, software 20 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT 21 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 22 * See the License for the specific language governing permissions and 23 * limitations under the License. 24 * 25 * ********** 26 * 27 * ********** 28 * GNU General Public License v2.0 or later: 29 * 30 * This program is free software; you can redistribute it and/or modify 31 * it under the terms of the GNU General Public License as published by 32 * the Free Software Foundation; either version 2 of the License, or 33 * (at your option) any later version. 34 * 35 * This program is distributed in the hope that it will be useful, 36 * but WITHOUT ANY WARRANTY; without even the implied warranty of 37 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 38 * GNU General Public License for more details. 39 * 40 * You should have received a copy of the GNU General Public License along 41 * with this program; if not, write to the Free Software Foundation, Inc., 42 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. 43 * 44 * ********** 45 * 46 * This file is part of mbed TLS (https://tls.mbed.org) 47 */ 48 49 /* 50 * References: 51 * 52 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg 53 */ 54 55 #if !defined(MBEDTLS_CONFIG_FILE) 56 #include "mbedtls/config.h" 57 #else 58 #include MBEDTLS_CONFIG_FILE 59 #endif 60 61 #if defined(MBEDTLS_ECDSA_C) 62 63 #include "mbedtls/ecdsa.h" 64 #include "mbedtls/asn1write.h" 65 66 #include <string.h> 67 68 #if defined(MBEDTLS_ECDSA_DETERMINISTIC) 69 #include "mbedtls/hmac_drbg.h" 70 #endif 71 72 /* 73 * Derive a suitable integer for group grp from a buffer of length len 74 * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3 75 */ 76 static int derive_mpi( const mbedtls_ecp_group *grp, mbedtls_mpi *x, 77 const unsigned char *buf, size_t blen ) 78 { 79 int ret; 80 size_t n_size = ( grp->nbits + 7 ) / 8; 81 size_t use_size = blen > n_size ? n_size : blen; 82 83 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( x, buf, use_size ) ); 84 if( use_size * 8 > grp->nbits ) 85 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( x, use_size * 8 - grp->nbits ) ); 86 87 /* While at it, reduce modulo N */ 88 if( mbedtls_mpi_cmp_mpi( x, &grp->N ) >= 0 ) 89 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( x, x, &grp->N ) ); 90 91 cleanup: 92 return( ret ); 93 } 94 95 #if !defined(MBEDTLS_ECDSA_SIGN_ALT) 96 /* 97 * Compute ECDSA signature of a hashed message (SEC1 4.1.3) 98 * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message) 99 */ 100 static int ecdsa_sign_internal( mbedtls_ecp_group *grp, mbedtls_mpi *r, 101 mbedtls_mpi *s, const mbedtls_mpi *d, 102 const unsigned char *buf, size_t blen, 103 int (*f_rng)(void *, unsigned char *, size_t), 104 void *p_rng, 105 int (*f_rng_blind)(void *, unsigned char *, 106 size_t), 107 void *p_rng_blind ) 108 { 109 int ret, key_tries, sign_tries, blind_tries; 110 mbedtls_ecp_point R; 111 mbedtls_mpi k, e, t; 112 113 /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */ 114 if( grp->N.p == NULL ) 115 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); 116 117 /* Make sure d is in range 1..n-1 */ 118 if( mbedtls_mpi_cmp_int( d, 1 ) < 0 || mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 ) 119 return( MBEDTLS_ERR_ECP_INVALID_KEY ); 120 121 mbedtls_ecp_point_init( &R ); 122 mbedtls_mpi_init( &k ); mbedtls_mpi_init( &e ); mbedtls_mpi_init( &t ); 123 124 sign_tries = 0; 125 do 126 { 127 /* 128 * Steps 1-3: generate a suitable ephemeral keypair 129 * and set r = xR mod n 130 */ 131 key_tries = 0; 132 do 133 { 134 MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, &k, f_rng, p_rng ) ); 135 136 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, &R, &k, &grp->G, 137 f_rng_blind, p_rng_blind ) ); 138 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( r, &R.X, &grp->N ) ); 139 140 if( key_tries++ > 10 ) 141 { 142 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; 143 goto cleanup; 144 } 145 } 146 while( mbedtls_mpi_cmp_int( r, 0 ) == 0 ); 147 148 /* 149 * Step 5: derive MPI from hashed message 150 */ 151 MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); 152 153 /* 154 * Generate a random value to blind inv_mod in next step, 155 * avoiding a potential timing leak. 156 * 157 * This loop does the same job as mbedtls_ecp_gen_privkey() and it is 158 * replaced by a call to it in the mainline. This change is not 159 * necessary to backport the fix separating the blinding and ephemeral 160 * key generating RNGs, therefore the original code is kept. 161 */ 162 blind_tries = 0; 163 do 164 { 165 size_t n_size = ( grp->nbits + 7 ) / 8; 166 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &t, n_size, f_rng_blind, 167 p_rng_blind ) ); 168 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &t, 8 * n_size - grp->nbits ) ); 169 170 if( ++blind_tries > 30 ) 171 return( MBEDTLS_ERR_ECP_RANDOM_FAILED ); 172 } 173 while( mbedtls_mpi_cmp_int( &t, 1 ) < 0 || 174 mbedtls_mpi_cmp_mpi( &t, &grp->N ) >= 0 ); 175 176 /* 177 * Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n 178 */ 179 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, r, d ) ); 180 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &e, &e, s ) ); 181 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &e, &e, &t ) ); 182 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &k, &k, &t ) ); 183 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &k, &k, &grp->N ) ); 184 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( s, &k, &grp->N ) ); 185 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, s, &e ) ); 186 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( s, s, &grp->N ) ); 187 188 if( sign_tries++ > 10 ) 189 { 190 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; 191 goto cleanup; 192 } 193 } 194 while( mbedtls_mpi_cmp_int( s, 0 ) == 0 ); 195 196 cleanup: 197 mbedtls_ecp_point_free( &R ); 198 mbedtls_mpi_free( &k ); mbedtls_mpi_free( &e ); mbedtls_mpi_free( &t ); 199 200 return( ret ); 201 } 202 203 int mbedtls_ecdsa_sign( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s, 204 const mbedtls_mpi *d, const unsigned char *buf, 205 size_t blen, 206 int (*f_rng)(void *, unsigned char *, size_t), 207 void *p_rng ) 208 { 209 /* Use the same RNG for both blinding and ephemeral key generation */ 210 return( ecdsa_sign_internal( grp, r, s, d, buf, blen, f_rng, p_rng, 211 f_rng, p_rng ) ); 212 } 213 #endif /* MBEDTLS_ECDSA_SIGN_ALT */ 214 215 #if defined(MBEDTLS_ECDSA_DETERMINISTIC) 216 static int ecdsa_sign_det_internal( mbedtls_ecp_group *grp, mbedtls_mpi *r, 217 mbedtls_mpi *s, const mbedtls_mpi *d, 218 const unsigned char *buf, size_t blen, 219 mbedtls_md_type_t md_alg, 220 int (*f_rng_blind)(void *, unsigned char *, 221 size_t), 222 void *p_rng_blind ) 223 { 224 int ret; 225 mbedtls_hmac_drbg_context rng_ctx; 226 unsigned char data[2 * MBEDTLS_ECP_MAX_BYTES]; 227 size_t grp_len = ( grp->nbits + 7 ) / 8; 228 const mbedtls_md_info_t *md_info; 229 mbedtls_mpi h; 230 /* Variables for deterministic blinding fallback */ 231 const char* blind_label = "BLINDING CONTEXT"; 232 mbedtls_hmac_drbg_context rng_ctx_blind; 233 234 if( ( md_info = mbedtls_md_info_from_type( md_alg ) ) == NULL ) 235 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); 236 237 mbedtls_mpi_init( &h ); 238 mbedtls_hmac_drbg_init( &rng_ctx ); 239 mbedtls_hmac_drbg_init( &rng_ctx_blind ); 240 241 /* Use private key and message hash (reduced) to initialize HMAC_DRBG */ 242 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( d, data, grp_len ) ); 243 MBEDTLS_MPI_CHK( derive_mpi( grp, &h, buf, blen ) ); 244 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &h, data + grp_len, grp_len ) ); 245 mbedtls_hmac_drbg_seed_buf( &rng_ctx, md_info, data, 2 * grp_len ); 246 247 if( f_rng_blind != NULL ) 248 ret = ecdsa_sign_internal( grp, r, s, d, buf, blen, 249 mbedtls_hmac_drbg_random, &rng_ctx, 250 f_rng_blind, p_rng_blind ); 251 else 252 { 253 /* 254 * To avoid reusing rng_ctx and risking incorrect behavior we seed a 255 * second HMAC-DRBG with the same seed. We also apply a label to avoid 256 * reusing the bits of the ephemeral key for blinding and eliminate the 257 * risk that they leak this way. 258 */ 259 260 mbedtls_hmac_drbg_seed_buf( &rng_ctx_blind, md_info, 261 data, 2 * grp_len ); 262 ret = mbedtls_hmac_drbg_update_ret( &rng_ctx_blind, 263 (const unsigned char*) blind_label, 264 strlen( blind_label ) ); 265 if( ret != 0 ) 266 goto cleanup; 267 268 /* 269 * Since the output of the RNGs is always the same for the same key and 270 * message, this limits the efficiency of blinding and leaks information 271 * through side channels. After mbedtls_ecdsa_sign_det() is removed NULL 272 * won't be a valid value for f_rng_blind anymore. Therefore it should 273 * be checked by the caller and this branch and check can be removed. 274 */ 275 ret = ecdsa_sign_internal( grp, r, s, d, buf, blen, 276 mbedtls_hmac_drbg_random, &rng_ctx, 277 mbedtls_hmac_drbg_random, &rng_ctx_blind ); 278 279 } 280 281 cleanup: 282 mbedtls_hmac_drbg_free( &rng_ctx ); 283 mbedtls_hmac_drbg_free( &rng_ctx_blind ); 284 mbedtls_mpi_free( &h ); 285 286 return( ret ); 287 } 288 289 /* 290 * Deterministic signature wrappers 291 */ 292 int mbedtls_ecdsa_sign_det( mbedtls_ecp_group *grp, mbedtls_mpi *r, 293 mbedtls_mpi *s, const mbedtls_mpi *d, 294 const unsigned char *buf, size_t blen, 295 mbedtls_md_type_t md_alg ) 296 { 297 return( ecdsa_sign_det_internal( grp, r, s, d, buf, blen, md_alg, 298 NULL, NULL ) ); 299 } 300 301 int mbedtls_ecdsa_sign_det_ext( mbedtls_ecp_group *grp, mbedtls_mpi *r, 302 mbedtls_mpi *s, const mbedtls_mpi *d, 303 const unsigned char *buf, size_t blen, 304 mbedtls_md_type_t md_alg, 305 int (*f_rng_blind)(void *, unsigned char *, 306 size_t), 307 void *p_rng_blind ) 308 { 309 return( ecdsa_sign_det_internal( grp, r, s, d, buf, blen, md_alg, 310 f_rng_blind, p_rng_blind ) ); 311 } 312 #endif /* MBEDTLS_ECDSA_DETERMINISTIC */ 313 314 #if !defined(MBEDTLS_ECDSA_VERIFY_ALT) 315 /* 316 * Verify ECDSA signature of hashed message (SEC1 4.1.4) 317 * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message) 318 */ 319 int mbedtls_ecdsa_verify( mbedtls_ecp_group *grp, 320 const unsigned char *buf, size_t blen, 321 const mbedtls_ecp_point *Q, const mbedtls_mpi *r, const mbedtls_mpi *s) 322 { 323 int ret; 324 mbedtls_mpi e, s_inv, u1, u2; 325 mbedtls_ecp_point R; 326 327 mbedtls_ecp_point_init( &R ); 328 mbedtls_mpi_init( &e ); mbedtls_mpi_init( &s_inv ); mbedtls_mpi_init( &u1 ); mbedtls_mpi_init( &u2 ); 329 330 /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */ 331 if( grp->N.p == NULL ) 332 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); 333 334 /* 335 * Step 1: make sure r and s are in range 1..n-1 336 */ 337 if( mbedtls_mpi_cmp_int( r, 1 ) < 0 || mbedtls_mpi_cmp_mpi( r, &grp->N ) >= 0 || 338 mbedtls_mpi_cmp_int( s, 1 ) < 0 || mbedtls_mpi_cmp_mpi( s, &grp->N ) >= 0 ) 339 { 340 ret = MBEDTLS_ERR_ECP_VERIFY_FAILED; 341 goto cleanup; 342 } 343 344 /* 345 * Additional precaution: make sure Q is valid 346 */ 347 MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, Q ) ); 348 349 /* 350 * Step 3: derive MPI from hashed message 351 */ 352 MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); 353 354 /* 355 * Step 4: u1 = e / s mod n, u2 = r / s mod n 356 */ 357 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &s_inv, s, &grp->N ) ); 358 359 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u1, &e, &s_inv ) ); 360 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &u1, &u1, &grp->N ) ); 361 362 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u2, r, &s_inv ) ); 363 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &u2, &u2, &grp->N ) ); 364 365 /* 366 * Step 5: R = u1 G + u2 Q 367 * 368 * Since we're not using any secret data, no need to pass a RNG to 369 * mbedtls_ecp_mul() for countermesures. 370 */ 371 MBEDTLS_MPI_CHK( mbedtls_ecp_muladd( grp, &R, &u1, &grp->G, &u2, Q ) ); 372 373 if( mbedtls_ecp_is_zero( &R ) ) 374 { 375 ret = MBEDTLS_ERR_ECP_VERIFY_FAILED; 376 goto cleanup; 377 } 378 379 /* 380 * Step 6: convert xR to an integer (no-op) 381 * Step 7: reduce xR mod n (gives v) 382 */ 383 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &R.X, &R.X, &grp->N ) ); 384 385 /* 386 * Step 8: check if v (that is, R.X) is equal to r 387 */ 388 if( mbedtls_mpi_cmp_mpi( &R.X, r ) != 0 ) 389 { 390 ret = MBEDTLS_ERR_ECP_VERIFY_FAILED; 391 goto cleanup; 392 } 393 394 cleanup: 395 mbedtls_ecp_point_free( &R ); 396 mbedtls_mpi_free( &e ); mbedtls_mpi_free( &s_inv ); mbedtls_mpi_free( &u1 ); mbedtls_mpi_free( &u2 ); 397 398 return( ret ); 399 } 400 #endif /* MBEDTLS_ECDSA_VERIFY_ALT */ 401 402 /* 403 * Convert a signature (given by context) to ASN.1 404 */ 405 static int ecdsa_signature_to_asn1( const mbedtls_mpi *r, const mbedtls_mpi *s, 406 unsigned char *sig, size_t *slen ) 407 { 408 int ret; 409 unsigned char buf[MBEDTLS_ECDSA_MAX_LEN]; 410 unsigned char *p = buf + sizeof( buf ); 411 size_t len = 0; 412 413 MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, s ) ); 414 MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, r ) ); 415 416 MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( &p, buf, len ) ); 417 MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( &p, buf, 418 MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ); 419 420 memcpy( sig, p, len ); 421 *slen = len; 422 423 return( 0 ); 424 } 425 426 /* 427 * Compute and write signature 428 */ 429 int mbedtls_ecdsa_write_signature( mbedtls_ecdsa_context *ctx, mbedtls_md_type_t md_alg, 430 const unsigned char *hash, size_t hlen, 431 unsigned char *sig, size_t *slen, 432 int (*f_rng)(void *, unsigned char *, size_t), 433 void *p_rng ) 434 { 435 int ret; 436 mbedtls_mpi r, s; 437 438 mbedtls_mpi_init( &r ); 439 mbedtls_mpi_init( &s ); 440 441 #if defined(MBEDTLS_ECDSA_DETERMINISTIC) 442 MBEDTLS_MPI_CHK( ecdsa_sign_det_internal( &ctx->grp, &r, &s, &ctx->d, 443 hash, hlen, md_alg, 444 f_rng, p_rng ) ); 445 #else 446 (void) md_alg; 447 448 MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign( &ctx->grp, &r, &s, &ctx->d, 449 hash, hlen, f_rng, p_rng ) ); 450 #endif /* MBEDTLS_ECDSA_DETERMINISTIC */ 451 452 MBEDTLS_MPI_CHK( ecdsa_signature_to_asn1( &r, &s, sig, slen ) ); 453 454 cleanup: 455 mbedtls_mpi_free( &r ); 456 mbedtls_mpi_free( &s ); 457 458 return( ret ); 459 } 460 461 #if ! defined(MBEDTLS_DEPRECATED_REMOVED) && \ 462 defined(MBEDTLS_ECDSA_DETERMINISTIC) 463 int mbedtls_ecdsa_write_signature_det( mbedtls_ecdsa_context *ctx, 464 const unsigned char *hash, size_t hlen, 465 unsigned char *sig, size_t *slen, 466 mbedtls_md_type_t md_alg ) 467 { 468 return( mbedtls_ecdsa_write_signature( ctx, md_alg, hash, hlen, sig, slen, 469 NULL, NULL ) ); 470 } 471 #endif 472 473 /* 474 * Read and check signature 475 */ 476 int mbedtls_ecdsa_read_signature( mbedtls_ecdsa_context *ctx, 477 const unsigned char *hash, size_t hlen, 478 const unsigned char *sig, size_t slen ) 479 { 480 int ret; 481 unsigned char *p = (unsigned char *) sig; 482 const unsigned char *end = sig + slen; 483 size_t len; 484 mbedtls_mpi r, s; 485 486 mbedtls_mpi_init( &r ); 487 mbedtls_mpi_init( &s ); 488 489 if( ( ret = mbedtls_asn1_get_tag( &p, end, &len, 490 MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 ) 491 { 492 ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA; 493 goto cleanup; 494 } 495 496 if( p + len != end ) 497 { 498 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA + 499 MBEDTLS_ERR_ASN1_LENGTH_MISMATCH; 500 goto cleanup; 501 } 502 503 if( ( ret = mbedtls_asn1_get_mpi( &p, end, &r ) ) != 0 || 504 ( ret = mbedtls_asn1_get_mpi( &p, end, &s ) ) != 0 ) 505 { 506 ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA; 507 goto cleanup; 508 } 509 510 if( ( ret = mbedtls_ecdsa_verify( &ctx->grp, hash, hlen, 511 &ctx->Q, &r, &s ) ) != 0 ) 512 goto cleanup; 513 514 /* At this point we know that the buffer starts with a valid signature. 515 * Return 0 if the buffer just contains the signature, and a specific 516 * error code if the valid signature is followed by more data. */ 517 if( p != end ) 518 ret = MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH; 519 520 cleanup: 521 mbedtls_mpi_free( &r ); 522 mbedtls_mpi_free( &s ); 523 524 return( ret ); 525 } 526 527 #if !defined(MBEDTLS_ECDSA_GENKEY_ALT) 528 /* 529 * Generate key pair 530 */ 531 int mbedtls_ecdsa_genkey( mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid, 532 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) 533 { 534 int ret = 0; 535 ret = mbedtls_ecp_group_load( &ctx->grp, gid ); 536 if( ret != 0 ) 537 return( ret ); 538 539 return( mbedtls_ecp_gen_keypair( &ctx->grp, &ctx->d, 540 &ctx->Q, f_rng, p_rng ) ); 541 } 542 #endif /* MBEDTLS_ECDSA_GENKEY_ALT */ 543 544 /* 545 * Set context from an mbedtls_ecp_keypair 546 */ 547 int mbedtls_ecdsa_from_keypair( mbedtls_ecdsa_context *ctx, const mbedtls_ecp_keypair *key ) 548 { 549 int ret; 550 551 if( ( ret = mbedtls_ecp_group_copy( &ctx->grp, &key->grp ) ) != 0 || 552 ( ret = mbedtls_mpi_copy( &ctx->d, &key->d ) ) != 0 || 553 ( ret = mbedtls_ecp_copy( &ctx->Q, &key->Q ) ) != 0 ) 554 { 555 mbedtls_ecdsa_free( ctx ); 556 } 557 558 return( ret ); 559 } 560 561 /* 562 * Initialize context 563 */ 564 void mbedtls_ecdsa_init( mbedtls_ecdsa_context *ctx ) 565 { 566 mbedtls_ecp_keypair_init( ctx ); 567 } 568 569 /* 570 * Free context 571 */ 572 void mbedtls_ecdsa_free( mbedtls_ecdsa_context *ctx ) 573 { 574 mbedtls_ecp_keypair_free( ctx ); 575 } 576 577 #endif /* MBEDTLS_ECDSA_C */ 578