xref: /reactos/dll/3rdparty/mbedtls/ecp_curves.c (revision 84ccccab)
1 /*
2  *  Elliptic curves over GF(p): curve-specific data and functions
3  *
4  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
5  *  SPDX-License-Identifier: GPL-2.0
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License along
18  *  with this program; if not, write to the Free Software Foundation, Inc.,
19  *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  *  This file is part of mbed TLS (https://tls.mbed.org)
22  */
23 
24 #if !defined(MBEDTLS_CONFIG_FILE)
25 #include "mbedtls/config.h"
26 #else
27 #include MBEDTLS_CONFIG_FILE
28 #endif
29 
30 #if defined(MBEDTLS_ECP_C)
31 
32 #include "mbedtls/ecp.h"
33 
34 #include <string.h>
35 
36 #if !defined(MBEDTLS_ECP_ALT)
37 
38 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
39     !defined(inline) && !defined(__cplusplus)
40 #define inline __inline
41 #endif
42 
43 /*
44  * Conversion macros for embedded constants:
45  * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
46  */
47 #if defined(MBEDTLS_HAVE_INT32)
48 
49 #define BYTES_TO_T_UINT_4( a, b, c, d )             \
50     ( (mbedtls_mpi_uint) a <<  0 ) |                          \
51     ( (mbedtls_mpi_uint) b <<  8 ) |                          \
52     ( (mbedtls_mpi_uint) c << 16 ) |                          \
53     ( (mbedtls_mpi_uint) d << 24 )
54 
55 #define BYTES_TO_T_UINT_2( a, b )                   \
56     BYTES_TO_T_UINT_4( a, b, 0, 0 )
57 
58 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
59     BYTES_TO_T_UINT_4( a, b, c, d ),                \
60     BYTES_TO_T_UINT_4( e, f, g, h )
61 
62 #else /* 64-bits */
63 
64 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
65     ( (mbedtls_mpi_uint) a <<  0 ) |                          \
66     ( (mbedtls_mpi_uint) b <<  8 ) |                          \
67     ( (mbedtls_mpi_uint) c << 16 ) |                          \
68     ( (mbedtls_mpi_uint) d << 24 ) |                          \
69     ( (mbedtls_mpi_uint) e << 32 ) |                          \
70     ( (mbedtls_mpi_uint) f << 40 ) |                          \
71     ( (mbedtls_mpi_uint) g << 48 ) |                          \
72     ( (mbedtls_mpi_uint) h << 56 )
73 
74 #define BYTES_TO_T_UINT_4( a, b, c, d )             \
75     BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
76 
77 #define BYTES_TO_T_UINT_2( a, b )                   \
78     BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
79 
80 #endif /* bits in mbedtls_mpi_uint */
81 
82 /*
83  * Note: the constants are in little-endian order
84  * to be directly usable in MPIs
85  */
86 
87 /*
88  * Domain parameters for secp192r1
89  */
90 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
91 static const mbedtls_mpi_uint secp192r1_p[] = {
92     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
93     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
94     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
95 };
96 static const mbedtls_mpi_uint secp192r1_b[] = {
97     BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
98     BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
99     BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
100 };
101 static const mbedtls_mpi_uint secp192r1_gx[] = {
102     BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
103     BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
104     BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
105 };
106 static const mbedtls_mpi_uint secp192r1_gy[] = {
107     BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
108     BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
109     BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
110 };
111 static const mbedtls_mpi_uint secp192r1_n[] = {
112     BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
113     BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
114     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
115 };
116 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
117 
118 /*
119  * Domain parameters for secp224r1
120  */
121 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
122 static const mbedtls_mpi_uint secp224r1_p[] = {
123     BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
124     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
125     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
126     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
127 };
128 static const mbedtls_mpi_uint secp224r1_b[] = {
129     BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
130     BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
131     BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
132     BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
133 };
134 static const mbedtls_mpi_uint secp224r1_gx[] = {
135     BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
136     BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
137     BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
138     BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
139 };
140 static const mbedtls_mpi_uint secp224r1_gy[] = {
141     BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
142     BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
143     BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
144     BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
145 };
146 static const mbedtls_mpi_uint secp224r1_n[] = {
147     BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
148     BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
149     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
150     BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
151 };
152 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
153 
154 /*
155  * Domain parameters for secp256r1
156  */
157 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
158 static const mbedtls_mpi_uint secp256r1_p[] = {
159     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
160     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
161     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
162     BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
163 };
164 static const mbedtls_mpi_uint secp256r1_b[] = {
165     BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
166     BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
167     BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
168     BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
169 };
170 static const mbedtls_mpi_uint secp256r1_gx[] = {
171     BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
172     BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
173     BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
174     BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
175 };
176 static const mbedtls_mpi_uint secp256r1_gy[] = {
177     BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
178     BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
179     BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
180     BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
181 };
182 static const mbedtls_mpi_uint secp256r1_n[] = {
183     BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
184     BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
185     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
186     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
187 };
188 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
189 
190 /*
191  * Domain parameters for secp384r1
192  */
193 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
194 static const mbedtls_mpi_uint secp384r1_p[] = {
195     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
196     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
197     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
198     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
199     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
200     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
201 };
202 static const mbedtls_mpi_uint secp384r1_b[] = {
203     BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
204     BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
205     BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
206     BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
207     BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
208     BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
209 };
210 static const mbedtls_mpi_uint secp384r1_gx[] = {
211     BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
212     BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
213     BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
214     BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
215     BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
216     BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
217 };
218 static const mbedtls_mpi_uint secp384r1_gy[] = {
219     BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
220     BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
221     BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
222     BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
223     BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
224     BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
225 };
226 static const mbedtls_mpi_uint secp384r1_n[] = {
227     BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
228     BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
229     BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
230     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
231     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
232     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
233 };
234 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
235 
236 /*
237  * Domain parameters for secp521r1
238  */
239 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
240 static const mbedtls_mpi_uint secp521r1_p[] = {
241     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
242     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
243     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
244     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
245     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
246     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
247     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
248     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
249     BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
250 };
251 static const mbedtls_mpi_uint secp521r1_b[] = {
252     BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
253     BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
254     BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
255     BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
256     BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
257     BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
258     BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
259     BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
260     BYTES_TO_T_UINT_2( 0x51, 0x00 ),
261 };
262 static const mbedtls_mpi_uint secp521r1_gx[] = {
263     BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
264     BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
265     BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
266     BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
267     BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
268     BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
269     BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
270     BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
271     BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
272 };
273 static const mbedtls_mpi_uint secp521r1_gy[] = {
274     BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
275     BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
276     BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
277     BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
278     BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
279     BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
280     BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
281     BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
282     BYTES_TO_T_UINT_2( 0x18, 0x01 ),
283 };
284 static const mbedtls_mpi_uint secp521r1_n[] = {
285     BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
286     BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
287     BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
288     BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
289     BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
290     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
291     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
292     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
293     BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
294 };
295 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
296 
297 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
298 static const mbedtls_mpi_uint secp192k1_p[] = {
299     BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
300     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
301     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
302 };
303 static const mbedtls_mpi_uint secp192k1_a[] = {
304     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
305 };
306 static const mbedtls_mpi_uint secp192k1_b[] = {
307     BYTES_TO_T_UINT_2( 0x03, 0x00 ),
308 };
309 static const mbedtls_mpi_uint secp192k1_gx[] = {
310     BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
311     BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
312     BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
313 };
314 static const mbedtls_mpi_uint secp192k1_gy[] = {
315     BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
316     BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
317     BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
318 };
319 static const mbedtls_mpi_uint secp192k1_n[] = {
320     BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
321     BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
322     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
323 };
324 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
325 
326 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
327 static const mbedtls_mpi_uint secp224k1_p[] = {
328     BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
329     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
330     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
331     BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
332 };
333 static const mbedtls_mpi_uint secp224k1_a[] = {
334     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
335 };
336 static const mbedtls_mpi_uint secp224k1_b[] = {
337     BYTES_TO_T_UINT_2( 0x05, 0x00 ),
338 };
339 static const mbedtls_mpi_uint secp224k1_gx[] = {
340     BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
341     BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
342     BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
343     BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
344 };
345 static const mbedtls_mpi_uint secp224k1_gy[] = {
346     BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
347     BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
348     BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
349     BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
350 };
351 static const mbedtls_mpi_uint secp224k1_n[] = {
352     BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
353     BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
354     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
355     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
356 };
357 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
358 
359 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
360 static const mbedtls_mpi_uint secp256k1_p[] = {
361     BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
362     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
363     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
364     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
365 };
366 static const mbedtls_mpi_uint secp256k1_a[] = {
367     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
368 };
369 static const mbedtls_mpi_uint secp256k1_b[] = {
370     BYTES_TO_T_UINT_2( 0x07, 0x00 ),
371 };
372 static const mbedtls_mpi_uint secp256k1_gx[] = {
373     BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
374     BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
375     BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
376     BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
377 };
378 static const mbedtls_mpi_uint secp256k1_gy[] = {
379     BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
380     BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
381     BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
382     BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
383 };
384 static const mbedtls_mpi_uint secp256k1_n[] = {
385     BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
386     BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
387     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
388     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
389 };
390 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
391 
392 /*
393  * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
394  */
395 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
396 static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
397     BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
398     BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
399     BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
400     BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
401 };
402 static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
403     BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
404     BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
405     BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
406     BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
407 };
408 static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
409     BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
410     BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
411     BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
412     BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
413 };
414 static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
415     BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
416     BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
417     BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
418     BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
419 };
420 static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
421     BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
422     BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
423     BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
424     BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
425 };
426 static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
427     BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
428     BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
429     BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
430     BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
431 };
432 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
433 
434 /*
435  * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
436  */
437 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
438 static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
439     BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
440     BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
441     BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
442     BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
443     BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
444     BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
445 };
446 static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
447     BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
448     BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
449     BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
450     BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
451     BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
452     BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
453 };
454 static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
455     BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
456     BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
457     BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
458     BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
459     BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
460     BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
461 };
462 static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
463     BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
464     BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
465     BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
466     BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
467     BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
468     BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
469 };
470 static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
471     BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
472     BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
473     BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
474     BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
475     BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
476     BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
477 };
478 static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
479     BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
480     BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
481     BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
482     BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
483     BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
484     BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
485 };
486 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
487 
488 /*
489  * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
490  */
491 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
492 static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
493     BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
494     BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
495     BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
496     BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
497     BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
498     BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
499     BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
500     BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
501 };
502 static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
503     BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
504     BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
505     BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
506     BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
507     BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
508     BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
509     BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
510     BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
511 };
512 static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
513     BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
514     BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
515     BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
516     BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
517     BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
518     BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
519     BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
520     BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
521 };
522 static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
523     BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
524     BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
525     BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
526     BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
527     BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
528     BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
529     BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
530     BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
531 };
532 static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
533     BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
534     BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
535     BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
536     BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
537     BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
538     BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
539     BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
540     BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
541 };
542 static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
543     BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
544     BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
545     BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
546     BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
547     BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
548     BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
549     BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
550     BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
551 };
552 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
553 
554 /*
555  * Create an MPI from embedded constants
556  * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint)
557  */
558 static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len )
559 {
560     X->s = 1;
561     X->n = len / sizeof( mbedtls_mpi_uint );
562     X->p = (mbedtls_mpi_uint *) p;
563 }
564 
565 /*
566  * Set an MPI to static value 1
567  */
568 static inline void ecp_mpi_set1( mbedtls_mpi *X )
569 {
570     static mbedtls_mpi_uint one[] = { 1 };
571     X->s = 1;
572     X->n = 1;
573     X->p = one;
574 }
575 
576 /*
577  * Make group available from embedded constants
578  */
579 static int ecp_group_load( mbedtls_ecp_group *grp,
580                            const mbedtls_mpi_uint *p,  size_t plen,
581                            const mbedtls_mpi_uint *a,  size_t alen,
582                            const mbedtls_mpi_uint *b,  size_t blen,
583                            const mbedtls_mpi_uint *gx, size_t gxlen,
584                            const mbedtls_mpi_uint *gy, size_t gylen,
585                            const mbedtls_mpi_uint *n,  size_t nlen)
586 {
587     ecp_mpi_load( &grp->P, p, plen );
588     if( a != NULL )
589         ecp_mpi_load( &grp->A, a, alen );
590     ecp_mpi_load( &grp->B, b, blen );
591     ecp_mpi_load( &grp->N, n, nlen );
592 
593     ecp_mpi_load( &grp->G.X, gx, gxlen );
594     ecp_mpi_load( &grp->G.Y, gy, gylen );
595     ecp_mpi_set1( &grp->G.Z );
596 
597     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
598     grp->nbits = mbedtls_mpi_bitlen( &grp->N );
599 
600     grp->h = 1;
601 
602     return( 0 );
603 }
604 
605 #if defined(MBEDTLS_ECP_NIST_OPTIM)
606 /* Forward declarations */
607 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
608 static int ecp_mod_p192( mbedtls_mpi * );
609 #endif
610 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
611 static int ecp_mod_p224( mbedtls_mpi * );
612 #endif
613 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
614 static int ecp_mod_p256( mbedtls_mpi * );
615 #endif
616 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
617 static int ecp_mod_p384( mbedtls_mpi * );
618 #endif
619 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
620 static int ecp_mod_p521( mbedtls_mpi * );
621 #endif
622 
623 #define NIST_MODP( P )      grp->modp = ecp_mod_ ## P;
624 #else
625 #define NIST_MODP( P )
626 #endif /* MBEDTLS_ECP_NIST_OPTIM */
627 
628 /* Additional forward declarations */
629 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
630 static int ecp_mod_p255( mbedtls_mpi * );
631 #endif
632 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
633 static int ecp_mod_p192k1( mbedtls_mpi * );
634 #endif
635 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
636 static int ecp_mod_p224k1( mbedtls_mpi * );
637 #endif
638 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
639 static int ecp_mod_p256k1( mbedtls_mpi * );
640 #endif
641 
642 #define LOAD_GROUP_A( G )   ecp_group_load( grp,            \
643                             G ## _p,  sizeof( G ## _p  ),   \
644                             G ## _a,  sizeof( G ## _a  ),   \
645                             G ## _b,  sizeof( G ## _b  ),   \
646                             G ## _gx, sizeof( G ## _gx ),   \
647                             G ## _gy, sizeof( G ## _gy ),   \
648                             G ## _n,  sizeof( G ## _n  ) )
649 
650 #define LOAD_GROUP( G )     ecp_group_load( grp,            \
651                             G ## _p,  sizeof( G ## _p  ),   \
652                             NULL,     0,                    \
653                             G ## _b,  sizeof( G ## _b  ),   \
654                             G ## _gx, sizeof( G ## _gx ),   \
655                             G ## _gy, sizeof( G ## _gy ),   \
656                             G ## _n,  sizeof( G ## _n  ) )
657 
658 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
659 /*
660  * Specialized function for creating the Curve25519 group
661  */
662 static int ecp_use_curve25519( mbedtls_ecp_group *grp )
663 {
664     int ret;
665 
666     /* Actually ( A + 2 ) / 4 */
667     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "01DB42" ) );
668 
669     /* P = 2^255 - 19 */
670     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
671     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) );
672     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
673     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
674 
675     /* Y intentionaly not set, since we use x/z coordinates.
676      * This is used as a marker to identify Montgomery curves! */
677     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) );
678     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
679     mbedtls_mpi_free( &grp->G.Y );
680 
681     /* Actually, the required msb for private keys */
682     grp->nbits = 254;
683 
684 cleanup:
685     if( ret != 0 )
686         mbedtls_ecp_group_free( grp );
687 
688     return( ret );
689 }
690 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
691 
692 /*
693  * Set a group using well-known domain parameters
694  */
695 int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id )
696 {
697     mbedtls_ecp_group_free( grp );
698 
699     grp->id = id;
700 
701     switch( id )
702     {
703 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
704         case MBEDTLS_ECP_DP_SECP192R1:
705             NIST_MODP( p192 );
706             return( LOAD_GROUP( secp192r1 ) );
707 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
708 
709 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
710         case MBEDTLS_ECP_DP_SECP224R1:
711             NIST_MODP( p224 );
712             return( LOAD_GROUP( secp224r1 ) );
713 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
714 
715 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
716         case MBEDTLS_ECP_DP_SECP256R1:
717             NIST_MODP( p256 );
718             return( LOAD_GROUP( secp256r1 ) );
719 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
720 
721 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
722         case MBEDTLS_ECP_DP_SECP384R1:
723             NIST_MODP( p384 );
724             return( LOAD_GROUP( secp384r1 ) );
725 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
726 
727 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
728         case MBEDTLS_ECP_DP_SECP521R1:
729             NIST_MODP( p521 );
730             return( LOAD_GROUP( secp521r1 ) );
731 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
732 
733 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
734         case MBEDTLS_ECP_DP_SECP192K1:
735             grp->modp = ecp_mod_p192k1;
736             return( LOAD_GROUP_A( secp192k1 ) );
737 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
738 
739 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
740         case MBEDTLS_ECP_DP_SECP224K1:
741             grp->modp = ecp_mod_p224k1;
742             return( LOAD_GROUP_A( secp224k1 ) );
743 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
744 
745 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
746         case MBEDTLS_ECP_DP_SECP256K1:
747             grp->modp = ecp_mod_p256k1;
748             return( LOAD_GROUP_A( secp256k1 ) );
749 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
750 
751 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
752         case MBEDTLS_ECP_DP_BP256R1:
753             return( LOAD_GROUP_A( brainpoolP256r1 ) );
754 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
755 
756 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
757         case MBEDTLS_ECP_DP_BP384R1:
758             return( LOAD_GROUP_A( brainpoolP384r1 ) );
759 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
760 
761 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
762         case MBEDTLS_ECP_DP_BP512R1:
763             return( LOAD_GROUP_A( brainpoolP512r1 ) );
764 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
765 
766 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
767         case MBEDTLS_ECP_DP_CURVE25519:
768             grp->modp = ecp_mod_p255;
769             return( ecp_use_curve25519( grp ) );
770 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
771 
772         default:
773             mbedtls_ecp_group_free( grp );
774             return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
775     }
776 }
777 
778 #if defined(MBEDTLS_ECP_NIST_OPTIM)
779 /*
780  * Fast reduction modulo the primes used by the NIST curves.
781  *
782  * These functions are critical for speed, but not needed for correct
783  * operations. So, we make the choice to heavily rely on the internals of our
784  * bignum library, which creates a tight coupling between these functions and
785  * our MPI implementation.  However, the coupling between the ECP module and
786  * MPI remains loose, since these functions can be deactivated at will.
787  */
788 
789 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
790 /*
791  * Compared to the way things are presented in FIPS 186-3 D.2,
792  * we proceed in columns, from right (least significant chunk) to left,
793  * adding chunks to N in place, and keeping a carry for the next chunk.
794  * This avoids moving things around in memory, and uselessly adding zeros,
795  * compared to the more straightforward, line-oriented approach.
796  *
797  * For this prime we need to handle data in chunks of 64 bits.
798  * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
799  * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
800  */
801 
802 /* Add 64-bit chunks (dst += src) and update carry */
803 static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry )
804 {
805     unsigned char i;
806     mbedtls_mpi_uint c = 0;
807     for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ )
808     {
809         *dst += c;      c  = ( *dst < c );
810         *dst += *src;   c += ( *dst < *src );
811     }
812     *carry += c;
813 }
814 
815 /* Add carry to a 64-bit chunk and update carry */
816 static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry )
817 {
818     unsigned char i;
819     for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ )
820     {
821         *dst += *carry;
822         *carry  = ( *dst < *carry );
823     }
824 }
825 
826 #define WIDTH       8 / sizeof( mbedtls_mpi_uint )
827 #define A( i )      N->p + i * WIDTH
828 #define ADD( i )    add64( p, A( i ), &c )
829 #define NEXT        p += WIDTH; carry64( p, &c )
830 #define LAST        p += WIDTH; *p = c; while( ++p < end ) *p = 0
831 
832 /*
833  * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
834  */
835 static int ecp_mod_p192( mbedtls_mpi *N )
836 {
837     int ret;
838     mbedtls_mpi_uint c = 0;
839     mbedtls_mpi_uint *p, *end;
840 
841     /* Make sure we have enough blocks so that A(5) is legal */
842     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) );
843 
844     p = N->p;
845     end = p + N->n;
846 
847     ADD( 3 ); ADD( 5 );             NEXT; // A0 += A3 + A5
848     ADD( 3 ); ADD( 4 ); ADD( 5 );   NEXT; // A1 += A3 + A4 + A5
849     ADD( 4 ); ADD( 5 );             LAST; // A2 += A4 + A5
850 
851 cleanup:
852     return( ret );
853 }
854 
855 #undef WIDTH
856 #undef A
857 #undef ADD
858 #undef NEXT
859 #undef LAST
860 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
861 
862 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
863     defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
864     defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
865 /*
866  * The reader is advised to first understand ecp_mod_p192() since the same
867  * general structure is used here, but with additional complications:
868  * (1) chunks of 32 bits, and (2) subtractions.
869  */
870 
871 /*
872  * For these primes, we need to handle data in chunks of 32 bits.
873  * This makes it more complicated if we use 64 bits limbs in MPI,
874  * which prevents us from using a uniform access method as for p192.
875  *
876  * So, we define a mini abstraction layer to access 32 bit chunks,
877  * load them in 'cur' for work, and store them back from 'cur' when done.
878  *
879  * While at it, also define the size of N in terms of 32-bit chunks.
880  */
881 #define LOAD32      cur = A( i );
882 
883 #if defined(MBEDTLS_HAVE_INT32)  /* 32 bit */
884 
885 #define MAX32       N->n
886 #define A( j )      N->p[j]
887 #define STORE32     N->p[i] = cur;
888 
889 #else                               /* 64-bit */
890 
891 #define MAX32       N->n * 2
892 #define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
893 #define STORE32                                   \
894     if( i % 2 ) {                                 \
895         N->p[i/2] &= 0x00000000FFFFFFFF;          \
896         N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32;        \
897     } else {                                      \
898         N->p[i/2] &= 0xFFFFFFFF00000000;          \
899         N->p[i/2] |= (mbedtls_mpi_uint) cur;                \
900     }
901 
902 #endif /* sizeof( mbedtls_mpi_uint ) */
903 
904 /*
905  * Helpers for addition and subtraction of chunks, with signed carry.
906  */
907 static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
908 {
909     *dst += src;
910     *carry += ( *dst < src );
911 }
912 
913 static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
914 {
915     *carry -= ( *dst < src );
916     *dst -= src;
917 }
918 
919 #define ADD( j )    add32( &cur, A( j ), &c );
920 #define SUB( j )    sub32( &cur, A( j ), &c );
921 
922 /*
923  * Helpers for the main 'loop'
924  * (see fix_negative for the motivation of C)
925  */
926 #define INIT( b )                                           \
927     int ret;                                                \
928     signed char c = 0, cc;                                  \
929     uint32_t cur;                                           \
930     size_t i = 0, bits = b;                                 \
931     mbedtls_mpi C;                                                  \
932     mbedtls_mpi_uint Cp[ b / 8 / sizeof( mbedtls_mpi_uint) + 1 ];               \
933                                                             \
934     C.s = 1;                                                \
935     C.n = b / 8 / sizeof( mbedtls_mpi_uint) + 1;                      \
936     C.p = Cp;                                               \
937     memset( Cp, 0, C.n * sizeof( mbedtls_mpi_uint ) );                \
938                                                             \
939     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, b * 2 / 8 / sizeof( mbedtls_mpi_uint ) ) ); \
940     LOAD32;
941 
942 #define NEXT                    \
943     STORE32; i++; LOAD32;       \
944     cc = c; c = 0;              \
945     if( cc < 0 )                \
946         sub32( &cur, -cc, &c ); \
947     else                        \
948         add32( &cur, cc, &c );  \
949 
950 #define LAST                                    \
951     STORE32; i++;                               \
952     cur = c > 0 ? c : 0; STORE32;               \
953     cur = 0; while( ++i < MAX32 ) { STORE32; }  \
954     if( c < 0 ) fix_negative( N, c, &C, bits );
955 
956 /*
957  * If the result is negative, we get it in the form
958  * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
959  */
960 static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits )
961 {
962     int ret;
963 
964     /* C = - c * 2^(bits + 32) */
965 #if !defined(MBEDTLS_HAVE_INT64)
966     ((void) bits);
967 #else
968     if( bits == 224 )
969         C->p[ C->n - 1 ] = ((mbedtls_mpi_uint) -c) << 32;
970     else
971 #endif
972         C->p[ C->n - 1 ] = (mbedtls_mpi_uint) -c;
973 
974     /* N = - ( C - N ) */
975     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) );
976     N->s = -1;
977 
978 cleanup:
979 
980     return( ret );
981 }
982 
983 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
984 /*
985  * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
986  */
987 static int ecp_mod_p224( mbedtls_mpi *N )
988 {
989     INIT( 224 );
990 
991     SUB(  7 ); SUB( 11 );               NEXT; // A0 += -A7 - A11
992     SUB(  8 ); SUB( 12 );               NEXT; // A1 += -A8 - A12
993     SUB(  9 ); SUB( 13 );               NEXT; // A2 += -A9 - A13
994     SUB( 10 ); ADD(  7 ); ADD( 11 );    NEXT; // A3 += -A10 + A7 + A11
995     SUB( 11 ); ADD(  8 ); ADD( 12 );    NEXT; // A4 += -A11 + A8 + A12
996     SUB( 12 ); ADD(  9 ); ADD( 13 );    NEXT; // A5 += -A12 + A9 + A13
997     SUB( 13 ); ADD( 10 );               LAST; // A6 += -A13 + A10
998 
999 cleanup:
1000     return( ret );
1001 }
1002 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
1003 
1004 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
1005 /*
1006  * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
1007  */
1008 static int ecp_mod_p256( mbedtls_mpi *N )
1009 {
1010     INIT( 256 );
1011 
1012     ADD(  8 ); ADD(  9 );
1013     SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 );             NEXT; // A0
1014 
1015     ADD(  9 ); ADD( 10 );
1016     SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 );             NEXT; // A1
1017 
1018     ADD( 10 ); ADD( 11 );
1019     SUB( 13 ); SUB( 14 ); SUB( 15 );                        NEXT; // A2
1020 
1021     ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
1022     SUB( 15 ); SUB(  8 ); SUB(  9 );                        NEXT; // A3
1023 
1024     ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
1025     SUB(  9 ); SUB( 10 );                                   NEXT; // A4
1026 
1027     ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
1028     SUB( 10 ); SUB( 11 );                                   NEXT; // A5
1029 
1030     ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
1031     SUB(  8 ); SUB(  9 );                                   NEXT; // A6
1032 
1033     ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
1034     SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 );             LAST; // A7
1035 
1036 cleanup:
1037     return( ret );
1038 }
1039 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
1040 
1041 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
1042 /*
1043  * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
1044  */
1045 static int ecp_mod_p384( mbedtls_mpi *N )
1046 {
1047     INIT( 384 );
1048 
1049     ADD( 12 ); ADD( 21 ); ADD( 20 );
1050     SUB( 23 );                                              NEXT; // A0
1051 
1052     ADD( 13 ); ADD( 22 ); ADD( 23 );
1053     SUB( 12 ); SUB( 20 );                                   NEXT; // A2
1054 
1055     ADD( 14 ); ADD( 23 );
1056     SUB( 13 ); SUB( 21 );                                   NEXT; // A2
1057 
1058     ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
1059     SUB( 14 ); SUB( 22 ); SUB( 23 );                        NEXT; // A3
1060 
1061     ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
1062     SUB( 15 ); SUB( 23 ); SUB( 23 );                        NEXT; // A4
1063 
1064     ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
1065     SUB( 16 );                                              NEXT; // A5
1066 
1067     ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
1068     SUB( 17 );                                              NEXT; // A6
1069 
1070     ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
1071     SUB( 18 );                                              NEXT; // A7
1072 
1073     ADD( 20 ); ADD( 17 ); ADD( 16 );
1074     SUB( 19 );                                              NEXT; // A8
1075 
1076     ADD( 21 ); ADD( 18 ); ADD( 17 );
1077     SUB( 20 );                                              NEXT; // A9
1078 
1079     ADD( 22 ); ADD( 19 ); ADD( 18 );
1080     SUB( 21 );                                              NEXT; // A10
1081 
1082     ADD( 23 ); ADD( 20 ); ADD( 19 );
1083     SUB( 22 );                                              LAST; // A11
1084 
1085 cleanup:
1086     return( ret );
1087 }
1088 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1089 
1090 #undef A
1091 #undef LOAD32
1092 #undef STORE32
1093 #undef MAX32
1094 #undef INIT
1095 #undef NEXT
1096 #undef LAST
1097 
1098 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
1099           MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
1100           MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1101 
1102 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
1103 /*
1104  * Here we have an actual Mersenne prime, so things are more straightforward.
1105  * However, chunks are aligned on a 'weird' boundary (521 bits).
1106  */
1107 
1108 /* Size of p521 in terms of mbedtls_mpi_uint */
1109 #define P521_WIDTH      ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1110 
1111 /* Bits to keep in the most significant mbedtls_mpi_uint */
1112 #define P521_MASK       0x01FF
1113 
1114 /*
1115  * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
1116  * Write N as A1 + 2^521 A0, return A0 + A1
1117  */
1118 static int ecp_mod_p521( mbedtls_mpi *N )
1119 {
1120     int ret;
1121     size_t i;
1122     mbedtls_mpi M;
1123     mbedtls_mpi_uint Mp[P521_WIDTH + 1];
1124     /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
1125      * we need to hold bits 513 to 1056, which is 34 limbs, that is
1126      * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
1127 
1128     if( N->n < P521_WIDTH )
1129         return( 0 );
1130 
1131     /* M = A1 */
1132     M.s = 1;
1133     M.n = N->n - ( P521_WIDTH - 1 );
1134     if( M.n > P521_WIDTH + 1 )
1135         M.n = P521_WIDTH + 1;
1136     M.p = Mp;
1137     memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1138     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1139 
1140     /* N = A0 */
1141     N->p[P521_WIDTH - 1] &= P521_MASK;
1142     for( i = P521_WIDTH; i < N->n; i++ )
1143         N->p[i] = 0;
1144 
1145     /* N = A0 + A1 */
1146     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1147 
1148 cleanup:
1149     return( ret );
1150 }
1151 
1152 #undef P521_WIDTH
1153 #undef P521_MASK
1154 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
1155 
1156 #endif /* MBEDTLS_ECP_NIST_OPTIM */
1157 
1158 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
1159 
1160 /* Size of p255 in terms of mbedtls_mpi_uint */
1161 #define P255_WIDTH      ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1162 
1163 /*
1164  * Fast quasi-reduction modulo p255 = 2^255 - 19
1165  * Write N as A0 + 2^255 A1, return A0 + 19 * A1
1166  */
1167 static int ecp_mod_p255( mbedtls_mpi *N )
1168 {
1169     int ret;
1170     size_t i;
1171     mbedtls_mpi M;
1172     mbedtls_mpi_uint Mp[P255_WIDTH + 2];
1173 
1174     if( N->n < P255_WIDTH )
1175         return( 0 );
1176 
1177     /* M = A1 */
1178     M.s = 1;
1179     M.n = N->n - ( P255_WIDTH - 1 );
1180     if( M.n > P255_WIDTH + 1 )
1181         M.n = P255_WIDTH + 1;
1182     M.p = Mp;
1183     memset( Mp, 0, sizeof Mp );
1184     memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1185     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1186     M.n++; /* Make room for multiplication by 19 */
1187 
1188     /* N = A0 */
1189     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) );
1190     for( i = P255_WIDTH; i < N->n; i++ )
1191         N->p[i] = 0;
1192 
1193     /* N = A0 + 19 * A1 */
1194     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) );
1195     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1196 
1197 cleanup:
1198     return( ret );
1199 }
1200 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
1201 
1202 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
1203     defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
1204     defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1205 /*
1206  * Fast quasi-reduction modulo P = 2^s - R,
1207  * with R about 33 bits, used by the Koblitz curves.
1208  *
1209  * Write N as A0 + 2^224 A1, return A0 + R * A1.
1210  * Actually do two passes, since R is big.
1211  */
1212 #define P_KOBLITZ_MAX   ( 256 / 8 / sizeof( mbedtls_mpi_uint ) )  // Max limbs in P
1213 #define P_KOBLITZ_R     ( 8 / sizeof( mbedtls_mpi_uint ) )        // Limbs in R
1214 static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
1215                                    size_t adjust, size_t shift, mbedtls_mpi_uint mask )
1216 {
1217     int ret;
1218     size_t i;
1219     mbedtls_mpi M, R;
1220     mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
1221 
1222     if( N->n < p_limbs )
1223         return( 0 );
1224 
1225     /* Init R */
1226     R.s = 1;
1227     R.p = Rp;
1228     R.n = P_KOBLITZ_R;
1229 
1230     /* Common setup for M */
1231     M.s = 1;
1232     M.p = Mp;
1233 
1234     /* M = A1 */
1235     M.n = N->n - ( p_limbs - adjust );
1236     if( M.n > p_limbs + adjust )
1237         M.n = p_limbs + adjust;
1238     memset( Mp, 0, sizeof Mp );
1239     memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1240     if( shift != 0 )
1241         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1242     M.n += R.n; /* Make room for multiplication by R */
1243 
1244     /* N = A0 */
1245     if( mask != 0 )
1246         N->p[p_limbs - 1] &= mask;
1247     for( i = p_limbs; i < N->n; i++ )
1248         N->p[i] = 0;
1249 
1250     /* N = A0 + R * A1 */
1251     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1252     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1253 
1254     /* Second pass */
1255 
1256     /* M = A1 */
1257     M.n = N->n - ( p_limbs - adjust );
1258     if( M.n > p_limbs + adjust )
1259         M.n = p_limbs + adjust;
1260     memset( Mp, 0, sizeof Mp );
1261     memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1262     if( shift != 0 )
1263         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1264     M.n += R.n; /* Make room for multiplication by R */
1265 
1266     /* N = A0 */
1267     if( mask != 0 )
1268         N->p[p_limbs - 1] &= mask;
1269     for( i = p_limbs; i < N->n; i++ )
1270         N->p[i] = 0;
1271 
1272     /* N = A0 + R * A1 */
1273     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1274     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1275 
1276 cleanup:
1277     return( ret );
1278 }
1279 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
1280           MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
1281           MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
1282 
1283 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
1284 /*
1285  * Fast quasi-reduction modulo p192k1 = 2^192 - R,
1286  * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
1287  */
1288 static int ecp_mod_p192k1( mbedtls_mpi *N )
1289 {
1290     static mbedtls_mpi_uint Rp[] = {
1291         BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1292 
1293     return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1294 }
1295 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
1296 
1297 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
1298 /*
1299  * Fast quasi-reduction modulo p224k1 = 2^224 - R,
1300  * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
1301  */
1302 static int ecp_mod_p224k1( mbedtls_mpi *N )
1303 {
1304     static mbedtls_mpi_uint Rp[] = {
1305         BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1306 
1307 #if defined(MBEDTLS_HAVE_INT64)
1308     return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
1309 #else
1310     return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1311 #endif
1312 }
1313 
1314 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
1315 
1316 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1317 /*
1318  * Fast quasi-reduction modulo p256k1 = 2^256 - R,
1319  * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
1320  */
1321 static int ecp_mod_p256k1( mbedtls_mpi *N )
1322 {
1323     static mbedtls_mpi_uint Rp[] = {
1324         BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1325     return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1326 }
1327 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
1328 
1329 #endif /* !MBEDTLS_ECP_ALT */
1330 
1331 #endif /* MBEDTLS_ECP_C */
1332