xref: /reactos/dll/directx/wine/d3drm/math.c (revision 58588b76)
1 /*
2  * Copyright 2007 David Adam
3  * Copyright 2007 Vijay Kiran Kamuju
4  *
5  * This library is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2.1 of the License, or (at your option) any later version.
9  *
10  * This library is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public
16  * License along with this library; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
18  */
19 
20 #include "config.h"
21 #include "wine/port.h"
22 
23 #include "d3drm_private.h"
24 
25 /* Create a RGB color from its components */
26 D3DCOLOR WINAPI D3DRMCreateColorRGB(D3DVALUE red, D3DVALUE green, D3DVALUE blue)
27 {
28     return D3DRMCreateColorRGBA(red, green, blue, 1.0f);
29 }
30 /* Create a RGBA color from its components */
31 D3DCOLOR WINAPI D3DRMCreateColorRGBA(D3DVALUE red, D3DVALUE green, D3DVALUE blue, D3DVALUE alpha)
32 {
33     D3DCOLOR color;
34 
35     d3drm_set_color(&color, red, green, blue, alpha);
36 
37     return color;
38 }
39 
40 /* Determine the alpha part of a color */
41 D3DVALUE WINAPI D3DRMColorGetAlpha(D3DCOLOR color)
42 {
43     return (RGBA_GETALPHA(color)/255.0);
44 }
45 
46 /* Determine the blue part of a color */
47 D3DVALUE WINAPI D3DRMColorGetBlue(D3DCOLOR color)
48 {
49     return (RGBA_GETBLUE(color)/255.0);
50 }
51 
52 /* Determine the green part of a color */
53 D3DVALUE WINAPI D3DRMColorGetGreen(D3DCOLOR color)
54 {
55     return (RGBA_GETGREEN(color)/255.0);
56 }
57 
58 /* Determine the red part of a color */
59 D3DVALUE WINAPI D3DRMColorGetRed(D3DCOLOR color)
60 {
61     return (RGBA_GETRED(color)/255.0);
62 }
63 
64 /* Product of 2 quaternions */
65 D3DRMQUATERNION * WINAPI D3DRMQuaternionMultiply(D3DRMQUATERNION *q, D3DRMQUATERNION *a, D3DRMQUATERNION *b)
66 {
67     D3DRMQUATERNION temp;
68     D3DVECTOR cross_product;
69 
70     D3DRMVectorCrossProduct(&cross_product, &a->v, &b->v);
71     temp.s = a->s * b->s - D3DRMVectorDotProduct(&a->v, &b->v);
72     temp.v.u1.x = a->s * b->v.u1.x + b->s * a->v.u1.x + cross_product.u1.x;
73     temp.v.u2.y = a->s * b->v.u2.y + b->s * a->v.u2.y + cross_product.u2.y;
74     temp.v.u3.z = a->s * b->v.u3.z + b->s * a->v.u3.z + cross_product.u3.z;
75 
76     *q = temp;
77     return q;
78 }
79 
80 /* Matrix for the Rotation that a unit quaternion represents */
81 void WINAPI D3DRMMatrixFromQuaternion(D3DRMMATRIX4D m, D3DRMQUATERNION *q)
82 {
83     D3DVALUE w,x,y,z;
84     w = q->s;
85     x = q->v.u1.x;
86     y = q->v.u2.y;
87     z = q->v.u3.z;
88     m[0][0] = 1.0-2.0*(y*y+z*z);
89     m[1][1] = 1.0-2.0*(x*x+z*z);
90     m[2][2] = 1.0-2.0*(x*x+y*y);
91     m[1][0] = 2.0*(x*y+z*w);
92     m[0][1] = 2.0*(x*y-z*w);
93     m[2][0] = 2.0*(x*z-y*w);
94     m[0][2] = 2.0*(x*z+y*w);
95     m[2][1] = 2.0*(y*z+x*w);
96     m[1][2] = 2.0*(y*z-x*w);
97     m[3][0] = 0.0;
98     m[3][1] = 0.0;
99     m[3][2] = 0.0;
100     m[0][3] = 0.0;
101     m[1][3] = 0.0;
102     m[2][3] = 0.0;
103     m[3][3] = 1.0;
104 }
105 
106 /* Return a unit quaternion that represents a rotation of an angle around an axis */
107 D3DRMQUATERNION * WINAPI D3DRMQuaternionFromRotation(D3DRMQUATERNION *q, D3DVECTOR *v, D3DVALUE theta)
108 {
109     q->s = cos(theta/2.0);
110     D3DRMVectorScale(&q->v, D3DRMVectorNormalize(v), sin(theta/2.0));
111     return q;
112 }
113 
114 /* Interpolation between two quaternions */
115 D3DRMQUATERNION * WINAPI D3DRMQuaternionSlerp(D3DRMQUATERNION *q,
116         D3DRMQUATERNION *a, D3DRMQUATERNION *b, D3DVALUE alpha)
117 {
118     D3DVALUE dot, epsilon, temp, theta, u;
119     D3DVECTOR v1, v2;
120 
121     dot = a->s * b->s + D3DRMVectorDotProduct(&a->v, &b->v);
122     epsilon = 1.0f;
123     temp = 1.0f - alpha;
124     u = alpha;
125     if (dot < 0.0)
126     {
127      epsilon = -1.0;
128      dot = -dot;
129     }
130     if( 1.0f - dot > 0.001f )
131     {
132         theta = acos(dot);
133         temp  = sin(theta * temp) / sin(theta);
134         u = sin(theta * alpha) / sin(theta);
135     }
136     q->s = temp * a->s + epsilon * u * b->s;
137     D3DRMVectorScale(&v1, &a->v, temp);
138     D3DRMVectorScale(&v2, &b->v, epsilon * u);
139     D3DRMVectorAdd(&q->v, &v1, &v2);
140     return q;
141 }
142 
143 /* Add Two Vectors */
144 D3DVECTOR * WINAPI D3DRMVectorAdd(D3DVECTOR *d, D3DVECTOR *s1, D3DVECTOR *s2)
145 {
146     D3DVECTOR temp;
147 
148     temp.u1.x=s1->u1.x + s2->u1.x;
149     temp.u2.y=s1->u2.y + s2->u2.y;
150     temp.u3.z=s1->u3.z + s2->u3.z;
151 
152     *d = temp;
153     return d;
154 }
155 
156 /* Subtract Two Vectors */
157 D3DVECTOR * WINAPI D3DRMVectorSubtract(D3DVECTOR *d, D3DVECTOR *s1, D3DVECTOR *s2)
158 {
159     D3DVECTOR temp;
160 
161     temp.u1.x=s1->u1.x - s2->u1.x;
162     temp.u2.y=s1->u2.y - s2->u2.y;
163     temp.u3.z=s1->u3.z - s2->u3.z;
164 
165     *d = temp;
166     return d;
167 }
168 
169 /* Cross Product of Two Vectors */
170 D3DVECTOR * WINAPI D3DRMVectorCrossProduct(D3DVECTOR *d, D3DVECTOR *s1, D3DVECTOR *s2)
171 {
172     D3DVECTOR temp;
173 
174     temp.u1.x=s1->u2.y * s2->u3.z - s1->u3.z * s2->u2.y;
175     temp.u2.y=s1->u3.z * s2->u1.x - s1->u1.x * s2->u3.z;
176     temp.u3.z=s1->u1.x * s2->u2.y - s1->u2.y * s2->u1.x;
177 
178     *d = temp;
179     return d;
180 }
181 
182 /* Dot Product of Two vectors */
183 D3DVALUE WINAPI D3DRMVectorDotProduct(D3DVECTOR *s1, D3DVECTOR *s2)
184 {
185     D3DVALUE dot_product;
186     dot_product=s1->u1.x * s2->u1.x + s1->u2.y * s2->u2.y + s1->u3.z * s2->u3.z;
187     return dot_product;
188 }
189 
190 /* Norm of a vector */
191 D3DVALUE WINAPI D3DRMVectorModulus(D3DVECTOR *v)
192 {
193     D3DVALUE result;
194     result=sqrt(v->u1.x * v->u1.x + v->u2.y * v->u2.y + v->u3.z * v->u3.z);
195     return result;
196 }
197 
198 /* Normalize a vector.  Returns (1,0,0) if INPUT is the NULL vector. */
199 D3DVECTOR * WINAPI D3DRMVectorNormalize(D3DVECTOR *u)
200 {
201     D3DVALUE modulus = D3DRMVectorModulus(u);
202     if(modulus)
203     {
204         D3DRMVectorScale(u,u,1.0/modulus);
205     }
206     else
207     {
208         u->u1.x=1.0;
209         u->u2.y=0.0;
210         u->u3.z=0.0;
211     }
212     return u;
213 }
214 
215 /* Returns a random unit vector */
216 D3DVECTOR * WINAPI D3DRMVectorRandom(D3DVECTOR *d)
217 {
218     d->u1.x = rand();
219     d->u2.y = rand();
220     d->u3.z = rand();
221     D3DRMVectorNormalize(d);
222     return d;
223 }
224 
225 /* Reflection of a vector on a surface */
226 D3DVECTOR * WINAPI D3DRMVectorReflect(D3DVECTOR *r, D3DVECTOR *ray, D3DVECTOR *norm)
227 {
228     D3DVECTOR sca, temp;
229     D3DRMVectorSubtract(&temp, D3DRMVectorScale(&sca, norm, 2.0*D3DRMVectorDotProduct(ray,norm)), ray);
230 
231     *r = temp;
232     return r;
233 }
234 
235 /* Rotation of a vector */
236 D3DVECTOR * WINAPI D3DRMVectorRotate(D3DVECTOR *r, D3DVECTOR *v, D3DVECTOR *axis, D3DVALUE theta)
237 {
238     D3DRMQUATERNION quaternion1, quaternion2, quaternion3;
239     D3DVECTOR norm;
240 
241     quaternion1.s = cos(theta * 0.5f);
242     quaternion2.s = cos(theta * 0.5f);
243     norm = *D3DRMVectorNormalize(axis);
244     D3DRMVectorScale(&quaternion1.v, &norm, sin(theta * 0.5f));
245     D3DRMVectorScale(&quaternion2.v, &norm, -sin(theta * 0.5f));
246     quaternion3.s = 0.0;
247     quaternion3.v = *v;
248     D3DRMQuaternionMultiply(&quaternion1, &quaternion1, &quaternion3);
249     D3DRMQuaternionMultiply(&quaternion1, &quaternion1, &quaternion2);
250 
251     *r = *D3DRMVectorNormalize(&quaternion1.v);
252     return r;
253 }
254 
255 /* Scale a vector */
256 D3DVECTOR * WINAPI D3DRMVectorScale(D3DVECTOR *d, D3DVECTOR *s, D3DVALUE factor)
257 {
258     D3DVECTOR temp;
259 
260     temp.u1.x=factor * s->u1.x;
261     temp.u2.y=factor * s->u2.y;
262     temp.u3.z=factor * s->u3.z;
263 
264     *d = temp;
265     return d;
266 }
267