xref: /reactos/dll/3rdparty/mbedtls/rsa_internal.c (revision 139a3d66)
1 /*
2  *  Helper functions for the RSA module
3  *
4  *  Copyright (C) 2006-2017, ARM Limited, All Rights Reserved
5  *  SPDX-License-Identifier: GPL-2.0
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License along
18  *  with this program; if not, write to the Free Software Foundation, Inc.,
19  *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  *  This file is part of mbed TLS (https://tls.mbed.org)
22  *
23  */
24 
25 #if !defined(MBEDTLS_CONFIG_FILE)
26 #include "mbedtls/config.h"
27 #else
28 #include MBEDTLS_CONFIG_FILE
29 #endif
30 
31 #if defined(MBEDTLS_RSA_C)
32 
33 #include "mbedtls/rsa.h"
34 #include "mbedtls/bignum.h"
35 #include "mbedtls/rsa_internal.h"
36 
37 /*
38  * Compute RSA prime factors from public and private exponents
39  *
40  * Summary of algorithm:
41  * Setting F := lcm(P-1,Q-1), the idea is as follows:
42  *
43  * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2)
44  *     is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the
45  *     square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four
46  *     possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1)
47  *     or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime
48  *     factors of N.
49  *
50  * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same
51  *     construction still applies since (-)^K is the identity on the set of
52  *     roots of 1 in Z/NZ.
53  *
54  * The public and private key primitives (-)^E and (-)^D are mutually inverse
55  * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e.
56  * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L.
57  * Splitting L = 2^t * K with K odd, we have
58  *
59  *   DE - 1 = FL = (F/2) * (2^(t+1)) * K,
60  *
61  * so (F / 2) * K is among the numbers
62  *
63  *   (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord
64  *
65  * where ord is the order of 2 in (DE - 1).
66  * We can therefore iterate through these numbers apply the construction
67  * of (a) and (b) above to attempt to factor N.
68  *
69  */
70 int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N,
71                      mbedtls_mpi const *E, mbedtls_mpi const *D,
72                      mbedtls_mpi *P, mbedtls_mpi *Q )
73 {
74     int ret = 0;
75 
76     uint16_t attempt;  /* Number of current attempt  */
77     uint16_t iter;     /* Number of squares computed in the current attempt */
78 
79     uint16_t order;    /* Order of 2 in DE - 1 */
80 
81     mbedtls_mpi T;  /* Holds largest odd divisor of DE - 1     */
82     mbedtls_mpi K;  /* Temporary holding the current candidate */
83 
84     const unsigned char primes[] = { 2,
85            3,    5,    7,   11,   13,   17,   19,   23,
86           29,   31,   37,   41,   43,   47,   53,   59,
87           61,   67,   71,   73,   79,   83,   89,   97,
88          101,  103,  107,  109,  113,  127,  131,  137,
89          139,  149,  151,  157,  163,  167,  173,  179,
90          181,  191,  193,  197,  199,  211,  223,  227,
91          229,  233,  239,  241,  251
92     };
93 
94     const size_t num_primes = sizeof( primes ) / sizeof( *primes );
95 
96     if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL )
97         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
98 
99     if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 ||
100         mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
101         mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
102         mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
103         mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
104     {
105         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
106     }
107 
108     /*
109      * Initializations and temporary changes
110      */
111 
112     mbedtls_mpi_init( &K );
113     mbedtls_mpi_init( &T );
114 
115     /* T := DE - 1 */
116     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D,  E ) );
117     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) );
118 
119     if( ( order = (uint16_t) mbedtls_mpi_lsb( &T ) ) == 0 )
120     {
121         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
122         goto cleanup;
123     }
124 
125     /* After this operation, T holds the largest odd divisor of DE - 1. */
126     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) );
127 
128     /*
129      * Actual work
130      */
131 
132     /* Skip trying 2 if N == 1 mod 8 */
133     attempt = 0;
134     if( N->p[0] % 8 == 1 )
135         attempt = 1;
136 
137     for( ; attempt < num_primes; ++attempt )
138     {
139         mbedtls_mpi_lset( &K, primes[attempt] );
140 
141         /* Check if gcd(K,N) = 1 */
142         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
143         if( mbedtls_mpi_cmp_int( P, 1 ) != 0 )
144             continue;
145 
146         /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ...
147          * and check whether they have nontrivial GCD with N. */
148         MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N,
149                              Q /* temporarily use Q for storing Montgomery
150                                 * multiplication helper values */ ) );
151 
152         for( iter = 1; iter <= order; ++iter )
153         {
154             /* If we reach 1 prematurely, there's no point
155              * in continuing to square K */
156             if( mbedtls_mpi_cmp_int( &K, 1 ) == 0 )
157                 break;
158 
159             MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) );
160             MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
161 
162             if( mbedtls_mpi_cmp_int( P, 1 ) ==  1 &&
163                 mbedtls_mpi_cmp_mpi( P, N ) == -1 )
164             {
165                 /*
166                  * Have found a nontrivial divisor P of N.
167                  * Set Q := N / P.
168                  */
169 
170                 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) );
171                 goto cleanup;
172             }
173 
174             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
175             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) );
176             MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) );
177         }
178 
179         /*
180          * If we get here, then either we prematurely aborted the loop because
181          * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must
182          * be 1 if D,E,N were consistent.
183          * Check if that's the case and abort if not, to avoid very long,
184          * yet eventually failing, computations if N,D,E were not sane.
185          */
186         if( mbedtls_mpi_cmp_int( &K, 1 ) != 0 )
187         {
188             break;
189         }
190     }
191 
192     ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
193 
194 cleanup:
195 
196     mbedtls_mpi_free( &K );
197     mbedtls_mpi_free( &T );
198     return( ret );
199 }
200 
201 /*
202  * Given P, Q and the public exponent E, deduce D.
203  * This is essentially a modular inversion.
204  */
205 int mbedtls_rsa_deduce_private_exponent( mbedtls_mpi const *P,
206                                          mbedtls_mpi const *Q,
207                                          mbedtls_mpi const *E,
208                                          mbedtls_mpi *D )
209 {
210     int ret = 0;
211     mbedtls_mpi K, L;
212 
213     if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 )
214         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
215 
216     if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
217         mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ||
218         mbedtls_mpi_cmp_int( E, 0 ) == 0 )
219     {
220         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
221     }
222 
223     mbedtls_mpi_init( &K );
224     mbedtls_mpi_init( &L );
225 
226     /* Temporarily put K := P-1 and L := Q-1 */
227     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
228     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
229 
230     /* Temporarily put D := gcd(P-1, Q-1) */
231     MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) );
232 
233     /* K := LCM(P-1, Q-1) */
234     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) );
235     MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) );
236 
237     /* Compute modular inverse of E in LCM(P-1, Q-1) */
238     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) );
239 
240 cleanup:
241 
242     mbedtls_mpi_free( &K );
243     mbedtls_mpi_free( &L );
244 
245     return( ret );
246 }
247 
248 /*
249  * Check that RSA CRT parameters are in accordance with core parameters.
250  */
251 int mbedtls_rsa_validate_crt( const mbedtls_mpi *P,  const mbedtls_mpi *Q,
252                               const mbedtls_mpi *D,  const mbedtls_mpi *DP,
253                               const mbedtls_mpi *DQ, const mbedtls_mpi *QP )
254 {
255     int ret = 0;
256 
257     mbedtls_mpi K, L;
258     mbedtls_mpi_init( &K );
259     mbedtls_mpi_init( &L );
260 
261     /* Check that DP - D == 0 mod P - 1 */
262     if( DP != NULL )
263     {
264         if( P == NULL )
265         {
266             ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
267             goto cleanup;
268         }
269 
270         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
271         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DP, D ) );
272         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );
273 
274         if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
275         {
276             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
277             goto cleanup;
278         }
279     }
280 
281     /* Check that DQ - D == 0 mod Q - 1 */
282     if( DQ != NULL )
283     {
284         if( Q == NULL )
285         {
286             ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
287             goto cleanup;
288         }
289 
290         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) );
291         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DQ, D ) );
292         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );
293 
294         if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
295         {
296             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
297             goto cleanup;
298         }
299     }
300 
301     /* Check that QP * Q - 1 == 0 mod P */
302     if( QP != NULL )
303     {
304         if( P == NULL || Q == NULL )
305         {
306             ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
307             goto cleanup;
308         }
309 
310         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, QP, Q ) );
311         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
312         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) );
313         if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
314         {
315             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
316             goto cleanup;
317         }
318     }
319 
320 cleanup:
321 
322     /* Wrap MPI error codes by RSA check failure error code */
323     if( ret != 0 &&
324         ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED &&
325         ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
326     {
327         ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
328     }
329 
330     mbedtls_mpi_free( &K );
331     mbedtls_mpi_free( &L );
332 
333     return( ret );
334 }
335 
336 /*
337  * Check that core RSA parameters are sane.
338  */
339 int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P,
340                                  const mbedtls_mpi *Q, const mbedtls_mpi *D,
341                                  const mbedtls_mpi *E,
342                                  int (*f_rng)(void *, unsigned char *, size_t),
343                                  void *p_rng )
344 {
345     int ret = 0;
346     mbedtls_mpi K, L;
347 
348     mbedtls_mpi_init( &K );
349     mbedtls_mpi_init( &L );
350 
351     /*
352      * Step 1: If PRNG provided, check that P and Q are prime
353      */
354 
355 #if defined(MBEDTLS_GENPRIME)
356     if( f_rng != NULL && P != NULL &&
357         ( ret = mbedtls_mpi_is_prime( P, f_rng, p_rng ) ) != 0 )
358     {
359         ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
360         goto cleanup;
361     }
362 
363     if( f_rng != NULL && Q != NULL &&
364         ( ret = mbedtls_mpi_is_prime( Q, f_rng, p_rng ) ) != 0 )
365     {
366         ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
367         goto cleanup;
368     }
369 #else
370     ((void) f_rng);
371     ((void) p_rng);
372 #endif /* MBEDTLS_GENPRIME */
373 
374     /*
375      * Step 2: Check that 1 < N = P * Q
376      */
377 
378     if( P != NULL && Q != NULL && N != NULL )
379     {
380         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) );
381         if( mbedtls_mpi_cmp_int( N, 1 )  <= 0 ||
382             mbedtls_mpi_cmp_mpi( &K, N ) != 0 )
383         {
384             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
385             goto cleanup;
386         }
387     }
388 
389     /*
390      * Step 3: Check and 1 < D, E < N if present.
391      */
392 
393     if( N != NULL && D != NULL && E != NULL )
394     {
395         if ( mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
396              mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
397              mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
398              mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
399         {
400             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
401             goto cleanup;
402         }
403     }
404 
405     /*
406      * Step 4: Check that D, E are inverse modulo P-1 and Q-1
407      */
408 
409     if( P != NULL && Q != NULL && D != NULL && E != NULL )
410     {
411         if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
412             mbedtls_mpi_cmp_int( Q, 1 ) <= 0 )
413         {
414             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
415             goto cleanup;
416         }
417 
418         /* Compute DE-1 mod P-1 */
419         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
420         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
421         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, P, 1 ) );
422         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
423         if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
424         {
425             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
426             goto cleanup;
427         }
428 
429         /* Compute DE-1 mod Q-1 */
430         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
431         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
432         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
433         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
434         if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
435         {
436             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
437             goto cleanup;
438         }
439     }
440 
441 cleanup:
442 
443     mbedtls_mpi_free( &K );
444     mbedtls_mpi_free( &L );
445 
446     /* Wrap MPI error codes by RSA check failure error code */
447     if( ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED )
448     {
449         ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
450     }
451 
452     return( ret );
453 }
454 
455 int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q,
456                             const mbedtls_mpi *D, mbedtls_mpi *DP,
457                             mbedtls_mpi *DQ, mbedtls_mpi *QP )
458 {
459     int ret = 0;
460     mbedtls_mpi K;
461     mbedtls_mpi_init( &K );
462 
463     /* DP = D mod P-1 */
464     if( DP != NULL )
465     {
466         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1  ) );
467         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) );
468     }
469 
470     /* DQ = D mod Q-1 */
471     if( DQ != NULL )
472     {
473         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1  ) );
474         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) );
475     }
476 
477     /* QP = Q^{-1} mod P */
478     if( QP != NULL )
479     {
480         MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) );
481     }
482 
483 cleanup:
484     mbedtls_mpi_free( &K );
485 
486     return( ret );
487 }
488 
489 #endif /* MBEDTLS_RSA_C */
490