xref: /reactos/dll/opengl/glu32/src/libtess/render.c (revision 40462c92)
1 /*
2  * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
3  * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice including the dates of first publication and
13  * either this permission notice or a reference to
14  * http://oss.sgi.com/projects/FreeB/
15  * shall be included in all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21  * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
22  * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Except as contained in this notice, the name of Silicon Graphics, Inc.
26  * shall not be used in advertising or otherwise to promote the sale, use or
27  * other dealings in this Software without prior written authorization from
28  * Silicon Graphics, Inc.
29  */
30 /*
31 ** Author: Eric Veach, July 1994.
32 **
33 */
34 
35 #include "gluos.h"
36 #include <assert.h>
37 //#include <stddef.h>
38 //#include "mesh.h"
39 #include "tess.h"
40 //#include "render.h"
41 
42 #ifndef TRUE
43 #define TRUE 1
44 #endif
45 #ifndef FALSE
46 #define FALSE 0
47 #endif
48 
49 /* This structure remembers the information we need about a primitive
50  * to be able to render it later, once we have determined which
51  * primitive is able to use the most triangles.
52  */
53 struct FaceCount {
54   long		size;		/* number of triangles used */
55   GLUhalfEdge	*eStart;	/* edge where this primitive starts */
56   void		(*render)(GLUtesselator *, GLUhalfEdge *, long);
57                                 /* routine to render this primitive */
58 };
59 
60 static struct FaceCount MaximumFan( GLUhalfEdge *eOrig );
61 static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig );
62 
63 static void RenderFan( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
64 static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
65 static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *eStart,
66 			    long size );
67 
68 static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig );
69 static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *head );
70 
71 
72 
73 /************************ Strips and Fans decomposition ******************/
74 
75 /* __gl_renderMesh( tess, mesh ) takes a mesh and breaks it into triangle
76  * fans, strips, and separate triangles.  A substantial effort is made
77  * to use as few rendering primitives as possible (ie. to make the fans
78  * and strips as large as possible).
79  *
80  * The rendering output is provided as callbacks (see the api).
81  */
82 void __gl_renderMesh( GLUtesselator *tess, GLUmesh *mesh )
83 {
84   GLUface *f;
85 
86   /* Make a list of separate triangles so we can render them all at once */
87   tess->lonelyTriList = NULL;
88 
89   for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
90     f->marked = FALSE;
91   }
92   for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
93 
94     /* We examine all faces in an arbitrary order.  Whenever we find
95      * an unprocessed face F, we output a group of faces including F
96      * whose size is maximum.
97      */
98     if( f->inside && ! f->marked ) {
99       RenderMaximumFaceGroup( tess, f );
100       assert( f->marked );
101     }
102   }
103   if( tess->lonelyTriList != NULL ) {
104     RenderLonelyTriangles( tess, tess->lonelyTriList );
105     tess->lonelyTriList = NULL;
106   }
107 }
108 
109 
110 static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig )
111 {
112   /* We want to find the largest triangle fan or strip of unmarked faces
113    * which includes the given face fOrig.  There are 3 possible fans
114    * passing through fOrig (one centered at each vertex), and 3 possible
115    * strips (one for each CCW permutation of the vertices).  Our strategy
116    * is to try all of these, and take the primitive which uses the most
117    * triangles (a greedy approach).
118    */
119   GLUhalfEdge *e = fOrig->anEdge;
120   struct FaceCount max, newFace;
121 
122   max.size = 1;
123   max.eStart = e;
124   max.render = &RenderTriangle;
125 
126   if( ! tess->flagBoundary ) {
127     newFace = MaximumFan( e ); if( newFace.size > max.size ) { max = newFace; }
128     newFace = MaximumFan( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
129     newFace = MaximumFan( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
130 
131     newFace = MaximumStrip( e ); if( newFace.size > max.size ) { max = newFace; }
132     newFace = MaximumStrip( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
133     newFace = MaximumStrip( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
134   }
135   (*(max.render))( tess, max.eStart, max.size );
136 }
137 
138 
139 /* Macros which keep track of faces we have marked temporarily, and allow
140  * us to backtrack when necessary.  With triangle fans, this is not
141  * really necessary, since the only awkward case is a loop of triangles
142  * around a single origin vertex.  However with strips the situation is
143  * more complicated, and we need a general tracking method like the
144  * one here.
145  */
146 #define Marked(f)	(! (f)->inside || (f)->marked)
147 
148 #define AddToTrail(f,t)	((f)->trail = (t), (t) = (f), (f)->marked = TRUE)
149 
150 #define FreeTrail(t)	do { \
151 			  while( (t) != NULL ) { \
152 			    (t)->marked = FALSE; t = (t)->trail; \
153 			  } \
154 			} while(0) /* absorb trailing semicolon */
155 
156 
157 
158 static struct FaceCount MaximumFan( GLUhalfEdge *eOrig )
159 {
160   /* eOrig->Lface is the face we want to render.  We want to find the size
161    * of a maximal fan around eOrig->Org.  To do this we just walk around
162    * the origin vertex as far as possible in both directions.
163    */
164   struct FaceCount newFace = { 0, NULL, &RenderFan };
165   GLUface *trail = NULL;
166   GLUhalfEdge *e;
167 
168   for( e = eOrig; ! Marked( e->Lface ); e = e->Onext ) {
169     AddToTrail( e->Lface, trail );
170     ++newFace.size;
171   }
172   for( e = eOrig; ! Marked( e->Rface ); e = e->Oprev ) {
173     AddToTrail( e->Rface, trail );
174     ++newFace.size;
175   }
176   newFace.eStart = e;
177   /*LINTED*/
178   FreeTrail( trail );
179   return newFace;
180 }
181 
182 
183 #define IsEven(n)	(((n) & 1) == 0)
184 
185 static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig )
186 {
187   /* Here we are looking for a maximal strip that contains the vertices
188    * eOrig->Org, eOrig->Dst, eOrig->Lnext->Dst (in that order or the
189    * reverse, such that all triangles are oriented CCW).
190    *
191    * Again we walk forward and backward as far as possible.  However for
192    * strips there is a twist: to get CCW orientations, there must be
193    * an *even* number of triangles in the strip on one side of eOrig.
194    * We walk the strip starting on a side with an even number of triangles;
195    * if both side have an odd number, we are forced to shorten one side.
196    */
197   struct FaceCount newFace = { 0, NULL, &RenderStrip };
198   long headSize = 0, tailSize = 0;
199   GLUface *trail = NULL;
200   GLUhalfEdge *e, *eTail, *eHead;
201 
202   for( e = eOrig; ! Marked( e->Lface ); ++tailSize, e = e->Onext ) {
203     AddToTrail( e->Lface, trail );
204     ++tailSize;
205     e = e->Dprev;
206     if( Marked( e->Lface )) break;
207     AddToTrail( e->Lface, trail );
208   }
209   eTail = e;
210 
211   for( e = eOrig; ! Marked( e->Rface ); ++headSize, e = e->Dnext ) {
212     AddToTrail( e->Rface, trail );
213     ++headSize;
214     e = e->Oprev;
215     if( Marked( e->Rface )) break;
216     AddToTrail( e->Rface, trail );
217   }
218   eHead = e;
219 
220   newFace.size = tailSize + headSize;
221   if( IsEven( tailSize )) {
222     newFace.eStart = eTail->Sym;
223   } else if( IsEven( headSize )) {
224     newFace.eStart = eHead;
225   } else {
226     /* Both sides have odd length, we must shorten one of them.  In fact,
227      * we must start from eHead to guarantee inclusion of eOrig->Lface.
228      */
229     --newFace.size;
230     newFace.eStart = eHead->Onext;
231   }
232   /*LINTED*/
233   FreeTrail( trail );
234   return newFace;
235 }
236 
237 
238 static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *e, long size )
239 {
240   /* Just add the triangle to a triangle list, so we can render all
241    * the separate triangles at once.
242    */
243   assert( size == 1 );
244   AddToTrail( e->Lface, tess->lonelyTriList );
245 }
246 
247 
248 static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *f )
249 {
250   /* Now we render all the separate triangles which could not be
251    * grouped into a triangle fan or strip.
252    */
253   GLUhalfEdge *e;
254   int newState;
255   int edgeState = -1;	/* force edge state output for first vertex */
256 
257   CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLES );
258 
259   for( ; f != NULL; f = f->trail ) {
260     /* Loop once for each edge (there will always be 3 edges) */
261 
262     e = f->anEdge;
263     do {
264       if( tess->flagBoundary ) {
265 	/* Set the "edge state" to TRUE just before we output the
266 	 * first vertex of each edge on the polygon boundary.
267 	 */
268 	newState = ! e->Rface->inside;
269 	if( edgeState != newState ) {
270 	  edgeState = newState;
271           CALL_EDGE_FLAG_OR_EDGE_FLAG_DATA( edgeState );
272 	}
273       }
274       CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
275 
276       e = e->Lnext;
277     } while( e != f->anEdge );
278   }
279   CALL_END_OR_END_DATA();
280 }
281 
282 
283 static void RenderFan( GLUtesselator *tess, GLUhalfEdge *e, long size )
284 {
285   /* Render as many CCW triangles as possible in a fan starting from
286    * edge "e".  The fan *should* contain exactly "size" triangles
287    * (otherwise we've goofed up somewhere).
288    */
289   CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_FAN );
290   CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
291   CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
292 
293   while( ! Marked( e->Lface )) {
294     e->Lface->marked = TRUE;
295     --size;
296     e = e->Onext;
297     CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
298   }
299 
300   assert( size == 0 );
301   CALL_END_OR_END_DATA();
302 }
303 
304 
305 static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *e, long size )
306 {
307   /* Render as many CCW triangles as possible in a strip starting from
308    * edge "e".  The strip *should* contain exactly "size" triangles
309    * (otherwise we've goofed up somewhere).
310    */
311   CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_STRIP );
312   CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
313   CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
314 
315   while( ! Marked( e->Lface )) {
316     e->Lface->marked = TRUE;
317     --size;
318     e = e->Dprev;
319     CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
320     if( Marked( e->Lface )) break;
321 
322     e->Lface->marked = TRUE;
323     --size;
324     e = e->Onext;
325     CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
326   }
327 
328   assert( size == 0 );
329   CALL_END_OR_END_DATA();
330 }
331 
332 
333 /************************ Boundary contour decomposition ******************/
334 
335 /* __gl_renderBoundary( tess, mesh ) takes a mesh, and outputs one
336  * contour for each face marked "inside".  The rendering output is
337  * provided as callbacks (see the api).
338  */
339 void __gl_renderBoundary( GLUtesselator *tess, GLUmesh *mesh )
340 {
341   GLUface *f;
342   GLUhalfEdge *e;
343 
344   for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
345     if( f->inside ) {
346       CALL_BEGIN_OR_BEGIN_DATA( GL_LINE_LOOP );
347       e = f->anEdge;
348       do {
349         CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
350 	e = e->Lnext;
351       } while( e != f->anEdge );
352       CALL_END_OR_END_DATA();
353     }
354   }
355 }
356 
357 
358 /************************ Quick-and-dirty decomposition ******************/
359 
360 #define SIGN_INCONSISTENT 2
361 
362 static int ComputeNormal( GLUtesselator *tess, GLdouble norm[3], int check )
363 /*
364  * If check==FALSE, we compute the polygon normal and place it in norm[].
365  * If check==TRUE, we check that each triangle in the fan from v0 has a
366  * consistent orientation with respect to norm[].  If triangles are
367  * consistently oriented CCW, return 1; if CW, return -1; if all triangles
368  * are degenerate return 0; otherwise (no consistent orientation) return
369  * SIGN_INCONSISTENT.
370  */
371 {
372   CachedVertex *v0 = tess->cache;
373   CachedVertex *vn = v0 + tess->cacheCount;
374   CachedVertex *vc;
375   GLdouble dot, xc, yc, zc, xp, yp, zp, n[3];
376   int sign = 0;
377 
378   /* Find the polygon normal.  It is important to get a reasonable
379    * normal even when the polygon is self-intersecting (eg. a bowtie).
380    * Otherwise, the computed normal could be very tiny, but perpendicular
381    * to the true plane of the polygon due to numerical noise.  Then all
382    * the triangles would appear to be degenerate and we would incorrectly
383    * decompose the polygon as a fan (or simply not render it at all).
384    *
385    * We use a sum-of-triangles normal algorithm rather than the more
386    * efficient sum-of-trapezoids method (used in CheckOrientation()
387    * in normal.c).  This lets us explicitly reverse the signed area
388    * of some triangles to get a reasonable normal in the self-intersecting
389    * case.
390    */
391   if( ! check ) {
392     norm[0] = norm[1] = norm[2] = 0.0;
393   }
394 
395   vc = v0 + 1;
396   xc = vc->coords[0] - v0->coords[0];
397   yc = vc->coords[1] - v0->coords[1];
398   zc = vc->coords[2] - v0->coords[2];
399   while( ++vc < vn ) {
400     xp = xc; yp = yc; zp = zc;
401     xc = vc->coords[0] - v0->coords[0];
402     yc = vc->coords[1] - v0->coords[1];
403     zc = vc->coords[2] - v0->coords[2];
404 
405     /* Compute (vp - v0) cross (vc - v0) */
406     n[0] = yp*zc - zp*yc;
407     n[1] = zp*xc - xp*zc;
408     n[2] = xp*yc - yp*xc;
409 
410     dot = n[0]*norm[0] + n[1]*norm[1] + n[2]*norm[2];
411     if( ! check ) {
412       /* Reverse the contribution of back-facing triangles to get
413        * a reasonable normal for self-intersecting polygons (see above)
414        */
415       if( dot >= 0 ) {
416 	norm[0] += n[0]; norm[1] += n[1]; norm[2] += n[2];
417       } else {
418 	norm[0] -= n[0]; norm[1] -= n[1]; norm[2] -= n[2];
419       }
420     } else if( dot != 0 ) {
421       /* Check the new orientation for consistency with previous triangles */
422       if( dot > 0 ) {
423 	if( sign < 0 ) return SIGN_INCONSISTENT;
424 	sign = 1;
425       } else {
426 	if( sign > 0 ) return SIGN_INCONSISTENT;
427 	sign = -1;
428       }
429     }
430   }
431   return sign;
432 }
433 
434 /* __gl_renderCache( tess ) takes a single contour and tries to render it
435  * as a triangle fan.  This handles convex polygons, as well as some
436  * non-convex polygons if we get lucky.
437  *
438  * Returns TRUE if the polygon was successfully rendered.  The rendering
439  * output is provided as callbacks (see the api).
440  */
441 GLboolean __gl_renderCache( GLUtesselator *tess )
442 {
443   CachedVertex *v0 = tess->cache;
444   CachedVertex *vn = v0 + tess->cacheCount;
445   CachedVertex *vc;
446   GLdouble norm[3];
447   int sign;
448 
449   if( tess->cacheCount < 3 ) {
450     /* Degenerate contour -- no output */
451     return TRUE;
452   }
453 
454   norm[0] = tess->normal[0];
455   norm[1] = tess->normal[1];
456   norm[2] = tess->normal[2];
457   if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
458     ComputeNormal( tess, norm, FALSE );
459   }
460 
461   sign = ComputeNormal( tess, norm, TRUE );
462   if( sign == SIGN_INCONSISTENT ) {
463     /* Fan triangles did not have a consistent orientation */
464     return FALSE;
465   }
466   if( sign == 0 ) {
467     /* All triangles were degenerate */
468     return TRUE;
469   }
470 
471   /* Make sure we do the right thing for each winding rule */
472   switch( tess->windingRule ) {
473   case GLU_TESS_WINDING_ODD:
474   case GLU_TESS_WINDING_NONZERO:
475     break;
476   case GLU_TESS_WINDING_POSITIVE:
477     if( sign < 0 ) return TRUE;
478     break;
479   case GLU_TESS_WINDING_NEGATIVE:
480     if( sign > 0 ) return TRUE;
481     break;
482   case GLU_TESS_WINDING_ABS_GEQ_TWO:
483     return TRUE;
484   }
485 
486   CALL_BEGIN_OR_BEGIN_DATA( tess->boundaryOnly ? GL_LINE_LOOP
487 			  : (tess->cacheCount > 3) ? GL_TRIANGLE_FAN
488 			  : GL_TRIANGLES );
489 
490   CALL_VERTEX_OR_VERTEX_DATA( v0->data );
491   if( sign > 0 ) {
492     for( vc = v0+1; vc < vn; ++vc ) {
493       CALL_VERTEX_OR_VERTEX_DATA( vc->data );
494     }
495   } else {
496     for( vc = vn-1; vc > v0; --vc ) {
497       CALL_VERTEX_OR_VERTEX_DATA( vc->data );
498     }
499   }
500   CALL_END_OR_END_DATA();
501   return TRUE;
502 }
503