xref: /reactos/dll/3rdparty/mbedtls/ecp.c (revision 58aee30e)
1 /*
2  *  Elliptic curves over GF(p): generic functions
3  *
4  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
5  *  SPDX-License-Identifier: GPL-2.0
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License along
18  *  with this program; if not, write to the Free Software Foundation, Inc.,
19  *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  *  This file is part of mbed TLS (https://tls.mbed.org)
22  */
23 
24 /*
25  * References:
26  *
27  * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
28  * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
29  * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
30  * RFC 4492 for the related TLS structures and constants
31  *
32  * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
33  *
34  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
35  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
36  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
37  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
38  *
39  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
40  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
41  *     ePrint Archive, 2004, vol. 2004, p. 342.
42  *     <http://eprint.iacr.org/2004/342.pdf>
43  */
44 
45 #if !defined(MBEDTLS_CONFIG_FILE)
46 #include "mbedtls/config.h"
47 #else
48 #include MBEDTLS_CONFIG_FILE
49 #endif
50 
51 #if defined(MBEDTLS_ECP_C)
52 
53 #include "mbedtls/ecp.h"
54 #include "mbedtls/threading.h"
55 
56 #include <string.h>
57 
58 #if !defined(MBEDTLS_ECP_ALT)
59 
60 #if defined(MBEDTLS_PLATFORM_C)
61 #include "mbedtls/platform.h"
62 #else
63 #include <stdlib.h>
64 #include <stdio.h>
65 #define mbedtls_printf     printf
66 #define mbedtls_calloc    calloc
67 #define mbedtls_free       free
68 #endif
69 
70 #include "mbedtls/ecp_internal.h"
71 
72 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
73     !defined(inline) && !defined(__cplusplus)
74 #define inline __inline
75 #endif
76 
77 /* Implementation that should never be optimized out by the compiler */
78 static void mbedtls_zeroize( void *v, size_t n ) {
79     volatile unsigned char *p = v; while( n-- ) *p++ = 0;
80 }
81 
82 #if defined(MBEDTLS_SELF_TEST)
83 /*
84  * Counts of point addition and doubling, and field multiplications.
85  * Used to test resistance of point multiplication to simple timing attacks.
86  */
87 static unsigned long add_count, dbl_count, mul_count;
88 #endif
89 
90 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) ||   \
91     defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
92     defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
93     defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) ||   \
94     defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) ||   \
95     defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)   ||   \
96     defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)   ||   \
97     defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)   ||   \
98     defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
99     defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
100     defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
101 #define ECP_SHORTWEIERSTRASS
102 #endif
103 
104 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
105 #define ECP_MONTGOMERY
106 #endif
107 
108 /*
109  * Curve types: internal for now, might be exposed later
110  */
111 typedef enum
112 {
113     ECP_TYPE_NONE = 0,
114     ECP_TYPE_SHORT_WEIERSTRASS,    /* y^2 = x^3 + a x + b      */
115     ECP_TYPE_MONTGOMERY,           /* y^2 = x^3 + a x^2 + x    */
116 } ecp_curve_type;
117 
118 /*
119  * List of supported curves:
120  *  - internal ID
121  *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
122  *  - size in bits
123  *  - readable name
124  *
125  * Curves are listed in order: largest curves first, and for a given size,
126  * fastest curves first. This provides the default order for the SSL module.
127  *
128  * Reminder: update profiles in x509_crt.c when adding a new curves!
129  */
130 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
131 {
132 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
133     { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
134 #endif
135 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
136     { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
137 #endif
138 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
139     { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
140 #endif
141 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
142     { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
143 #endif
144 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
145     { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
146 #endif
147 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
148     { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
149 #endif
150 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
151     { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
152 #endif
153 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
154     { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
155 #endif
156 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
157     { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
158 #endif
159 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
160     { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
161 #endif
162 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
163     { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
164 #endif
165     { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
166 };
167 
168 #define ECP_NB_CURVES   sizeof( ecp_supported_curves ) /    \
169                         sizeof( ecp_supported_curves[0] )
170 
171 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
172 
173 /*
174  * List of supported curves and associated info
175  */
176 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void )
177 {
178     return( ecp_supported_curves );
179 }
180 
181 /*
182  * List of supported curves, group ID only
183  */
184 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void )
185 {
186     static int init_done = 0;
187 
188     if( ! init_done )
189     {
190         size_t i = 0;
191         const mbedtls_ecp_curve_info *curve_info;
192 
193         for( curve_info = mbedtls_ecp_curve_list();
194              curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
195              curve_info++ )
196         {
197             ecp_supported_grp_id[i++] = curve_info->grp_id;
198         }
199         ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
200 
201         init_done = 1;
202     }
203 
204     return( ecp_supported_grp_id );
205 }
206 
207 /*
208  * Get the curve info for the internal identifier
209  */
210 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id )
211 {
212     const mbedtls_ecp_curve_info *curve_info;
213 
214     for( curve_info = mbedtls_ecp_curve_list();
215          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
216          curve_info++ )
217     {
218         if( curve_info->grp_id == grp_id )
219             return( curve_info );
220     }
221 
222     return( NULL );
223 }
224 
225 /*
226  * Get the curve info from the TLS identifier
227  */
228 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id )
229 {
230     const mbedtls_ecp_curve_info *curve_info;
231 
232     for( curve_info = mbedtls_ecp_curve_list();
233          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
234          curve_info++ )
235     {
236         if( curve_info->tls_id == tls_id )
237             return( curve_info );
238     }
239 
240     return( NULL );
241 }
242 
243 /*
244  * Get the curve info from the name
245  */
246 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name )
247 {
248     const mbedtls_ecp_curve_info *curve_info;
249 
250     for( curve_info = mbedtls_ecp_curve_list();
251          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
252          curve_info++ )
253     {
254         if( strcmp( curve_info->name, name ) == 0 )
255             return( curve_info );
256     }
257 
258     return( NULL );
259 }
260 
261 /*
262  * Get the type of a curve
263  */
264 static inline ecp_curve_type ecp_get_type( const mbedtls_ecp_group *grp )
265 {
266     if( grp->G.X.p == NULL )
267         return( ECP_TYPE_NONE );
268 
269     if( grp->G.Y.p == NULL )
270         return( ECP_TYPE_MONTGOMERY );
271     else
272         return( ECP_TYPE_SHORT_WEIERSTRASS );
273 }
274 
275 /*
276  * Initialize (the components of) a point
277  */
278 void mbedtls_ecp_point_init( mbedtls_ecp_point *pt )
279 {
280     if( pt == NULL )
281         return;
282 
283     mbedtls_mpi_init( &pt->X );
284     mbedtls_mpi_init( &pt->Y );
285     mbedtls_mpi_init( &pt->Z );
286 }
287 
288 /*
289  * Initialize (the components of) a group
290  */
291 void mbedtls_ecp_group_init( mbedtls_ecp_group *grp )
292 {
293     if( grp == NULL )
294         return;
295 
296     memset( grp, 0, sizeof( mbedtls_ecp_group ) );
297 }
298 
299 /*
300  * Initialize (the components of) a key pair
301  */
302 void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key )
303 {
304     if( key == NULL )
305         return;
306 
307     mbedtls_ecp_group_init( &key->grp );
308     mbedtls_mpi_init( &key->d );
309     mbedtls_ecp_point_init( &key->Q );
310 }
311 
312 /*
313  * Unallocate (the components of) a point
314  */
315 void mbedtls_ecp_point_free( mbedtls_ecp_point *pt )
316 {
317     if( pt == NULL )
318         return;
319 
320     mbedtls_mpi_free( &( pt->X ) );
321     mbedtls_mpi_free( &( pt->Y ) );
322     mbedtls_mpi_free( &( pt->Z ) );
323 }
324 
325 /*
326  * Unallocate (the components of) a group
327  */
328 void mbedtls_ecp_group_free( mbedtls_ecp_group *grp )
329 {
330     size_t i;
331 
332     if( grp == NULL )
333         return;
334 
335     if( grp->h != 1 )
336     {
337         mbedtls_mpi_free( &grp->P );
338         mbedtls_mpi_free( &grp->A );
339         mbedtls_mpi_free( &grp->B );
340         mbedtls_ecp_point_free( &grp->G );
341         mbedtls_mpi_free( &grp->N );
342     }
343 
344     if( grp->T != NULL )
345     {
346         for( i = 0; i < grp->T_size; i++ )
347             mbedtls_ecp_point_free( &grp->T[i] );
348         mbedtls_free( grp->T );
349     }
350 
351     mbedtls_zeroize( grp, sizeof( mbedtls_ecp_group ) );
352 }
353 
354 /*
355  * Unallocate (the components of) a key pair
356  */
357 void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key )
358 {
359     if( key == NULL )
360         return;
361 
362     mbedtls_ecp_group_free( &key->grp );
363     mbedtls_mpi_free( &key->d );
364     mbedtls_ecp_point_free( &key->Q );
365 }
366 
367 /*
368  * Copy the contents of a point
369  */
370 int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
371 {
372     int ret;
373 
374     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X, &Q->X ) );
375     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y, &Q->Y ) );
376     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z, &Q->Z ) );
377 
378 cleanup:
379     return( ret );
380 }
381 
382 /*
383  * Copy the contents of a group object
384  */
385 int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src )
386 {
387     return mbedtls_ecp_group_load( dst, src->id );
388 }
389 
390 /*
391  * Set point to zero
392  */
393 int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt )
394 {
395     int ret;
396 
397     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X , 1 ) );
398     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y , 1 ) );
399     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 0 ) );
400 
401 cleanup:
402     return( ret );
403 }
404 
405 /*
406  * Tell if a point is zero
407  */
408 int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt )
409 {
410     return( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 );
411 }
412 
413 /*
414  * Compare two points lazily
415  */
416 int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P,
417                            const mbedtls_ecp_point *Q )
418 {
419     if( mbedtls_mpi_cmp_mpi( &P->X, &Q->X ) == 0 &&
420         mbedtls_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 &&
421         mbedtls_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 )
422     {
423         return( 0 );
424     }
425 
426     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
427 }
428 
429 /*
430  * Import a non-zero point from ASCII strings
431  */
432 int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix,
433                            const char *x, const char *y )
434 {
435     int ret;
436 
437     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X, radix, x ) );
438     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y, radix, y ) );
439     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
440 
441 cleanup:
442     return( ret );
443 }
444 
445 /*
446  * Export a point into unsigned binary data (SEC1 2.3.3)
447  */
448 int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *P,
449                             int format, size_t *olen,
450                             unsigned char *buf, size_t buflen )
451 {
452     int ret = 0;
453     size_t plen;
454 
455     if( format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
456         format != MBEDTLS_ECP_PF_COMPRESSED )
457         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
458 
459     /*
460      * Common case: P == 0
461      */
462     if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
463     {
464         if( buflen < 1 )
465             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
466 
467         buf[0] = 0x00;
468         *olen = 1;
469 
470         return( 0 );
471     }
472 
473     plen = mbedtls_mpi_size( &grp->P );
474 
475     if( format == MBEDTLS_ECP_PF_UNCOMPRESSED )
476     {
477         *olen = 2 * plen + 1;
478 
479         if( buflen < *olen )
480             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
481 
482         buf[0] = 0x04;
483         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
484         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
485     }
486     else if( format == MBEDTLS_ECP_PF_COMPRESSED )
487     {
488         *olen = plen + 1;
489 
490         if( buflen < *olen )
491             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
492 
493         buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y, 0 );
494         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
495     }
496 
497 cleanup:
498     return( ret );
499 }
500 
501 /*
502  * Import a point from unsigned binary data (SEC1 2.3.4)
503  */
504 int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
505                            const unsigned char *buf, size_t ilen )
506 {
507     int ret;
508     size_t plen;
509 
510     if( ilen < 1 )
511         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
512 
513     if( buf[0] == 0x00 )
514     {
515         if( ilen == 1 )
516             return( mbedtls_ecp_set_zero( pt ) );
517         else
518             return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
519     }
520 
521     plen = mbedtls_mpi_size( &grp->P );
522 
523     if( buf[0] != 0x04 )
524         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
525 
526     if( ilen != 2 * plen + 1 )
527         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
528 
529     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) );
530     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
531     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
532 
533 cleanup:
534     return( ret );
535 }
536 
537 /*
538  * Import a point from a TLS ECPoint record (RFC 4492)
539  *      struct {
540  *          opaque point <1..2^8-1>;
541  *      } ECPoint;
542  */
543 int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
544                         const unsigned char **buf, size_t buf_len )
545 {
546     unsigned char data_len;
547     const unsigned char *buf_start;
548 
549     /*
550      * We must have at least two bytes (1 for length, at least one for data)
551      */
552     if( buf_len < 2 )
553         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
554 
555     data_len = *(*buf)++;
556     if( data_len < 1 || data_len > buf_len - 1 )
557         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
558 
559     /*
560      * Save buffer start for read_binary and update buf
561      */
562     buf_start = *buf;
563     *buf += data_len;
564 
565     return mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len );
566 }
567 
568 /*
569  * Export a point as a TLS ECPoint record (RFC 4492)
570  *      struct {
571  *          opaque point <1..2^8-1>;
572  *      } ECPoint;
573  */
574 int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
575                          int format, size_t *olen,
576                          unsigned char *buf, size_t blen )
577 {
578     int ret;
579 
580     /*
581      * buffer length must be at least one, for our length byte
582      */
583     if( blen < 1 )
584         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
585 
586     if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format,
587                     olen, buf + 1, blen - 1) ) != 0 )
588         return( ret );
589 
590     /*
591      * write length to the first byte and update total length
592      */
593     buf[0] = (unsigned char) *olen;
594     ++*olen;
595 
596     return( 0 );
597 }
598 
599 /*
600  * Set a group from an ECParameters record (RFC 4492)
601  */
602 int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp, const unsigned char **buf, size_t len )
603 {
604     uint16_t tls_id;
605     const mbedtls_ecp_curve_info *curve_info;
606 
607     /*
608      * We expect at least three bytes (see below)
609      */
610     if( len < 3 )
611         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
612 
613     /*
614      * First byte is curve_type; only named_curve is handled
615      */
616     if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE )
617         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
618 
619     /*
620      * Next two bytes are the namedcurve value
621      */
622     tls_id = *(*buf)++;
623     tls_id <<= 8;
624     tls_id |= *(*buf)++;
625 
626     if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
627         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
628 
629     return mbedtls_ecp_group_load( grp, curve_info->grp_id );
630 }
631 
632 /*
633  * Write the ECParameters record corresponding to a group (RFC 4492)
634  */
635 int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,
636                          unsigned char *buf, size_t blen )
637 {
638     const mbedtls_ecp_curve_info *curve_info;
639 
640     if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
641         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
642 
643     /*
644      * We are going to write 3 bytes (see below)
645      */
646     *olen = 3;
647     if( blen < *olen )
648         return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
649 
650     /*
651      * First byte is curve_type, always named_curve
652      */
653     *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
654 
655     /*
656      * Next two bytes are the namedcurve value
657      */
658     buf[0] = curve_info->tls_id >> 8;
659     buf[1] = curve_info->tls_id & 0xFF;
660 
661     return( 0 );
662 }
663 
664 /*
665  * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
666  * See the documentation of struct mbedtls_ecp_group.
667  *
668  * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
669  */
670 static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp )
671 {
672     int ret;
673 
674     if( grp->modp == NULL )
675         return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) );
676 
677     /* N->s < 0 is a much faster test, which fails only if N is 0 */
678     if( ( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) ||
679         mbedtls_mpi_bitlen( N ) > 2 * grp->pbits )
680     {
681         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
682     }
683 
684     MBEDTLS_MPI_CHK( grp->modp( N ) );
685 
686     /* N->s < 0 is a much faster test, which fails only if N is 0 */
687     while( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 )
688         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) );
689 
690     while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 )
691         /* we known P, N and the result are positive */
692         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) );
693 
694 cleanup:
695     return( ret );
696 }
697 
698 /*
699  * Fast mod-p functions expect their argument to be in the 0..p^2 range.
700  *
701  * In order to guarantee that, we need to ensure that operands of
702  * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
703  * bring the result back to this range.
704  *
705  * The following macros are shortcuts for doing that.
706  */
707 
708 /*
709  * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
710  */
711 #if defined(MBEDTLS_SELF_TEST)
712 #define INC_MUL_COUNT   mul_count++;
713 #else
714 #define INC_MUL_COUNT
715 #endif
716 
717 #define MOD_MUL( N )    do { MBEDTLS_MPI_CHK( ecp_modp( &N, grp ) ); INC_MUL_COUNT } \
718                         while( 0 )
719 
720 /*
721  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
722  * N->s < 0 is a very fast test, which fails only if N is 0
723  */
724 #define MOD_SUB( N )                                \
725     while( N.s < 0 && mbedtls_mpi_cmp_int( &N, 0 ) != 0 )   \
726         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &N, &N, &grp->P ) )
727 
728 /*
729  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
730  * We known P, N and the result are positive, so sub_abs is correct, and
731  * a bit faster.
732  */
733 #define MOD_ADD( N )                                \
734     while( mbedtls_mpi_cmp_mpi( &N, &grp->P ) >= 0 )        \
735         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &N, &N, &grp->P ) )
736 
737 #if defined(ECP_SHORTWEIERSTRASS)
738 /*
739  * For curves in short Weierstrass form, we do all the internal operations in
740  * Jacobian coordinates.
741  *
742  * For multiplication, we'll use a comb method with coutermeasueres against
743  * SPA, hence timing attacks.
744  */
745 
746 /*
747  * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
748  * Cost: 1N := 1I + 3M + 1S
749  */
750 static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt )
751 {
752     int ret;
753     mbedtls_mpi Zi, ZZi;
754 
755     if( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 )
756         return( 0 );
757 
758 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
759     if ( mbedtls_internal_ecp_grp_capable( grp ) )
760     {
761         return mbedtls_internal_ecp_normalize_jac( grp, pt );
762     }
763 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
764     mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
765 
766     /*
767      * X = X / Z^2  mod p
768      */
769     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi,      &pt->Z,     &grp->P ) );
770     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi,     &Zi,        &Zi     ) ); MOD_MUL( ZZi );
771     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X,   &pt->X,     &ZZi    ) ); MOD_MUL( pt->X );
772 
773     /*
774      * Y = Y / Z^3  mod p
775      */
776     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &ZZi    ) ); MOD_MUL( pt->Y );
777     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &Zi     ) ); MOD_MUL( pt->Y );
778 
779     /*
780      * Z = 1
781      */
782     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
783 
784 cleanup:
785 
786     mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
787 
788     return( ret );
789 }
790 
791 /*
792  * Normalize jacobian coordinates of an array of (pointers to) points,
793  * using Montgomery's trick to perform only one inversion mod P.
794  * (See for example Cohen's "A Course in Computational Algebraic Number
795  * Theory", Algorithm 10.3.4.)
796  *
797  * Warning: fails (returning an error) if one of the points is zero!
798  * This should never happen, see choice of w in ecp_mul_comb().
799  *
800  * Cost: 1N(t) := 1I + (6t - 3)M + 1S
801  */
802 static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
803                                    mbedtls_ecp_point *T[], size_t t_len )
804 {
805     int ret;
806     size_t i;
807     mbedtls_mpi *c, u, Zi, ZZi;
808 
809     if( t_len < 2 )
810         return( ecp_normalize_jac( grp, *T ) );
811 
812 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
813     if ( mbedtls_internal_ecp_grp_capable( grp ) )
814     {
815         return mbedtls_internal_ecp_normalize_jac_many(grp, T, t_len);
816     }
817 #endif
818 
819     if( ( c = mbedtls_calloc( t_len, sizeof( mbedtls_mpi ) ) ) == NULL )
820         return( MBEDTLS_ERR_ECP_ALLOC_FAILED );
821 
822     mbedtls_mpi_init( &u ); mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
823 
824     /*
825      * c[i] = Z_0 * ... * Z_i
826      */
827     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c[0], &T[0]->Z ) );
828     for( i = 1; i < t_len; i++ )
829     {
830         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );
831         MOD_MUL( c[i] );
832     }
833 
834     /*
835      * u = 1 / (Z_0 * ... * Z_n) mod P
836      */
837     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u, &c[t_len-1], &grp->P ) );
838 
839     for( i = t_len - 1; ; i-- )
840     {
841         /*
842          * Zi = 1 / Z_i mod p
843          * u = 1 / (Z_0 * ... * Z_i) mod P
844          */
845         if( i == 0 ) {
846             MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi, &u ) );
847         }
848         else
849         {
850             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Zi, &u, &c[i-1]  ) ); MOD_MUL( Zi );
851             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u,  &u, &T[i]->Z ) ); MOD_MUL( u );
852         }
853 
854         /*
855          * proceed as in normalize()
856          */
857         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi,     &Zi,      &Zi  ) ); MOD_MUL( ZZi );
858         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );
859         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );
860         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi  ) ); MOD_MUL( T[i]->Y );
861 
862         /*
863          * Post-precessing: reclaim some memory by shrinking coordinates
864          * - not storing Z (always 1)
865          * - shrinking other coordinates, but still keeping the same number of
866          *   limbs as P, as otherwise it will too likely be regrown too fast.
867          */
868         MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P.n ) );
869         MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P.n ) );
870         mbedtls_mpi_free( &T[i]->Z );
871 
872         if( i == 0 )
873             break;
874     }
875 
876 cleanup:
877 
878     mbedtls_mpi_free( &u ); mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
879     for( i = 0; i < t_len; i++ )
880         mbedtls_mpi_free( &c[i] );
881     mbedtls_free( c );
882 
883     return( ret );
884 }
885 
886 /*
887  * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
888  * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
889  */
890 static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp,
891                             mbedtls_ecp_point *Q,
892                             unsigned char inv )
893 {
894     int ret;
895     unsigned char nonzero;
896     mbedtls_mpi mQY;
897 
898     mbedtls_mpi_init( &mQY );
899 
900     /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
901     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );
902     nonzero = mbedtls_mpi_cmp_int( &Q->Y, 0 ) != 0;
903     MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );
904 
905 cleanup:
906     mbedtls_mpi_free( &mQY );
907 
908     return( ret );
909 }
910 
911 /*
912  * Point doubling R = 2 P, Jacobian coordinates
913  *
914  * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
915  *
916  * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
917  * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
918  *
919  * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
920  *
921  * Cost: 1D := 3M + 4S          (A ==  0)
922  *             4M + 4S          (A == -3)
923  *             3M + 6S + 1a     otherwise
924  */
925 static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
926                            const mbedtls_ecp_point *P )
927 {
928     int ret;
929     mbedtls_mpi M, S, T, U;
930 
931 #if defined(MBEDTLS_SELF_TEST)
932     dbl_count++;
933 #endif
934 
935 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
936     if ( mbedtls_internal_ecp_grp_capable( grp ) )
937     {
938         return mbedtls_internal_ecp_double_jac( grp, R, P );
939     }
940 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
941 
942     mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U );
943 
944     /* Special case for A = -3 */
945     if( grp->A.p == NULL )
946     {
947         /* M = 3(X + Z^2)(X - Z^2) */
948         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->Z,  &P->Z   ) ); MOD_MUL( S );
949         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T,  &P->X,  &S      ) ); MOD_ADD( T );
950         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U,  &P->X,  &S      ) ); MOD_SUB( U );
951         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &T,     &U      ) ); MOD_MUL( S );
952         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );
953     }
954     else
955     {
956         /* M = 3.X^2 */
957         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->X,  &P->X   ) ); MOD_MUL( S );
958         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );
959 
960         /* Optimize away for "koblitz" curves with A = 0 */
961         if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 )
962         {
963             /* M += A.Z^4 */
964             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->Z,  &P->Z   ) ); MOD_MUL( S );
965             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &S,     &S      ) ); MOD_MUL( T );
966             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &T,     &grp->A ) ); MOD_MUL( S );
967             MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M,  &M,     &S      ) ); MOD_ADD( M );
968         }
969     }
970 
971     /* S = 4.X.Y^2 */
972     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &P->Y,  &P->Y   ) ); MOD_MUL( T );
973     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T,  1               ) ); MOD_ADD( T );
974     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->X,  &T      ) ); MOD_MUL( S );
975     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &S,  1               ) ); MOD_ADD( S );
976 
977     /* U = 8.Y^4 */
978     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U,  &T,     &T      ) ); MOD_MUL( U );
979     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U,  1               ) ); MOD_ADD( U );
980 
981     /* T = M^2 - 2.S */
982     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &M,     &M      ) ); MOD_MUL( T );
983     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T,  &T,     &S      ) ); MOD_SUB( T );
984     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T,  &T,     &S      ) ); MOD_SUB( T );
985 
986     /* S = M(S - T) - U */
987     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S,  &S,     &T      ) ); MOD_SUB( S );
988     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &S,     &M      ) ); MOD_MUL( S );
989     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S,  &S,     &U      ) ); MOD_SUB( S );
990 
991     /* U = 2.Y.Z */
992     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U,  &P->Y,  &P->Z   ) ); MOD_MUL( U );
993     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U,  1               ) ); MOD_ADD( U );
994 
995     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &T ) );
996     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &S ) );
997     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &U ) );
998 
999 cleanup:
1000     mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U );
1001 
1002     return( ret );
1003 }
1004 
1005 /*
1006  * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1007  *
1008  * The coordinates of Q must be normalized (= affine),
1009  * but those of P don't need to. R is not normalized.
1010  *
1011  * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1012  * None of these cases can happen as intermediate step in ecp_mul_comb():
1013  * - at each step, P, Q and R are multiples of the base point, the factor
1014  *   being less than its order, so none of them is zero;
1015  * - Q is an odd multiple of the base point, P an even multiple,
1016  *   due to the choice of precomputed points in the modified comb method.
1017  * So branches for these cases do not leak secret information.
1018  *
1019  * We accept Q->Z being unset (saving memory in tables) as meaning 1.
1020  *
1021  * Cost: 1A := 8M + 3S
1022  */
1023 static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1024                           const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
1025 {
1026     int ret;
1027     mbedtls_mpi T1, T2, T3, T4, X, Y, Z;
1028 
1029 #if defined(MBEDTLS_SELF_TEST)
1030     add_count++;
1031 #endif
1032 
1033 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1034     if ( mbedtls_internal_ecp_grp_capable( grp ) )
1035     {
1036         return mbedtls_internal_ecp_add_mixed( grp, R, P, Q );
1037     }
1038 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1039 
1040     /*
1041      * Trivial cases: P == 0 or Q == 0 (case 1)
1042      */
1043     if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
1044         return( mbedtls_ecp_copy( R, Q ) );
1045 
1046     if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 0 ) == 0 )
1047         return( mbedtls_ecp_copy( R, P ) );
1048 
1049     /*
1050      * Make sure Q coordinates are normalized
1051      */
1052     if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 1 ) != 0 )
1053         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1054 
1055     mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 );
1056     mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
1057 
1058     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1,  &P->Z,  &P->Z ) );  MOD_MUL( T1 );
1059     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2,  &T1,    &P->Z ) );  MOD_MUL( T2 );
1060     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1,  &T1,    &Q->X ) );  MOD_MUL( T1 );
1061     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2,  &T2,    &Q->Y ) );  MOD_MUL( T2 );
1062     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T1,  &T1,    &P->X ) );  MOD_SUB( T1 );
1063     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T2,  &T2,    &P->Y ) );  MOD_SUB( T2 );
1064 
1065     /* Special cases (2) and (3) */
1066     if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 )
1067     {
1068         if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 )
1069         {
1070             ret = ecp_double_jac( grp, R, P );
1071             goto cleanup;
1072         }
1073         else
1074         {
1075             ret = mbedtls_ecp_set_zero( R );
1076             goto cleanup;
1077         }
1078     }
1079 
1080     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Z,   &P->Z,  &T1   ) );  MOD_MUL( Z  );
1081     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T1,    &T1   ) );  MOD_MUL( T3 );
1082     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4,  &T3,    &T1   ) );  MOD_MUL( T4 );
1083     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T3,    &P->X ) );  MOD_MUL( T3 );
1084     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1,  &T3,    2     ) );  MOD_ADD( T1 );
1085     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X,   &T2,    &T2   ) );  MOD_MUL( X  );
1086     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X,   &X,     &T1   ) );  MOD_SUB( X  );
1087     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X,   &X,     &T4   ) );  MOD_SUB( X  );
1088     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T3,  &T3,    &X    ) );  MOD_SUB( T3 );
1089     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T3,    &T2   ) );  MOD_MUL( T3 );
1090     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4,  &T4,    &P->Y ) );  MOD_MUL( T4 );
1091     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &Y,   &T3,    &T4   ) );  MOD_SUB( Y  );
1092 
1093     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &X ) );
1094     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &Y ) );
1095     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &Z ) );
1096 
1097 cleanup:
1098 
1099     mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 );
1100     mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
1101 
1102     return( ret );
1103 }
1104 
1105 /*
1106  * Randomize jacobian coordinates:
1107  * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1108  * This is sort of the reverse operation of ecp_normalize_jac().
1109  *
1110  * This countermeasure was first suggested in [2].
1111  */
1112 static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1113                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1114 {
1115     int ret;
1116     mbedtls_mpi l, ll;
1117     size_t p_size;
1118     int count = 0;
1119 
1120 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1121     if ( mbedtls_internal_ecp_grp_capable( grp ) )
1122     {
1123         return mbedtls_internal_ecp_randomize_jac( grp, pt, f_rng, p_rng );
1124     }
1125 #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1126 
1127     p_size = ( grp->pbits + 7 ) / 8;
1128     mbedtls_mpi_init( &l ); mbedtls_mpi_init( &ll );
1129 
1130     /* Generate l such that 1 < l < p */
1131     do
1132     {
1133         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );
1134 
1135         while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
1136             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
1137 
1138         if( count++ > 10 )
1139             return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
1140     }
1141     while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
1142 
1143     /* Z = l * Z */
1144     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Z,   &pt->Z,     &l  ) ); MOD_MUL( pt->Z );
1145 
1146     /* X = l^2 * X */
1147     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll,      &l,         &l  ) ); MOD_MUL( ll );
1148     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X,   &pt->X,     &ll ) ); MOD_MUL( pt->X );
1149 
1150     /* Y = l^3 * Y */
1151     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll,      &ll,        &l  ) ); MOD_MUL( ll );
1152     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &ll ) ); MOD_MUL( pt->Y );
1153 
1154 cleanup:
1155     mbedtls_mpi_free( &l ); mbedtls_mpi_free( &ll );
1156 
1157     return( ret );
1158 }
1159 
1160 /*
1161  * Check and define parameters used by the comb method (see below for details)
1162  */
1163 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1164 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1165 #endif
1166 
1167 /* d = ceil( n / w ) */
1168 #define COMB_MAX_D      ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2
1169 
1170 /* number of precomputed points */
1171 #define COMB_MAX_PRE    ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )
1172 
1173 /*
1174  * Compute the representation of m that will be used with our comb method.
1175  *
1176  * The basic comb method is described in GECC 3.44 for example. We use a
1177  * modified version that provides resistance to SPA by avoiding zero
1178  * digits in the representation as in [3]. We modify the method further by
1179  * requiring that all K_i be odd, which has the small cost that our
1180  * representation uses one more K_i, due to carries.
1181  *
1182  * Also, for the sake of compactness, only the seven low-order bits of x[i]
1183  * are used to represent K_i, and the msb of x[i] encodes the the sign (s_i in
1184  * the paper): it is set if and only if if s_i == -1;
1185  *
1186  * Calling conventions:
1187  * - x is an array of size d + 1
1188  * - w is the size, ie number of teeth, of the comb, and must be between
1189  *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1190  * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1191  *   (the result will be incorrect if these assumptions are not satisfied)
1192  */
1193 static void ecp_comb_fixed( unsigned char x[], size_t d,
1194                             unsigned char w, const mbedtls_mpi *m )
1195 {
1196     size_t i, j;
1197     unsigned char c, cc, adjust;
1198 
1199     memset( x, 0, d+1 );
1200 
1201     /* First get the classical comb values (except for x_d = 0) */
1202     for( i = 0; i < d; i++ )
1203         for( j = 0; j < w; j++ )
1204             x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j;
1205 
1206     /* Now make sure x_1 .. x_d are odd */
1207     c = 0;
1208     for( i = 1; i <= d; i++ )
1209     {
1210         /* Add carry and update it */
1211         cc   = x[i] & c;
1212         x[i] = x[i] ^ c;
1213         c = cc;
1214 
1215         /* Adjust if needed, avoiding branches */
1216         adjust = 1 - ( x[i] & 0x01 );
1217         c   |= x[i] & ( x[i-1] * adjust );
1218         x[i] = x[i] ^ ( x[i-1] * adjust );
1219         x[i-1] |= adjust << 7;
1220     }
1221 }
1222 
1223 /*
1224  * Precompute points for the comb method
1225  *
1226  * If i = i_{w-1} ... i_1 is the binary representation of i, then
1227  * T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P
1228  *
1229  * T must be able to hold 2^{w - 1} elements
1230  *
1231  * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1232  */
1233 static int ecp_precompute_comb( const mbedtls_ecp_group *grp,
1234                                 mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1235                                 unsigned char w, size_t d )
1236 {
1237     int ret;
1238     unsigned char i, k;
1239     size_t j;
1240     mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1];
1241 
1242     /*
1243      * Set T[0] = P and
1244      * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1245      */
1246     MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) );
1247 
1248     k = 0;
1249     for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 )
1250     {
1251         cur = T + i;
1252         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) );
1253         for( j = 0; j < d; j++ )
1254             MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur ) );
1255 
1256         TT[k++] = cur;
1257     }
1258 
1259     MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) );
1260 
1261     /*
1262      * Compute the remaining ones using the minimal number of additions
1263      * Be careful to update T[2^l] only after using it!
1264      */
1265     k = 0;
1266     for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 )
1267     {
1268         j = i;
1269         while( j-- )
1270         {
1271             MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );
1272             TT[k++] = &T[i + j];
1273         }
1274     }
1275 
1276     MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) );
1277 
1278 cleanup:
1279 
1280     return( ret );
1281 }
1282 
1283 /*
1284  * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
1285  */
1286 static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1287                             const mbedtls_ecp_point T[], unsigned char t_len,
1288                             unsigned char i )
1289 {
1290     int ret;
1291     unsigned char ii, j;
1292 
1293     /* Ignore the "sign" bit and scale down */
1294     ii =  ( i & 0x7Fu ) >> 1;
1295 
1296     /* Read the whole table to thwart cache-based timing attacks */
1297     for( j = 0; j < t_len; j++ )
1298     {
1299         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );
1300         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );
1301     }
1302 
1303     /* Safely invert result if i is "negative" */
1304     MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );
1305 
1306 cleanup:
1307     return( ret );
1308 }
1309 
1310 /*
1311  * Core multiplication algorithm for the (modified) comb method.
1312  * This part is actually common with the basic comb method (GECC 3.44)
1313  *
1314  * Cost: d A + d D + 1 R
1315  */
1316 static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1317                               const mbedtls_ecp_point T[], unsigned char t_len,
1318                               const unsigned char x[], size_t d,
1319                               int (*f_rng)(void *, unsigned char *, size_t),
1320                               void *p_rng )
1321 {
1322     int ret;
1323     mbedtls_ecp_point Txi;
1324     size_t i;
1325 
1326     mbedtls_ecp_point_init( &Txi );
1327 
1328     /* Start with a non-zero point and randomize its coordinates */
1329     i = d;
1330     MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, t_len, x[i] ) );
1331     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 1 ) );
1332     if( f_rng != 0 )
1333         MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
1334 
1335     while( i-- != 0 )
1336     {
1337         MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R ) );
1338         MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, t_len, x[i] ) );
1339         MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
1340     }
1341 
1342 cleanup:
1343 
1344     mbedtls_ecp_point_free( &Txi );
1345 
1346     return( ret );
1347 }
1348 
1349 /*
1350  * Multiplication using the comb method,
1351  * for curves in short Weierstrass form
1352  */
1353 static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1354                          const mbedtls_mpi *m, const mbedtls_ecp_point *P,
1355                          int (*f_rng)(void *, unsigned char *, size_t),
1356                          void *p_rng )
1357 {
1358     int ret;
1359     unsigned char w, m_is_odd, p_eq_g, pre_len, i;
1360     size_t d;
1361     unsigned char k[COMB_MAX_D + 1];
1362     mbedtls_ecp_point *T;
1363     mbedtls_mpi M, mm;
1364 
1365     mbedtls_mpi_init( &M );
1366     mbedtls_mpi_init( &mm );
1367 
1368     /* we need N to be odd to trnaform m in an odd number, check now */
1369     if( mbedtls_mpi_get_bit( &grp->N, 0 ) != 1 )
1370         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1371 
1372     /*
1373      * Minimize the number of multiplications, that is minimize
1374      * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
1375      * (see costs of the various parts, with 1S = 1M)
1376      */
1377     w = grp->nbits >= 384 ? 5 : 4;
1378 
1379     /*
1380      * If P == G, pre-compute a bit more, since this may be re-used later.
1381      * Just adding one avoids upping the cost of the first mul too much,
1382      * and the memory cost too.
1383      */
1384 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
1385     p_eq_g = ( mbedtls_mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
1386                mbedtls_mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
1387     if( p_eq_g )
1388         w++;
1389 #else
1390     p_eq_g = 0;
1391 #endif
1392 
1393     /*
1394      * Make sure w is within bounds.
1395      * (The last test is useful only for very small curves in the test suite.)
1396      */
1397     if( w > MBEDTLS_ECP_WINDOW_SIZE )
1398         w = MBEDTLS_ECP_WINDOW_SIZE;
1399     if( w >= grp->nbits )
1400         w = 2;
1401 
1402     /* Other sizes that depend on w */
1403     pre_len = 1U << ( w - 1 );
1404     d = ( grp->nbits + w - 1 ) / w;
1405 
1406     /*
1407      * Prepare precomputed points: if P == G we want to
1408      * use grp->T if already initialized, or initialize it.
1409      */
1410     T = p_eq_g ? grp->T : NULL;
1411 
1412     if( T == NULL )
1413     {
1414         T = mbedtls_calloc( pre_len, sizeof( mbedtls_ecp_point ) );
1415         if( T == NULL )
1416         {
1417             ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
1418             goto cleanup;
1419         }
1420 
1421         MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d ) );
1422 
1423         if( p_eq_g )
1424         {
1425             grp->T = T;
1426             grp->T_size = pre_len;
1427         }
1428     }
1429 
1430     /*
1431      * Make sure M is odd (M = m or M = N - m, since N is odd)
1432      * using the fact that m * P = - (N - m) * P
1433      */
1434     m_is_odd = ( mbedtls_mpi_get_bit( m, 0 ) == 1 );
1435     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) );
1436     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N, m ) );
1437     MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, ! m_is_odd ) );
1438 
1439     /*
1440      * Go for comb multiplication, R = M * P
1441      */
1442     ecp_comb_fixed( k, d, w, &M );
1443     MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, R, T, pre_len, k, d, f_rng, p_rng ) );
1444 
1445     /*
1446      * Now get m * P from M * P and normalize it
1447      */
1448     MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, ! m_is_odd ) );
1449     MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, R ) );
1450 
1451 cleanup:
1452 
1453     /* There are two cases where T is not stored in grp:
1454      * - P != G
1455      * - An intermediate operation failed before setting grp->T
1456      * In either case, T must be freed.
1457      */
1458     if( T != NULL && T != grp->T )
1459     {
1460         for( i = 0; i < pre_len; i++ )
1461             mbedtls_ecp_point_free( &T[i] );
1462         mbedtls_free( T );
1463     }
1464 
1465     mbedtls_mpi_free( &M );
1466     mbedtls_mpi_free( &mm );
1467 
1468     if( ret != 0 )
1469         mbedtls_ecp_point_free( R );
1470 
1471     return( ret );
1472 }
1473 
1474 #endif /* ECP_SHORTWEIERSTRASS */
1475 
1476 #if defined(ECP_MONTGOMERY)
1477 /*
1478  * For Montgomery curves, we do all the internal arithmetic in projective
1479  * coordinates. Import/export of points uses only the x coordinates, which is
1480  * internaly represented as X / Z.
1481  *
1482  * For scalar multiplication, we'll use a Montgomery ladder.
1483  */
1484 
1485 /*
1486  * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
1487  * Cost: 1M + 1I
1488  */
1489 static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P )
1490 {
1491     int ret;
1492 
1493 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
1494     if ( mbedtls_internal_ecp_grp_capable( grp ) )
1495     {
1496         return mbedtls_internal_ecp_normalize_mxz( grp, P );
1497     }
1498 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
1499 
1500     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->Z, &P->Z, &grp->P ) );
1501     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &P->Z ) ); MOD_MUL( P->X );
1502     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
1503 
1504 cleanup:
1505     return( ret );
1506 }
1507 
1508 /*
1509  * Randomize projective x/z coordinates:
1510  * (X, Z) -> (l X, l Z) for random l
1511  * This is sort of the reverse operation of ecp_normalize_mxz().
1512  *
1513  * This countermeasure was first suggested in [2].
1514  * Cost: 2M
1515  */
1516 static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
1517                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1518 {
1519     int ret;
1520     mbedtls_mpi l;
1521     size_t p_size;
1522     int count = 0;
1523 
1524 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
1525     if ( mbedtls_internal_ecp_grp_capable( grp ) )
1526     {
1527         return mbedtls_internal_ecp_randomize_mxz( grp, P, f_rng, p_rng );
1528     }
1529 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
1530 
1531     p_size = ( grp->pbits + 7 ) / 8;
1532     mbedtls_mpi_init( &l );
1533 
1534     /* Generate l such that 1 < l < p */
1535     do
1536     {
1537         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );
1538 
1539         while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
1540             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
1541 
1542         if( count++ > 10 )
1543             return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
1544     }
1545     while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
1546 
1547     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &l ) ); MOD_MUL( P->X );
1548     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->Z, &P->Z, &l ) ); MOD_MUL( P->Z );
1549 
1550 cleanup:
1551     mbedtls_mpi_free( &l );
1552 
1553     return( ret );
1554 }
1555 
1556 /*
1557  * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
1558  * for Montgomery curves in x/z coordinates.
1559  *
1560  * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
1561  * with
1562  * d =  X1
1563  * P = (X2, Z2)
1564  * Q = (X3, Z3)
1565  * R = (X4, Z4)
1566  * S = (X5, Z5)
1567  * and eliminating temporary variables tO, ..., t4.
1568  *
1569  * Cost: 5M + 4S
1570  */
1571 static int ecp_double_add_mxz( const mbedtls_ecp_group *grp,
1572                                mbedtls_ecp_point *R, mbedtls_ecp_point *S,
1573                                const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
1574                                const mbedtls_mpi *d )
1575 {
1576     int ret;
1577     mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;
1578 
1579 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
1580     if ( mbedtls_internal_ecp_grp_capable( grp ) )
1581     {
1582         return mbedtls_internal_ecp_double_add_mxz( grp, R, S, P, Q, d );
1583     }
1584 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
1585 
1586     mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B );
1587     mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C );
1588     mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB );
1589 
1590     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &A,    &P->X,   &P->Z ) ); MOD_ADD( A    );
1591     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &AA,   &A,      &A    ) ); MOD_MUL( AA   );
1592     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &B,    &P->X,   &P->Z ) ); MOD_SUB( B    );
1593     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &BB,   &B,      &B    ) ); MOD_MUL( BB   );
1594     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &E,    &AA,     &BB   ) ); MOD_SUB( E    );
1595     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &C,    &Q->X,   &Q->Z ) ); MOD_ADD( C    );
1596     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &D,    &Q->X,   &Q->Z ) ); MOD_SUB( D    );
1597     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DA,   &D,      &A    ) ); MOD_MUL( DA   );
1598     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &CB,   &C,      &B    ) ); MOD_MUL( CB   );
1599     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &S->X, &DA,     &CB   ) ); MOD_MUL( S->X );
1600     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->X, &S->X,   &S->X ) ); MOD_MUL( S->X );
1601     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S->Z, &DA,     &CB   ) ); MOD_SUB( S->Z );
1602     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, &S->Z,   &S->Z ) ); MOD_MUL( S->Z );
1603     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, d,       &S->Z ) ); MOD_MUL( S->Z );
1604     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->X, &AA,     &BB   ) ); MOD_MUL( R->X );
1605     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &grp->A, &E    ) ); MOD_MUL( R->Z );
1606     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &R->Z, &BB,     &R->Z ) ); MOD_ADD( R->Z );
1607     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &E,      &R->Z ) ); MOD_MUL( R->Z );
1608 
1609 cleanup:
1610     mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B );
1611     mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C );
1612     mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB );
1613 
1614     return( ret );
1615 }
1616 
1617 /*
1618  * Multiplication with Montgomery ladder in x/z coordinates,
1619  * for curves in Montgomery form
1620  */
1621 static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1622                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
1623                         int (*f_rng)(void *, unsigned char *, size_t),
1624                         void *p_rng )
1625 {
1626     int ret;
1627     size_t i;
1628     unsigned char b;
1629     mbedtls_ecp_point RP;
1630     mbedtls_mpi PX;
1631 
1632     mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX );
1633 
1634     /* Save PX and read from P before writing to R, in case P == R */
1635     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->X ) );
1636     MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) );
1637 
1638     /* Set R to zero in modified x/z coordinates */
1639     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->X, 1 ) );
1640     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 0 ) );
1641     mbedtls_mpi_free( &R->Y );
1642 
1643     /* RP.X might be sligtly larger than P, so reduce it */
1644     MOD_ADD( RP.X );
1645 
1646     /* Randomize coordinates of the starting point */
1647     if( f_rng != NULL )
1648         MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
1649 
1650     /* Loop invariant: R = result so far, RP = R + P */
1651     i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */
1652     while( i-- > 0 )
1653     {
1654         b = mbedtls_mpi_get_bit( m, i );
1655         /*
1656          *  if (b) R = 2R + P else R = 2R,
1657          * which is:
1658          *  if (b) double_add( RP, R, RP, R )
1659          *  else   double_add( R, RP, R, RP )
1660          * but using safe conditional swaps to avoid leaks
1661          */
1662         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
1663         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
1664         MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
1665         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
1666         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
1667     }
1668 
1669     MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );
1670 
1671 cleanup:
1672     mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX );
1673 
1674     return( ret );
1675 }
1676 
1677 #endif /* ECP_MONTGOMERY */
1678 
1679 /*
1680  * Multiplication R = m * P
1681  */
1682 int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1683              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
1684              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1685 {
1686     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1687 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1688     char is_grp_capable = 0;
1689 #endif
1690 
1691     /* Common sanity checks */
1692     if( mbedtls_mpi_cmp_int( &P->Z, 1 ) != 0 )
1693         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1694 
1695     if( ( ret = mbedtls_ecp_check_privkey( grp, m ) ) != 0 ||
1696         ( ret = mbedtls_ecp_check_pubkey( grp, P ) ) != 0 )
1697         return( ret );
1698 
1699 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1700     if ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp )  )
1701     {
1702         MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
1703     }
1704 
1705 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
1706 #if defined(ECP_MONTGOMERY)
1707     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
1708         ret = ecp_mul_mxz( grp, R, m, P, f_rng, p_rng );
1709 
1710 #endif
1711 #if defined(ECP_SHORTWEIERSTRASS)
1712     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
1713         ret = ecp_mul_comb( grp, R, m, P, f_rng, p_rng );
1714 
1715 #endif
1716 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1717 cleanup:
1718 
1719     if ( is_grp_capable )
1720     {
1721         mbedtls_internal_ecp_free( grp );
1722     }
1723 
1724 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
1725     return( ret );
1726 }
1727 
1728 #if defined(ECP_SHORTWEIERSTRASS)
1729 /*
1730  * Check that an affine point is valid as a public key,
1731  * short weierstrass curves (SEC1 3.2.3.1)
1732  */
1733 static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
1734 {
1735     int ret;
1736     mbedtls_mpi YY, RHS;
1737 
1738     /* pt coordinates must be normalized for our checks */
1739     if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 ||
1740         mbedtls_mpi_cmp_int( &pt->Y, 0 ) < 0 ||
1741         mbedtls_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
1742         mbedtls_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
1743         return( MBEDTLS_ERR_ECP_INVALID_KEY );
1744 
1745     mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS );
1746 
1747     /*
1748      * YY = Y^2
1749      * RHS = X (X^2 + A) + B = X^3 + A X + B
1750      */
1751     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &YY,  &pt->Y,   &pt->Y  ) );  MOD_MUL( YY  );
1752     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &pt->X,   &pt->X  ) );  MOD_MUL( RHS );
1753 
1754     /* Special case for A = -3 */
1755     if( grp->A.p == NULL )
1756     {
1757         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS, &RHS, 3       ) );  MOD_SUB( RHS );
1758     }
1759     else
1760     {
1761         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS, &grp->A ) );  MOD_ADD( RHS );
1762     }
1763 
1764     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &RHS,     &pt->X  ) );  MOD_MUL( RHS );
1765     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS,     &grp->B ) );  MOD_ADD( RHS );
1766 
1767     if( mbedtls_mpi_cmp_mpi( &YY, &RHS ) != 0 )
1768         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
1769 
1770 cleanup:
1771 
1772     mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS );
1773 
1774     return( ret );
1775 }
1776 #endif /* ECP_SHORTWEIERSTRASS */
1777 
1778 /*
1779  * R = m * P with shortcuts for m == 1 and m == -1
1780  * NOT constant-time - ONLY for short Weierstrass!
1781  */
1782 static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp,
1783                                       mbedtls_ecp_point *R,
1784                                       const mbedtls_mpi *m,
1785                                       const mbedtls_ecp_point *P )
1786 {
1787     int ret;
1788 
1789     if( mbedtls_mpi_cmp_int( m, 1 ) == 0 )
1790     {
1791         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
1792     }
1793     else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 )
1794     {
1795         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
1796         if( mbedtls_mpi_cmp_int( &R->Y, 0 ) != 0 )
1797             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) );
1798     }
1799     else
1800     {
1801         MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, R, m, P, NULL, NULL ) );
1802     }
1803 
1804 cleanup:
1805     return( ret );
1806 }
1807 
1808 /*
1809  * Linear combination
1810  * NOT constant-time
1811  */
1812 int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1813              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
1814              const mbedtls_mpi *n, const mbedtls_ecp_point *Q )
1815 {
1816     int ret;
1817     mbedtls_ecp_point mP;
1818 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1819     char is_grp_capable = 0;
1820 #endif
1821 
1822     if( ecp_get_type( grp ) != ECP_TYPE_SHORT_WEIERSTRASS )
1823         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1824 
1825     mbedtls_ecp_point_init( &mP );
1826 
1827     MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, &mP, m, P ) );
1828     MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, R,   n, Q ) );
1829 
1830 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1831     if (  is_grp_capable = mbedtls_internal_ecp_grp_capable( grp )  )
1832     {
1833         MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
1834     }
1835 
1836 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
1837     MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, &mP, R ) );
1838     MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, R ) );
1839 
1840 cleanup:
1841 
1842 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1843     if ( is_grp_capable )
1844     {
1845         mbedtls_internal_ecp_free( grp );
1846     }
1847 
1848 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
1849     mbedtls_ecp_point_free( &mP );
1850 
1851     return( ret );
1852 }
1853 
1854 
1855 #if defined(ECP_MONTGOMERY)
1856 /*
1857  * Check validity of a public key for Montgomery curves with x-only schemes
1858  */
1859 static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
1860 {
1861     /* [Curve25519 p. 5] Just check X is the correct number of bytes */
1862     if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
1863         return( MBEDTLS_ERR_ECP_INVALID_KEY );
1864 
1865     return( 0 );
1866 }
1867 #endif /* ECP_MONTGOMERY */
1868 
1869 /*
1870  * Check that a point is valid as a public key
1871  */
1872 int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
1873 {
1874     /* Must use affine coordinates */
1875     if( mbedtls_mpi_cmp_int( &pt->Z, 1 ) != 0 )
1876         return( MBEDTLS_ERR_ECP_INVALID_KEY );
1877 
1878 #if defined(ECP_MONTGOMERY)
1879     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
1880         return( ecp_check_pubkey_mx( grp, pt ) );
1881 #endif
1882 #if defined(ECP_SHORTWEIERSTRASS)
1883     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
1884         return( ecp_check_pubkey_sw( grp, pt ) );
1885 #endif
1886     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1887 }
1888 
1889 /*
1890  * Check that an mbedtls_mpi is valid as a private key
1891  */
1892 int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp, const mbedtls_mpi *d )
1893 {
1894 #if defined(ECP_MONTGOMERY)
1895     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
1896     {
1897         /* see [Curve25519] page 5 */
1898         if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||
1899             mbedtls_mpi_get_bit( d, 1 ) != 0 ||
1900             mbedtls_mpi_get_bit( d, 2 ) != 0 ||
1901             mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */
1902             return( MBEDTLS_ERR_ECP_INVALID_KEY );
1903         else
1904             return( 0 );
1905     }
1906 #endif /* ECP_MONTGOMERY */
1907 #if defined(ECP_SHORTWEIERSTRASS)
1908     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
1909     {
1910         /* see SEC1 3.2 */
1911         if( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
1912             mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
1913             return( MBEDTLS_ERR_ECP_INVALID_KEY );
1914         else
1915             return( 0 );
1916     }
1917 #endif /* ECP_SHORTWEIERSTRASS */
1918 
1919     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1920 }
1921 
1922 /*
1923  * Generate a keypair with configurable base point
1924  */
1925 int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,
1926                      const mbedtls_ecp_point *G,
1927                      mbedtls_mpi *d, mbedtls_ecp_point *Q,
1928                      int (*f_rng)(void *, unsigned char *, size_t),
1929                      void *p_rng )
1930 {
1931     int ret;
1932     size_t n_size = ( grp->nbits + 7 ) / 8;
1933 
1934 #if defined(ECP_MONTGOMERY)
1935     if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
1936     {
1937         /* [M225] page 5 */
1938         size_t b;
1939 
1940         do {
1941             MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
1942         } while( mbedtls_mpi_bitlen( d ) == 0);
1943 
1944         /* Make sure the most significant bit is nbits */
1945         b = mbedtls_mpi_bitlen( d ) - 1; /* mbedtls_mpi_bitlen is one-based */
1946         if( b > grp->nbits )
1947             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, b - grp->nbits ) );
1948         else
1949             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, grp->nbits, 1 ) );
1950 
1951         /* Make sure the last three bits are unset */
1952         MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );
1953         MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );
1954         MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
1955     }
1956     else
1957 #endif /* ECP_MONTGOMERY */
1958 #if defined(ECP_SHORTWEIERSTRASS)
1959     if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
1960     {
1961         /* SEC1 3.2.1: Generate d such that 1 <= n < N */
1962         int count = 0;
1963 
1964         /*
1965          * Match the procedure given in RFC 6979 (deterministic ECDSA):
1966          * - use the same byte ordering;
1967          * - keep the leftmost nbits bits of the generated octet string;
1968          * - try until result is in the desired range.
1969          * This also avoids any biais, which is especially important for ECDSA.
1970          */
1971         do
1972         {
1973             MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
1974             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_size - grp->nbits ) );
1975 
1976             /*
1977              * Each try has at worst a probability 1/2 of failing (the msb has
1978              * a probability 1/2 of being 0, and then the result will be < N),
1979              * so after 30 tries failure probability is a most 2**(-30).
1980              *
1981              * For most curves, 1 try is enough with overwhelming probability,
1982              * since N starts with a lot of 1s in binary, but some curves
1983              * such as secp224k1 are actually very close to the worst case.
1984              */
1985             if( ++count > 30 )
1986                 return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
1987         }
1988         while( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
1989                mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 );
1990     }
1991     else
1992 #endif /* ECP_SHORTWEIERSTRASS */
1993         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1994 
1995 cleanup:
1996     if( ret != 0 )
1997         return( ret );
1998 
1999     return( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );
2000 }
2001 
2002 /*
2003  * Generate key pair, wrapper for conventional base point
2004  */
2005 int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp,
2006                              mbedtls_mpi *d, mbedtls_ecp_point *Q,
2007                              int (*f_rng)(void *, unsigned char *, size_t),
2008                              void *p_rng )
2009 {
2010     return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) );
2011 }
2012 
2013 /*
2014  * Generate a keypair, prettier wrapper
2015  */
2016 int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
2017                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2018 {
2019     int ret;
2020 
2021     if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
2022         return( ret );
2023 
2024     return( mbedtls_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
2025 }
2026 
2027 /*
2028  * Check a public-private key pair
2029  */
2030 int mbedtls_ecp_check_pub_priv( const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv )
2031 {
2032     int ret;
2033     mbedtls_ecp_point Q;
2034     mbedtls_ecp_group grp;
2035 
2036     if( pub->grp.id == MBEDTLS_ECP_DP_NONE ||
2037         pub->grp.id != prv->grp.id ||
2038         mbedtls_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) ||
2039         mbedtls_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) ||
2040         mbedtls_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) )
2041     {
2042         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2043     }
2044 
2045     mbedtls_ecp_point_init( &Q );
2046     mbedtls_ecp_group_init( &grp );
2047 
2048     /* mbedtls_ecp_mul() needs a non-const group... */
2049     mbedtls_ecp_group_copy( &grp, &prv->grp );
2050 
2051     /* Also checks d is valid */
2052     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, NULL, NULL ) );
2053 
2054     if( mbedtls_mpi_cmp_mpi( &Q.X, &prv->Q.X ) ||
2055         mbedtls_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) ||
2056         mbedtls_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) )
2057     {
2058         ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2059         goto cleanup;
2060     }
2061 
2062 cleanup:
2063     mbedtls_ecp_point_free( &Q );
2064     mbedtls_ecp_group_free( &grp );
2065 
2066     return( ret );
2067 }
2068 
2069 #if defined(MBEDTLS_SELF_TEST)
2070 
2071 /*
2072  * Checkup routine
2073  */
2074 int mbedtls_ecp_self_test( int verbose )
2075 {
2076     int ret;
2077     size_t i;
2078     mbedtls_ecp_group grp;
2079     mbedtls_ecp_point R, P;
2080     mbedtls_mpi m;
2081     unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
2082     /* exponents especially adapted for secp192r1 */
2083     const char *exponents[] =
2084     {
2085         "000000000000000000000000000000000000000000000001", /* one */
2086         "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
2087         "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
2088         "400000000000000000000000000000000000000000000000", /* one and zeros */
2089         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
2090         "555555555555555555555555555555555555555555555555", /* 101010... */
2091     };
2092 
2093     mbedtls_ecp_group_init( &grp );
2094     mbedtls_ecp_point_init( &R );
2095     mbedtls_ecp_point_init( &P );
2096     mbedtls_mpi_init( &m );
2097 
2098     /* Use secp192r1 if available, or any available curve */
2099 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
2100     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) );
2101 #else
2102     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) );
2103 #endif
2104 
2105     if( verbose != 0 )
2106         mbedtls_printf( "  ECP test #1 (constant op_count, base point G): " );
2107 
2108     /* Do a dummy multiplication first to trigger precomputation */
2109     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) );
2110     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
2111 
2112     add_count = 0;
2113     dbl_count = 0;
2114     mul_count = 0;
2115     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
2116     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
2117 
2118     for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2119     {
2120         add_c_prev = add_count;
2121         dbl_c_prev = dbl_count;
2122         mul_c_prev = mul_count;
2123         add_count = 0;
2124         dbl_count = 0;
2125         mul_count = 0;
2126 
2127         MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
2128         MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
2129 
2130         if( add_count != add_c_prev ||
2131             dbl_count != dbl_c_prev ||
2132             mul_count != mul_c_prev )
2133         {
2134             if( verbose != 0 )
2135                 mbedtls_printf( "failed (%u)\n", (unsigned int) i );
2136 
2137             ret = 1;
2138             goto cleanup;
2139         }
2140     }
2141 
2142     if( verbose != 0 )
2143         mbedtls_printf( "passed\n" );
2144 
2145     if( verbose != 0 )
2146         mbedtls_printf( "  ECP test #2 (constant op_count, other point): " );
2147     /* We computed P = 2G last time, use it */
2148 
2149     add_count = 0;
2150     dbl_count = 0;
2151     mul_count = 0;
2152     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
2153     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2154 
2155     for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2156     {
2157         add_c_prev = add_count;
2158         dbl_c_prev = dbl_count;
2159         mul_c_prev = mul_count;
2160         add_count = 0;
2161         dbl_count = 0;
2162         mul_count = 0;
2163 
2164         MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
2165         MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2166 
2167         if( add_count != add_c_prev ||
2168             dbl_count != dbl_c_prev ||
2169             mul_count != mul_c_prev )
2170         {
2171             if( verbose != 0 )
2172                 mbedtls_printf( "failed (%u)\n", (unsigned int) i );
2173 
2174             ret = 1;
2175             goto cleanup;
2176         }
2177     }
2178 
2179     if( verbose != 0 )
2180         mbedtls_printf( "passed\n" );
2181 
2182 cleanup:
2183 
2184     if( ret < 0 && verbose != 0 )
2185         mbedtls_printf( "Unexpected error, return code = %08X\n", ret );
2186 
2187     mbedtls_ecp_group_free( &grp );
2188     mbedtls_ecp_point_free( &R );
2189     mbedtls_ecp_point_free( &P );
2190     mbedtls_mpi_free( &m );
2191 
2192     if( verbose != 0 )
2193         mbedtls_printf( "\n" );
2194 
2195     return( ret );
2196 }
2197 
2198 #endif /* MBEDTLS_SELF_TEST */
2199 
2200 #endif /* !MBEDTLS_ECP_ALT */
2201 
2202 #endif /* MBEDTLS_ECP_C */
2203